
1 Introduction

The principal problem of classical numerical methods,
such as finite element methods, boundary element methods,
etc., consists in “too stiff ” models, or too complicated simula-
tions of the real states when no a priori knowledge of crack
initiation is available. This is why discrete element methods
have been introduced to replace fracture mechanics problems
by contact problems, which are in many respects more trans-
parent, and which lead us to the same results. Moreover, it is
not necessary to know the crack initiation in advance.

In the early 1970s Cundall, [2], and others, [3], intro-
duced discrete elements starting with dynamic equilibrium.
First, brick-like elements were used (professional computer
program UDEC), and later circular elements in 2D and
spherical elements in 3D (PFC – particle flow code – both
computer systems issued by ITASCA) simulated the contin-
uum behavior of structures. The application of such methods
took place mainly in geotechnics, where soil is a typical grain
material with the above-mentioned shape, [11]. If the mate-
rial parameters are well chosen, the mechanical behavior of
the discrete elements is very close to reality. The problem con-
sists of finding such material parameters. There have been
many attempts to find these parameters, but still there is no
satisfactory output from these studies. A promising approach
may be to cover the domain, defining the physical body by
hexagonal elements, very close to disks, which can cover the
domain with very small geometrical error.

Replacing the discrete elements by elastic, or elastic-plas-
tic, hexagons with the full contact of adjacent elements along
their common boundaries yields a honeycomb-like shape of
the elements, see, e.g. [15], covering the structure of the con-
tinuous medium. It is necessary to note that beams form
the honeycomb boundaries in [15] and there is no material
inside such particles. In our case some kind of material fills
the interior of the hexagonal elements. The relations inside
the hexagonal particles are solved by a special form of the
boundary element method, [1]. Free hexagons are used by
Onck and van der Giessen in [12], for example, where wide
range of references on this topic can be found. In [12], the
finite element method, e.g. [16], is used to create the stiffness

matrices of the elements, namely six finite elements are
substructured to a hexagon.

In applications to geotechnical problems the disturbed
state concept (DSC) established by Desai, [4], [5], can describe
a wide spectrum of material states inside the elements, start-
ing with elastic, elastic-plastic, [6], and even damage states,
[10]. The use of eigenparameters for plastic strain, or relax-
ation stress, [7], [8], completes the description of the possible
and suitable nonlinear constitutive laws, which moreover can
be “tuned” from “in situ” measurements, or from results from
scale modeling. Geotechnical properties are defined on the
boundaries of the elements. A typical formulation of the
problem involving the generalized Mohr-Coulomb law com-
bined with exclusion of tensile zones is proposed in [14],
where the technique using Lagrangian multipliers leads to a
mixed problem (both displacements and stresses – element
boundary tractions are iterated). In this paper, the penalty
method is applied, and element boundary tractions (formerly
Lagrangian multipliers) are substituted by spring stiffnesses
(i.e., by penalty functions, or in our case by penalty para-
meters). The springs enable us to simulate the interfacial
constraint, namely the exclusion of the tensile tractions and
application of the Mohr-Coulomb law. The Mohr-Coulomb
law is used in two basic forms, for brittle or almost brittle
materials, and for soft rocks or soil.

Several phenomena, e.g., gas extrusion in a coal seam,
swelling, watering, and even prestress, can be modeled by
Eshelby forces [9]. This treatment seems to be much more
promising then the eigenparameters introduced in each ele-
ment from the zone of some disturbance occurrences, because
only tractions (Eshelby forces) along the boundaries of those
zones have to be applied.

The paper starts with the formulation of the free hexagon
element method, and then statical particle flow is described.
Applications in several fields of practical problems are dis-
cussed in a forthcoming paper by the authors [13].

2 Free hexagonal element method
The discrete free hexagonal element method may be

considered a discrete element method. The great disadvan-
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tage of some classical DEM, however, is to feed them with
material properties provided from laboratory tests (this is the
case of the statical particle flow code, formulated in the next
section, as the discs are connected by springs, while laborato-
ries provide completely different material parameters). This
is here overcome by considering the material characteristics,
which are similar to a continuum. The principal idea of classi-
cal DEM is adopted, and the domain defining the structure
continuum is in our case covered by the hexagonal ele-
ment, or other material properties can be introduced, such as
elastic-plastic, visco-elastic-plastic, etc. This step avoids the
necessity to estimate the material properties of springs, which
are essential, e.g., for PFC. The free hexagonal element
method fulfills a natural requirement due to the fact that the
elastic properties are assigned to the particles, and other
geotechnical material parameters (angle of internal friction,
shear strength or cohesion) to the contacts of the elements.
Since most particles are of the same shape it is possible to ap-
ply very powerful iteration procedures, because the stiffness
matrix can be stored in the internal memory of a computer.

