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Abstract. This paper presents an approximate solution of the pulsatile flow of a Newtonian fluid in
the laminar flow regime in a rigid tube of constant diameter. The model is represented by two ordinary
differential equations. The first equation describes the time evolution of the total flow rate, and the
second equation characterizes the reverse flow near the wall. These equations are derived from the
momentum balance equation and from the kinetic energy equation, respectively. The accuracy of the
derived equations is compared with a solution in which the finite difference method is applied to a
partial differential equation.
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1. Introduction
Pulsatile flow is a time-dependent flow that consists
of a constant part (Hagen-Poiseuille flow, with a
parabolic velocity profile, fully controlled by the vis-
cous forces) and an oscillatory part, which is controlled
by the viscous forces at the wall and by the inertial
forces at the core [1]. Pilot studies of time-dependent
laminar flow were reported by [2], and were followed
by [3] and [4]. Sexl [2] developed an analytical solution
to the momentum equation of Newtonian fluid flow
subjected to a pressure gradient dp/dx = Ceiωt. Szy-
manski [3] employed a similar technique, and obtained
an analytical solution to the momentum equation for
the flow driven by a pressure gradient dp/dx = 0 for
t ≤ 0 and dp/dx = C for t > 0, where C was con-
stant. An extended review of the literature dealing
with laminar pulsatile flow, which presents the current
state of theoretical and experimental knowledge was
thoroughly drafted by [5] and supplemented in [6].
The most cited work on linearization of the basic

equations [7] was carried out by Womersley in the
late 1950’s, and was published in a series of papers
[4], [8] and [9], [10]. Most of these materials appear
in a comprehensive report [11].

Another option for solving non-stationary flow is to
employ the integral momentum and integral energy
method, which leads to a different form of equations.
In this method, it is not the Navier-Stokes equations
themselves that are solved, but the integrated form of
the stream wise momentum or energy equation. The
form of the velocity profiles is assumed a priori with
unknown coefficients characterizing the profile [12].
A list of integral methods that are used, variants of
velocity profiles, the ability to capture the reverse flow
and specific features of the method are presented in
(Tab. 1). The methods in the list describe unidirec-
tional the pulsatile flow and the impulsively-initiated

flow of a Newtonian fluid within a rigid tube of con-
stant diameter, unless otherwise stated in the column
“Specific”.

To the best of the author’s knowledge, there is no in-
tegral energy solution for pulsatile flow that takes into
account the reverse flow. Only some of the listed meth-
ods are able to solve both, the periodic flow and the
impulsively-initiated flows for arbitrary initial condi-
tions (using time marching algorithms). Additionally,
there is a controversy over the comparative accuracy
of the energy method and momentum integral meth-
ods; the results depend on the specific test and on the
selected accuracy criterion. For example, Elkouh [21]
tested his method in the special case of a sinusoidally
oscillating Newtonian fluid (the method did not take
into account the reverse flow near the wall). A com-
parison with the exact solution [22] showed, that the
integral energy method is more accurate than the in-
tegral momentum method. The methods described in
this paper anticipate quite opposite conclusions.
The method proposed in our paper was applied in

the newly developed experimental method for identify-
ing viscoelastic properties of blood vessels and grafts
using a transient water hammer experiment [24]. The
experimental setup consists of the tested elastic tubu-
lar sample connected to a long glass capillary filled
with an oscillating column of water. When the stan-
dard balance momentum equation with a parabolic ve-
locity profile [25], [26] is used to describe the pulsation
of the column of water, there is an error in the pre-
dicted frequency. The error is reduced by using a new
model, which replaces the standard balance momen-
tum equation by two ordinary differential equations:
one for the total flow rate and one for the reverse flow
rate. The model is derived from the momentum bal-
ance and from the macroscopic kinetic energy balance.
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Author Solution method Velocity profile form Reverse
flow Specific

[12] Integral momentum u(r, t) = U(t)
4∑

i=0
ai

ri

Ri

for a1 = 0
yes

Flow in a tube with and without
longitudinal vibration of the wall
compared with [11] exact solution
for α = 0–10

[13] Integral momentum
u(r, t) = U(t)

4∑
i=0

ai
ri

Ri

for a1 = a3 = 0
yes Flow of Non-Newtonian fluid with

vibrating wall

[14] Integral momentum u(r, t) = U(t)
4∑

i=0
ai

ri

Ri

for a1 = 0
yes

Flow of micropolar fluid with and
without longitudinal vibration
of the wall

[15]
Combination of
integral energy and
integral momentum

u(r) = U
4∑

i=0
ai

ri

Ri

for a1 = a3 = 0
and flat profile

yes
Steady flow through rigid stenosis,
results were compared with an
experiment

[16] Integral momentum
u(r) = U

4∑
i=0

ai
ri

Ri

for a0 = 0
yes

Steady flow through rigid stenosis,
results were compared with
experiment [17]

