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Abstract. This paper reports on an experiment to assess the influence of plastic deformation on the
microstructure and properties of EN AW 6012 (AlMgSiPb) aluminium alloy in two states. The first was
the initial state with heat treatment T3, and the second was the state after intensive plastic deformation
by ECAP (Equal Channel Angular Pressing) technology. The ECAP process was carried out repeatedly
at room temperature. In the initial state of the alloy, the process redistributed eutectic Si-particles
and increased the strength of the alloy. The mechanical properties and the hardness increased due to
intensive plastic deformation (the yield strength increased by 15%, the tensile strength by 6%, and the
hardness by 23%). The fracture cracks initiated and propagated mainly along eutectic particles. The
fracture area of the ECAPed specimen displayed a typical ductile cavity characteristic.
Keywords: intensive plastic deformation; aluminium alloy; tensile test.

1. Introduction
The AlMgSiPb alloy investigated here belongs to the
AA6xxx (AlMgSi) series of aluminium alloys, where
magnesium and silicon are the principal alloying ele-
ments. Commercial alloys of this type contain mass
fractions of 0.5% to 1.5% of Si and 0.5% to 1.5%
of Mg, and are used in great quantities. They are
universal aluminium alloys which can be extruded
into sections, rods and tubes. Their characteristics
are a high level of workability, strength properties,
corrosion resistance and machinability. Their me-
chanical and technological properties depend on the
chemical composition and the heat treatment of the
castings, i.e., cast blanks and extruded pieces [1, 2].
Free machining aluminium alloys are well known in
the literature [3, 4]. These alloys typically include
free machining constituents that are insoluble but soft
and nonabrasive. They are beneficial, assisting in chip
breakage and tool life [3]. More specifically, at the
point of contact between the tool and the material,
softening and melting occur. As a result of these
changes, breakage occurs, chips are formed and mate-
rial removal is enhanced. It is well known that chip
breaking is promoted by the addition of Pb to conven-
tional aluminium alloys, since Pb has poor solubility
in solid aluminium and forms a soft, low melting point
phase [5, 6].
Apart from the major alloying elements, standard

aluminium alloys for free cutting also include addi-
tions (lead, bismuth), which form softer phases in the
matrix. These “free machining” phases improve the
machinability of the alloys, because the chips break
more easily, they have a smooth surface, lower cut-
ting forces and cause less tool wear. Since lead is
poisonous, there is a tendency to replace it with other
elements: tin and, to some extent, indium are the
most frequently-used substituents.
Alloys with tin must have similar or better prop-

erties than standard alloys as regard microstructure,
workability, mechanical properties, corrosion resis-
tance, and machinability [7]. In recent time, tin
has been added mainly to Al-Mg-Si (AA 6000 se-
ries) alloys and to Al–Cu (AA 2000 series) alloys,
which normally contain lead and bismuth, or only
lead. Semi-finished products made from these alloys
in the form of bars are used for free cutting or, more
precisely, for turning [8–10]. Equal-Channel Angular
Pressing (ECAP) is a very useful method for produc-
ing ultra-fine microstructures of Al-based alloys with
significantly improved mechanical properties [11–16].
During the last two decades, intensive plastic defor-
mation (SPD) techniques have been widely applied to
obtain an ultrafine-grained (UFG) structure, which
can significantly improve the mechanical properties
of Al–Mg–Si alloys [17, 18]. Among various SPD
techniques, equal channel angular pressing (ECAP)
is the most promising method for fabricating large
bulk UFG materials [19, 20]. A significant increase
in strength is obtained during ECAP processing [21].
In addition, some ultrafine- grained Al-based alloys
produced by the ECAP procedure have shown a su-
perplastic forming capability [16]. Intensive plastic
deformation by the ECAP process also significantly
increases the density of lattice defects in a solid so-
lution of Al-based alloy, and can therefore accelerate
the precipitation process of strengthening particles
during the post-ECAP ageing treatment applied to
an age-hardenable alloy [22–24]. Al–Mg–Si alloys can
be strengthened by precipitation hardening. It is es-
sential to study the precipitation sequence and the
precipitation behavior. The precipitation sequence in
Al–Mg–Si alloy is

atomic clusters→ GP zones→ β′′ → β′ → β,

where the atomic clusters are the supersaturated
solid solution; GP zones are generally spherical clus-
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Si Fe Mn Mg Cr Bi Pb Al
1.13 0.37 0.53 0.83 0.2 0.51 0.83 bal.

Table 1. The chemical composition of AW 6012 [wt.%].

Figure 1. The shape and the parameters of the short
specimen for the tensile test.

ters with unknown structure; β′′ precipitates are
fine needle-shaped zones with a monoclinic structure.
They are generally present in Al alloys aged to maxi-
mum hardness; β′ are rod-shaped precipitates with a
hexagonal structure and are found in overegged speci-
mens; β (Mg2Si) is an equilibrium phase in the pre-
cipitation sequence. Among these, the β′′ phases are
considered to make the main contribution to strength.
The significant improvement in the strength of Al
alloy upon SPD is due to the dynamic ageing effect,
as reported in earlier work. The strength and the duc-
tility of an Al alloy were further improved by static
ageing [25].
Our study has been aimed at understanding the

influence of the ECAP process on the microstructure
and the mechanical properties of AlSiMgPb alloys.