When dealing with crack problems, two principal methods
are used. First, the means of fracture mechanics are applied,
or secondly a contact problem can be formulated. The first
case is generally not suitable, because the direction or way of
propagation of the cracks needs to be known in advance.

This paper uses the second possibility, which avoids the
obstacle of a priori unknown way of propagation of the cracks
by creating a mesh of free hexagonal elements. They are in
mutual contact in the undeformed state, but can be discon-
nected when the contact conditions are violated.

The computational model is described in the following
paragraph, where the relations needed for numerical compu-
tation are also introduced. The interface conditions are
formulated in paragraph 2.2, where the Lagrangian principle
is based on the penalty method. The penalty parameters are
spring stiffnesses; the springs connect the adjacent elements.
The material characteristics of springs can possess a large
value to ensure the contact constraints. On the other hand,
if, say, the tensile strength condition is violated, the spring
parameters tend to zero, and in this case naturally no energy
contribution in the normal direction to the element boundary
appears in the energy functional in this case. This process ex-
cludes the possibility of a multivalue solution, and uniqueness
of the solution of the trial problem is ensured. If we cut out the
springs when a certain interfacial condition is violated, the
problem turns to singular and has not unique solution. Then
the way on how the particles move in some later stages of
destruction of the trial structure cannot be described.

The hexagonal particles are studied under various contact
(interfacial) conditions of the grain particles (elements). In
our paper two contact conditions are considered:

� the generalized Mohr-Coulomb hypothesis, with exclusion
of non-admissible tensile stresses along the contact (a rock
mass),

� limit state of shear stresses and exclusion of tensile tractions
along the contact (a brittle coal seam).

The first case is generally connected with applications in
geotechnics, composite materials, shotcrete, etc., and the
second case is more appropriate for applications in under-
ground bumps or rock bursts. A two-dimensional formulation

and its solution have been prepared and are studied in this
paper.

The problem formulated in terms of hexagonal elements
(which are not necessarily mutually connected during the
loading process of the body, because of nonlinearities arising
due to the interfacial conditions) enables us to simulate that
crack propagate. The cracking of the medium can be de-
scribed in such a way that the local damage may be derived.
Local deterioration of the material is also shown in the pic-
tures drawn for particular examples. Such a movement of
elements and change of stresses probably cannot be obtained
from continuous numerical methods.

2.1 Computational model
Let us now consider a single hexagonal element (de-

scribed by domain with its boundary ). Its connection with the
adjacent elements is shown in Fig. 1. In each hexagonal ele-
ment, the pseudo-elastic material properties are taken into
consideration, i.e., in each iteration step the element behaves
linearly, but the material properties can change during the
process of loading and unloading. This makes it possible to
introduce only an elastic material stiffness matrix, which is
homogeneous and isotropic, and we get well-known integral
equations that are valid along the boundary abscissas of the
hexagons, [1]:
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where bi are components of the volume weight vector, �s are
edges (abscissas) of the boundary elements, � is the point of
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Fig. 1: Geometry of adjacent hexagonal elements



observation, x is the integration point, ui are components of
the vector of displacements (defined not exclusively on the
boundary, but also in the domain of the hexagonal element),
pi are components of the tractions, ckl are components of
the matrix, the values of which depend on position of the
point of observation. The quantities with an asterisk are the
given kernels. The kernels can be expressed as (for example,
see [1]):
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Lame’s material constants.
Assuming uniform distribution of the boundary quantities

(displacements ui(x) and tractions pi(x), i 	 1, 2, and volume
weight forces bi to be uniform in the domain �, and position-
ing the points of observation � successively at the points �s,
which are the centers of the boundary abscissas of the hexago-
nal elements, a simplified version of (1) is written as:
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where ui
s and pi

s are the values of the relevant quantities posi-

tioned at the �s, s 	 1, …, 6, i.e., � �u ui
s

i s� � and � �p pi
s

i s� � .
Moreover, the vector of influences of the volume weight
forces on the boundary abscissas is � �bs � 
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For better and more convenient computation, the most
important integrals are given in the Appendix. In this way,
the integrals in (2) may be calculated directly, without numeri-
cal integration.

Let us introduce vectors �s, �s, s = 1, …, 6, and also u and p
as:
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Using this notation, the relations on the elements (2) can
be recorded as:

Au Bp b� � (3)
where A and B are (12 * 12) matrices, and their components
are singular integrals over the boundary abscissas. Matrix A is
generally singular, while matrix B is regular. This fact enables
us to rearrange equations (3) into the form:

Ku p V K B A V B b� � � �� �, ,1 1 (4)

where the stiffness matrix K is different from that arising
in applications of finite elements (here it is prevailingly
non-symmetric), V is the vector of volume weight forces
concentrated on the boundary abscissas (more precisely at
the point �). In this way, the discretized problem becomes
a problem similar to the FEM.