[18] Integral momentum
u∗(r∗, x∗, t∗) =

3∑
i=0
Ui(x∗, t∗)r∗i

for U0 = U1 = 0
yes

Flow through compliant and rigid
tube. Solution in rigid tube was
compared with [11] for
α = 1, 3, 4.72, 6.67, 15

[19] Integral momentum u(r, t) = eiωta0

(
1− r2

R2

)(
a1− r2

R2

)
yes

Solution only for harmonic P ,
compared with [20] exact solution
for α=2, 4, 6

[21] Integral momentum,
integral energy

u(r, t) = 2Ū(t) 3n+1
n+1

(
1 − r

n+1
n

R
n+1

n

)
tested only for the special
case n = 1

no
Flow of power law and Newtonian
fluid compared with [22] exact
solution for α = 0–10

[23] Integral momentum u(r, t) = 2U(t)
(
1 − r2

R2

)
no Method proposed compared with

[22] exact solution for α = 0–9

Table 1. List of integral methods used for describing pulsatile flow.

2. Methods
2.1. Mathematical model – Weak

formulation
The exact solution of pulsatile flow in a rigid tube of
constant radius R is fully described by the momentum
balance in the x axial direction, assuming rotational
symmetry and spatially fully-developed flow of a non-
compressible fluid

ρ
∂u

∂t
= −∂p

∂x
+ µ

1
r

∂

∂r

(
r
∂u

∂r

)
, (1)

where ρ is constant density and µ is dynamic viscosity.
Pressure p is independent of the radial coordinate,
as follows from the momentum balance in the radial
direction. The pressure gradient can be considered as
a known (and arbitrary) function P (t)

P (t) = ∂p

∂x
. (2)

The equation (1) multiplied by velocity u represents
the kinetic energy balance, which forms the basis of
the mechanical energy equation

ρ
1
2
∂u2

∂t
= −uP + uµ

1
r

∂

∂r

(
r
∂u

∂r

)
. (3)

An exact solution of (1), (3) has to provide the same
results, but the results of an approximate solution may
differ slightly. An approximation of the velocity profile
u(r, t) can be represented as a linear combination of
polynomial basis functions

u(r, t) =
n∑

i=1
Ui(t)Ni(r) =

n∑
i=1

Ui(t)
(
r2(i−1)

R2(i−1) − r2i

R2i

)
.

(4)
The term Ui(t) is the amplitude of the velocity profile,
and the symmetric basis functions Ni(r) satisfy the
boundary conditions (u(R, t) = 0, ∂u(0, t)/∂r = 0).
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An approximation of the velocity profile for n = 1
corresponds to a parabolic function (Hagen Poiseuille)
and further terms with a higher power exponent can be
called corrective functions that provide a description of
more extrema (for example the second basis function
N2(r) represents a typical radial velocity profile with
backflow at the wall).

First, we derive approximate solutions (5), (6) from
the balance momentum equation (1) and from the
kinetic energy equation (3) respectively. The Galerkin
weighted residual method is applied. The integration
of the residual res and the weight function wj is over
area 2πr dr, and for the momentum balance results in

R∫
0

res · wj dr

=
R∫

0

[
ρ
∂u

∂t
+ P − µ

1
r

∂

∂r

(
r
∂u

∂r

)]
Nj(r)2πr dr

= ρ

n∑
i=1

∂Ui (t)
∂t

R∫
0

Ni(r)Nj(r)2πr dr

︸ ︷︷ ︸
Mb

− µ

n∑
i=1

Ui(t)
R∫

0

Nj(r)1
r

∂

∂r

(
r
∂Ni(r)
∂r

)
2πr dr

︸ ︷︷ ︸
Kb

+ P

R∫
0

Nj(r)2πr dr

︸ ︷︷ ︸
nb

= 0, (5)

R∫
0

[
ρ

1
2
∂u2

∂t
+ uP − uµ

1
r

∂

∂r

(
r
∂u

∂r

)]
Nj(r)2πr dr

= ρ

n∑
i=1

∂U2
i (t)
∂t

R∫
0

1
2N

2
i (r)Nj(r)2πr dr

︸ ︷︷ ︸
Mk

− µ

n∑
i=1

U2
i (t)

R∫
0

Ni(r)Nj(r)1
r

∂

∂r

(
r
∂Ni(r)
∂r

)
2πr dr

︸ ︷︷ ︸
Kk

+
n∑

i=1
Ui(t)P

R∫
0

Ni(r)Nj(r)2πr dr

︸ ︷︷ ︸
Nk

= 0. (6)

Subscript i is the summation index, and index j cor-
responds to the j-th weight function (corresponding
to the j-th equation).
It is more convenient to work with flow rates. We

therefore define the total flow rate within the tube

q(t) = 2π
n∑

i=1
Ui(t)

R∫
0

rNi(r) dr =

πR2
n∑

i=1

Ui(t)
i(i+ 1) = q1(t)+q2(t) + · · · + qn(t).res.