2. Material and methods
EN AW 6012 aluminium alloy on the basis of
AlMgSiPb was used as the experimental material.
In the initial state, the experimental material was
treated with T3 — solution annealing and natural
ageing. Prior to deformation in an ECAP die, the
specimens of the initial states were solution annealed
for 1.5h at 550 °C. The alloy was then subjected to
intensive plastic deformation by heat treatment: the
solution was annealed for 1.5h at 550 °C, followed
by 4 passes of ECAP and artificial ageing for 30h at
100 °C. The ECAP process was performed in a die
with the following parameters: channel intersection
angle Φ = 90°, and arc of curvature Ψ = 37°. Repeti-
tive pressing of specimens � 10mm× 80mm in size
was attempted in the ECAP die at room tempera-
ture, using the BC route (the sample was rotated in
direction by 90°). The chemical composition of the
aluminium alloy is shown in Table 1. Figure 1 shows
the parameters of the specimens that were used for
the tensile test.

Microstructures were prepared by standard metallo-
graphic methods (special enhanced etching – etchant:

Figure 2. Microstructure of the aluminium alloy in
the initial state.

Figure 3. Microstructure of the aluminium alloy after
ECAP and heat treatment.

modified Kroll – 92ml distilled water, 6ml HNO3, and
2ml HF) and were observed using an OLYMPUS op-
tical microscope. The fracture surfaces were studied
by means of a Scanning electron microscope (a JEOL
model JSM 7000F microscope operated at an accel-
erating voltage of 300kV). Particle identification was
carried out using EDX quantitative analysis with the
INCA-sight analyser.
The influence of severe plastic deformation by the

ECAP process and post-ECAP artificial ageing on
the mechanical properties of the analyzed alloys was
evaluated with a Vickers hardness measurement (HV
10) and a tensile test. The hardness was estimated
in a cross-section by the Vickers test with a dwell
time of 10s. The test was carried out according to
the EN ISO 6507-1 standard [26]. The hardness was
estimated in a cross-section. The pre-ECAP and
post-ECAP state of the samples was evaluated by 10
measurements in 2 lines. For the Vickers test, a very
small diamond indenter with pyramidal geometry is
forced into the surface of a specimen of AlMgSiPb
aluminium alloy [27].

The mechanical properties (yield strength — YS, ul-
timate tensile strength — UTS, elongation — A, and
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Figure 4. The EDX analysis of the aluminium alloy in the initial state.

reduction of area — Z) were measured by a uniaxial
tensile test carried out using a ZWICK 1387 machine,
according to STN EN ISO 6892-1 [28], for samples
8mm in diameter (Figure 1). The tension test can be
used to ascertain several mechanical properties of ma-
terials that are important in mechanical engineering.
The tensile test (the initial strain rate of 2.5 ·10−4 s−1)
was carried out on specimens made from quenched,
ECAP-processed and post-ECAP specimens. The ten-
sile testing machine is designed to elongate the speci-
men at a constate rate using an extensometer [27, 29].
The Young modulus was measured using a WN2 52497
extensometer. A LEICA WILD M 32 microscope was
used to observe the macrostructure after a tensile test
had been applied.

3. Results and Discussions
The microstructure (Figure 2) characteristics of the
initial state of the investigated alloy, its state after
quenching (Figure 3), deformation in the ECAP die
and subsequent ageing treatment were analyzed in
the central zone of the cross-section of the specimens.
Figure 3 shows the ultrafine-grained (UFG) struc-
ture with nearly equi-axial morphology, where we can
observe the locations of elongated grains. Figure 3
shows the deformed microstructure after intensive
plastic deformation with characteristic shear bands
along the cross section of the sample. The heteroge-
neous microstructure of the ECAP-ed alloy indicates
a non-uniform deformation along the cross-section of
the ECAP-ed specimen. The shear bands are well de-
veloped in alloys after plastic deformation, and can be

clearly distinguished from the other regions of the mi-
crostructure under an optical microscope (Figure 3).

Figure 4 shows the spectrum of the aluminium alloy
in the pre-ECAP state, and Figure 5 shows the spec-
trum of the alloy in the post-ECAP state. It consists
of a primary phase a-Al solid solution, which forms
the matrix of the material, and secondary phases
distributed at the grain boundary and in the interden-
dritic regions. The secondary constituents, such as
Mg2Si and α-Al(FeMn)Si compounds, as revealed by
EDS, are clustered in bands oriented parallel to the
extrusion direction. The α-Al(FeMn)Si phase is also
present as coarse particles. When the billets were heat
treated, the grain segregations and the coarse Mg2Si
particles in the a-Al matrix dissolved. The maximum
number of Mg and Si atoms in the alloy are therefore
in a solid solution in the extruded section, and are
therefore available for precipitating the hardening par-
ticles during ageing. Coarse Mg2Si particles present
in the microstructure do not help to strengthen the
alloy. Coarse Mn and Cr phases, detected by EDX
analyses, are distributed mainly along the grain bound-
aries. Large Pb bearing particles are normally found
adjacent to Fe particles, and sometimes enveloping
them [30].
The mechanical properties were evaluated by a

static tensile test at room temperature. The depen-
dent force of strain and elongation in static condition
is shown in Figure 6. The specimen is deformed, usu-
ally to fracture, with a gradually increasing tensile
load that is applied uniaxially along the long axis of
the specimen. The results for mechanical properties,
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Figure 5. The EDX analysis of the aluminium alloy after ECAP and heat treatment.