(7)

Subscript i = 1 corresponds to the Poiseuille flow,
while indices i ≥ 2 to n denote correction functions
that are able to describe more extrema of the velocity
profile

qi(t) = 2πUi(t)
R∫

0

rNi(r) dr = πR2 Ui(t)
i(i+ 1) . (8)

It is now simple to express the velocity Ui (t) as a
function of the flow rate
U1 (t)
Ui (t)

...
Un (t)


︸ ︷︷ ︸

u

= 1
πR2


2 −2 −2 −2
0 i(i+1) · · · 0
... 0

. . . 0
0 0 0 n(n+1)


︸ ︷︷ ︸

A


q (t)
qi (t)
...

qn (t)


︸ ︷︷ ︸

q

.

(9)
Equations (5) and (6) can be rewritten in terms of
the flow rate in matrix notation as

ρ
dq

dt + M−1
b A−1nbP −µM−1

b A−1KbAq = 0, (10)

ρ
d
dt (q

2)+M−1
k A−2NkAqP−µA−2M−1

k KkA2q2 =0.
(11)

Let us restrict the approximation to the first term in
the polynomial series (4) (parabolic velocity profile).
The momentum balance reduces into the equation

ρ
dq
dt + 3

4PR
2π + 24

4
µ

R2 q = 0 (12)

and the mechanical energy equation formulated from
(3)

ρ
dq
dt + 2

3PR
2π + 16

3
µ

R2 q = 0. (13)

These two equations describe the same physical prob-
lem. However, they are not identical as they differ
from each other by the coefficients. The equations are
identical only for stationary flow, and both lead to
Hagen-Poiseuille flow. The reader has to ask himself
which of the equations – (12) or (13) – provides a
better description of the real movement of a fluid.
However, the answer to this question is left until an
analysis of the test examples has been made. We
consider the velocity profile as the fourth order poly-
nomial function (the first basis function describes the
Poiseuille flow, and the second basis function describes
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the reverse flow, the backflow in the vicinity of the
wall)

u(r, t) = U1(t)
(

1 − r2

R2

)
+ U2(t)

(
r2

R2 − r4

R4

)
.

(14)
Equations (9), (10) were applied to (14), and this leads
to a system of ODE’s. After a simple manipulation
we obtain a standard formulation of the momentum
balance for the flow rates

ρ

 dq
dt
dq2

dt

+ πR2

8
9
5
9

P + µ

R2

64
9

80
9

40
9

320
9

( q
q2

)
= 0.

(15)
And by applying (9), (11), respectively, to the velocity
profile mentioned above, we obtain the formulation of
kinetic energy for the flow rates

ρ

 dq
dt
dq2

dt

+ πR2


1
6

8q2q + 12q2
2 − 35q2

2q2
2 + 2q2q − 7q2

7
12

−5q2 + 2q2
2

2q2
2 + 2q2q − 7q2

P+

µ

R2


4
3

−20q2q
2+24q3

2 +4q2
2q−35q3

2q2
2 +2q2q−7q2

14
3

−5q3+2q2
2q−40q2q

2+16q3
2

2q2
2 +2q2q−7q2

 = 0. (16)

The reader will notice that the system of equations
(15) and (16) deals with greater differences than for
(12) and (13). Ordinary differential equations (15)
are linear, while (16) is a system of nonlinear differ-
ential equations. Systems (12), (13), or (15), (16)
can be solved with the Matlab ODE toolbox for an
arbitrary time course of P (t) (continuous as well as
discontinuous pressure gradients) and for arbitrary
initial conditions prescribed in the form of the total
flow rate q and the reverse flow rate q2 at time zero.

2.2. Test example
Differences between the solution of the flow rate re-
alized by the finite difference method qfd with a very
fine mesh (an implicit method with a central differ-
ence scheme), the standard balance momentum (12),
the mechanical energy equation (13) and the pro-
posed two-equation approximations (15), (16) were
tested using the model with harmonic driving force
(pressure gradient P (t)), consisting of a stationary
part pstat = −100 Pa m−1 and an oscillatory part
pamp = −500 Pa m−1 in a rigid tube of constant ra-
dius R = 2 mm

P (t) = pstat + pamp sin(ωt). (17)

Stationary flow is assumed at time t = 0 as initial
conditions, therefore

q(0) = −πR4

8µ P (0), q2 (0) = 0. (18)

The frequency ω can be expressed in a dimensionless
form either Strouhal or Womersley number α

α = R

√
ωρ

µ
. (19)

2.3. Determining the deviation
The deviation (20) is computed as the standard Eu-
clidean norm of two flow functions, which is calculated
from the finite difference method and from the flow
rate using the equation (12), (15), (13), (16), respec-
tively, and which are integrated over time with the
period T = 2π/ω

Error =

 1
T

T∫
0

(q(t) − q(t)fd)2

max (q(t)2
fd) dt


1
2
. (20)

The error defined in this way is dimensionless, and
it is a suitable measure for deviations in the total
calculated flow rates and also in the back flow rates.

2.4. Wall shear stress
The wall shear stress is calculated from the following
equation

τ = µ
∂u

∂r
. (21)

3. Results
The deviation of the suggested balance momentum
(12),(15), the energy equations (13), (16) is demon-
strated by (Fig. 1), which illustrates the deviation
from the exact solution computed by the equation
(20).

0
0.01
0.02
0.03
0.04
0.05
0.06

0 2 4 6 8 10 12 14 16 18 20

E
rr
or

[−
]

α[−]

Figure 1. The graph presents the deviation of flow
rate q from qfd. The black curves correspond to the
formulation from the kinetic energy balance (13), (16)
while the grey curves correlate with the weak solution
of the balance momentum (12), (15). The solid curves
are consistent with the parabolic velocity profile ap-
proximation and the dashed curves are equivalent to
the approximation of the velocity profile with a fourth
order polynomial function.

Three representative samples of the evolution of
the velocity profile and the course of the wall shear
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stress are shown in the figures bellow. Pairs of veloc-
ity profiles are presented in (Fig. 2). A Womersley
number is assigned to each pair of velocity profiles in
two different time points t1, t2 and also for the wall
shear stress. The results of the wall shear stress can
be found in (Fig. 3) below.
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t2 = 0.9T

Figure 2. The black lines are representatives of the
velocity profiles obtained from the finite difference
method on the right side of the figures. The dashed
lines were obtained by calculating (16) (black color),
(15) (grey color).

4. Conclusion
The method proposed here is suitable especially for
the situation where the pressure gradient cannot be
decomposed into Fourier series, which corresponds to
[24]. The exact solution through the Bessel function
is therefore not applicable. The effect of assuming a
parabolic profile and applying the Galerkin method
is shown in (Fig. 1). The maximum error when us-
ing the momentum integral method is 2.8 percent.
The maximum error when using the energy integral
method is 5.5 percent. The discrepancy between Elk-
ouh’s results, which assume the steady state of the
velocity profile, and our results is caused by the use a
different method for finding the solution (in our case,
the Galerkin method), by the specific test, and by the
selected accuracy criterion.
Elkouh reported that better results were obtained

from the integral energy method with the well-known
steady state velocity profile (without reverse flow)
for α = 0–10 [21]. The method proposed here is

-2

0

2

4

0 0.5 1 1.5 2 2.5

τ
(t

)
τ
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τ
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τ
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0
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2

0 0.1 0.2 0.3 0.4 0.5
τ
(t

)
τ
(0

)[−
]

t[s]

α = 7

Figure 3. The black lines correspond to the shear
stress at the wall calculated using the finite difference
method. The dashed lines mark the wall shear stress
of the approximate solution. The color designation for
the approximate solution is the same as in previous
figures.

designed to take the reverse flow into account, and it
investigates the error of the integral energy method
and the integral momentum method. The maximum
error over a cycle was 0.3 percent for the integral
momentum solution while the maximum error caused
using the integral energy method was 1.3 percent.
The higher error of the system of mechanical energy
equations derived from the integral energy (16) is
caused by nonlinearities. The integral solution (15)
is in excellent agreement with the finite difference
solution in the region α = 1–20 which is a part of the
intermediate region of pulsatile flow [5] , [6]. Another
type of gradient P (a symmetric triangular wave) was
applied to the system of equations (15), (16) and also
to the finite difference method. The same amplitude of
the stationary and nonstationary part of the pressure
gradient was used as in the test example (17). Similar
error was calculated as in (Fig. 1) based on (20). The
maximum error from the flow calculation (15), (16)
in comparison with the finite difference solution, was
1.4, 2.4 percent, respectively.