State YS UTS A Z E HV10
[MPa] [MPa] [%] [%] [GPa]

Initial 309 350 17 23 75 103
ECAPed 355 372 10 8 70 125

Table 2. Mechanical properties of the investigated
aluminium alloy.

evaluated as average values from six measurements,
are summarized in Table 2. The intensive plastic de-
formation realized by ECAP technology increased the
yield strength properties from 309MPa to 355MPa,
and the ultimate tensile strength from 350MPa to
372MPa. However, the values for the plastic charac-
teristics decreased. The elongation value decreased
from 17% to 10%, and the contraction decreased from
23% to 8%. The decrease in the modulus of elastic-
ity was shown on the samples after intensive plastic
deformation in comparison with the initial state. Ex-
haustion of the plasticity and hardening of aluminum
alloy EN AW 6012 was caused by intensive plastic
deformation. EN AW 6012 alloy showed a significant
increase in hardness HV10 in the post-ECAP state,
up to 125 on an average. In its initial state, EN AW
6012 displayed hardness of about 103 (Tab. 2).
A macroscopic analysis of the samples in the ini-

tial state and after plastic deformation is shown in
Figures 7 and 8. It can be concluded that greater
plastic deformation has been replaced by minimum
macroscopic deformation. The fracture surface of the
sample seems to be slightly rugged. The surface of the

Figure 6. Dependent force of strain and elongation
in the static condition of EN AW6012.

fracture on each sample of EN AW 6012 aluminium
alloy was in the direction of the axial load. Figure 9
shows a detail of the fracture surface in the initial
state, and Figure 10 shows the post-ECAP state.

The fracture surfaces, documented by SEM after a
tensile test, are presented in (Figures 9–12). Figure 9
shows the fracture surface of EN AW 6012 in the
initial state. Figure 10 shows the fracture surface of
the ECAPed state of the aluminium alloy. Details of
the fracture surface are shown in Figures 11 and 12.
The analysis of the fracture surfaces of the investi-
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Figure 7. Fracture of EN AW 6012 alloy in pre-ECAP. Figure 8. Fracture of EN AW 6012 alloy post-ECAP.

Figure 9. The fracture surface of EN AW 6012 in the
initial state.

Figure 10. The fracture surface of EN AW 6012 in
the post-ECAP state.

gated pre-ECAP and post-ECAP materials showed
dominance of transcrystalline ductile fracture. The
effect of plastic deformation was revealed in particle
cracking for the relevant materials. During plastic
deformation, particles were cracked and/or particles
were divided from the interphase surface by means of
cavity failure systems, which developed from the for-
mer dimples. The morphology of the fracture surface
was observed as characterized dimples with local pres-
ence of striation. The shapes of the fracture surfaces
of the samples are characterized by a mixed morphol-
ogy, which is formed by the surfaces of the particles
and the digested holes within a transgranular duc-
tile fracture. The appearance of the surfaces of both
surfaces has visible lines, which is an infringement
of the guidelines. The fracture was initialized from
the surface of the specimen, and the crack growth
continued in the perpendicular direction of the axis
of the specimen.

4. Conclusions
On the basis of our experimental work, we have drawn
the following conclusions. The intensive plastic de-
formation carried out by ECAP technology can be
summarized as follows:
• Increased strength properties: the yield strength

increased by 18%, and the ultimate tensile strength
increased by 16%.

• There was also a significant 23% increase in hard-
ness HV10. However, the plastic characteristics
decreased: the elongation decreased by 31%, and
the area decreased by 21%.

• Due to the exhaustion of plasticity and hardening
of the EN AW 6012 aluminium alloys, the samples
showed a lower elasticity modulus value after the
application of intensive plastic deformation.

• A macroscopic examination proved that the surface
of the fracture is perpendicular to the load in the
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Figure 11. Detail of the fracture surface of EN AW
6012 in the initial state. Figure 12. Detail of the fracture surface of EN AW

6012 in the post-ECAP state.

EN AW 6012 alloy in its initial state, and also in
the ECAPed state.

• The surface fracture on the composite formed in
the direction of the axial load.

• After intensive plastic deformation, shear bands
can be observed on the microstructural level. They
point to non-uniform deformation along the cross
section of the sample. It is evident that there was de-
formation that led to the formation of shear bands.
These shear bands developed, and led to deforma-
tion along narrow paths.

• A flat fracture with dimples and local presence of
striations was observed on EN AW 6012 in both
states (Figures 11 and 12). The surface was highly
fractured, with a fine-grained morphology.
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