The evolution of the approximate velocity profiles is
in good agreement with the velocity profile calculated
from the finite difference method (Fig. 2).
The wall shear stress calculated from the momen-

tum balance (15) describes the shear stress at the
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wall more precisely than the shear stress that was
evaluated from the mechanical energy equation (16).

Other variational methods were tested (least square
integral energy and momentum, an expert estimate
of the weight function with integration of momentum,
and also the energy equation) together with various
integrations of differential equations (over the radius
and over the area). The lowest error found was using
the Galerkin integral momentum method with inte-
gration over the area of rigid pipe. This method has
therefore been presented in this paper.

5. Appendix
For illustration, let us derive the balance momentum
with the backflow (15). We recall equations (1), (5),
(14) and we obtain a set of integral equations (22),
(23)

R∫
0

{
ρ

[
dU1(t)

dt

(
1 − r2

R2

)
+ dU2(t)

dt

(
r2

R2 − r4

R4

)]

+ P − µ

r

[
−U1(t) 2r

R2 + U2(t)
(

2r
R2 − 4r3

R3

)]
− µ

[
−U1(t) 2

R2 + U2(t)
(

2
R2 − 12r2

R4

)]}
(

1 − r2

R2

)
2πr dr = 0, (22)

R∫
0

{
ρ

[
dU1(t)

dt

(
1 − r2

R2

)
+ dU2(t)

dt

(
r2

R2 − r4

R4

)]

+ P − µ

r

[
−U1(t) 2r

R2 + U2(t)
(

2r
R2 − 4r3

R3

)]
− µ

[
−U1(t) 2

R2 + U2(t)
(

2
R2 − 12r2

R4

)]}
(
r2

R2 − r4

R4

)
2πr dr = 0. (23)

The inner product of differential equations and
weighted basis functions integrated over the area yield
two ordinary differential equations (24), (25) for un-
known center-line velocity U1(t), U2(t)

1
3R

2ρ
dU1(t)

dt + 1
12R

2ρ
dU2(t)

dt + 2µU1 (t)

+ 2
3µU2(t) + 1

2R
2P = 0, (24)

1
12R

2ρ
dU1(t)

dt + 1
30R

2ρ
dU2(t)

dt + 2
3µU1(t)

+ 2
3µU2(t) + 1

6R
2P = 0. (25)

We can formulate the center-line velocity in terms of
flowrates. This can be done easily through (9)

U1(t) = 1
πR2

(
2q(t) − 2q2(t)

)
, (26)

U2(t) = 1
πR2

(
6q2(t)

)
. (27)

Combining (24),(25) with (26), (27) leads to a set of a
differential equations for describing the non-stationary
flowrates within a rigid pipe of constant diameter

ρR2
(

4 −1
5 1

)dq
dt
dq2

dt

+πR4
(

3
5

)
P+µ

(
24 0
40 80

)(
q
q2

)
= 0.

(28)
Simple manipulation of (28) yields the standard set
of equations (15). Equations (16) are derived in a
similar manner.

List of symbols
α Womersley number [–]
ρ Water density [kg m−3]
τ Wall shear stress [Pa]
µ Dynamic viscosity [Pa s]
ω Angular frequency [rad s−1]
i i-th index [–]
i Imaginary unit [–]
n n-th index [–]
Ni Basis function [–]
p Pressure [Pa]
P Pressure gradient [Pa m−1]
pamp Amplitude of the nonstationary part of gradient

pressure [Pa m−1]
q Total flowrate [m3 s−1]
qi Corrective flowrate [m3 s−1]
qfd Total flowrate calculated from finite difference method

[m3 s−1]
r Radial coordinate [m]
r∗ Dimensionless radial coordinate [–]
R Radius of the tube [m]
t Time [s]
t∗ Dimensionless time [–]
u Fluid velocity [m s−1]
u∗ Dimensionless velocity [–]
Ui Velocity amplitude [m s−1]
Ū Average velocity amplitude [m s−1]
wj j-th weight function [m]
x Axial coordinate [m]
x∗ Dimensionless axial coordinate [–]
res Residual [Pa m]
Error Deviation of the flowrate [–]
A Matrix flowrate coefficients [–]
Kb Stiffnes matrix of the momentum balance [–]
Kk Stiffnes matrix of the kinetic balance [–]
Mb Mass matrix of the momentum balance [m2]
Mk Mass matrix of the kinetic balance [m2]
Nb Coefficients of driving force [m2]
Nk Coefficients of driving force [m2]
q Flowrate vector [m3 s−1]
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