Along the adjacent boundary abscissas it should hold (pi
�

are Eshelbys’ forces):

� � � �p p p pi i i i
� � � �
� � �� � , (5)

where superscript plus means from the right and minus from
the left (at most two particles can be in contact).

Now using the relations (4) and (5), we get twice as many
unknowns as equations, because no connection between the
elements has yet been introduced. Equations (5) have to be
accomplished by a constraint of the type

� �k u u pi i i i
� �� � . (6)

The latter conditions are penalty-like conditions, since if ki
is great enough, the distribution of displacements is continu-
ous, and the displacement from the right is equal to the
displacement from the left. These conditions can locally be
violated, because of the contact conditions, which are dis-
cussed later in this text. Introducing boundary conditions and
assuming that ki remains great enough leads us to a stable
system of equations delivering a unique solution. Even in the
case when local disturbances occur, the solution can be stable.
It can happen that there are too many disturbances, e.g.,
dense occurrence of crack, and localized damage along a path
(earth slope stability violation). Then the solution is unstable,
and there is a failure of the structure. This is also, for example,
the case of a rock burst.

Discretization in the previous sense leads to a nonlinear
system of algebraic equations, which are solved by an over-re-
laxation iterative procedure. This method is sufficient for
study purposes. For a larger range of equations the conjugate
gradient method has been prepared.

For displacements inside the element domain � it holds:
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where the element boundary displacements and tractions are
known from the previous computation, providing the solu-
tion is stable. Using kinematic equations and Hooke’s law,
the internal stresses can be calculated from (7). There is no

44 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 42  No. 4/2002



danger of singularities, as the points x and � never meet
(point x lies inside the domain � and � on boundary �).

2.2 Formulation of the contact problem
Recall that displacements are described by a vector func-

tion � �u � u u1 2, of the variable � �x � x x1 2, . The traction field
on the particle boundaries is denoted either as � �p � p p1 2, ,
or after projections to normal and tangential directions as

� �p � p pn t, . A similar result is valid for projections of dis-
placements, � �u � u un t, . Assuming the “small deformation”
theory, the essential contact conditions on the interface may
be formulated as follows (no penetration conditions):
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n
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where �C
k, k 	 1, …, n are boundaries between adjacent parti-

cles, un
k,� is the normal displacement of current element

� 	 c and � 	 a belongs to the adjacent element, both on
the current common boundary , �C

k, k runs numbers of all
common sides of the particles, n is the number of common
sides of hexagons (having exactly two adjacent particles in-
side the domain, one or none on the external boundary).

Let kn
k be the spring stiffness in the normal direction and
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k be the spring stiffness in the tangential direction on the

boundary between particles with a common boundary �C
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where ut
k, � is the tangential displacement on the side k,

� �pn
+ k

denotes the tensile strength, ck is the shear strength, V
is the set of displacements that fulfill the kinematical bound-
ary conditions and condition (8). If pn

k �0 then set K is
a cone of admissible displacements satisfying the essential
boundary and contact conditions. This is valid for brittle or
almost brittle material. If the material exhibits elastoplastic
behavior, then cone K is changed as:
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where � is the angle of internal friction, and pn
k is the normal

traction on the side k, 
 is the generalized Heaviside’s func-
tion being equal to zero for a positive argument and equal to
one otherwise. Here the sign convention is important: posi-
tive normal traction is tension.

From the above defined spaces we can deduce that
� �pn

k
n
k, u , and � �pt

k
t
k, u behave linearly between certain limits,

which are given by the material nature of the body.

The total energy J of the system reads:
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(9)

where � is the strain tensor, C is the stiffness matrix of
the particle, T denotes transposition, �0 is the sum of sub-
domains �, i.e., of hexagonal elements, b is the volume
weight vector.

Note that the spring stiffness kn
k plays the role of a

penalty. Recall that the problem can also be formulated in
terms of Lagrangian multipliers, and then leads to mixed for-
mulation. The latter case is more suitable for a small number
of boundary variables; the problem discussed in this paper
decreases the number of unknowns introducing the penalty
parameters.

3 Statical PFC
This section deals with the idea of modeling a structure,

e.g., an earth body, by using a statical version of PFC. Recall
that the PFC is based on dynamic equilibrium; for slow move-
ments of structures, which appear in most geotechnical prob-
lems, for example, it seems to be better to employ statical
equilibrium. The earth mass is modeled in a statical version
by balls in 3D or disks in 2D in a similar way as in the dynamic
version. The balls are connected by springs that relate forces
and the appropriate difference of displacements in the direc-
tion of the springs. The springs are considered either in
normal and tangential directions to the boundary of the
particles, or in the direction of the coordinate axes x and y.

In our case, statical equilibrium has to be fulfilled all over
each ball, and at the contact points between the adjacent balls.
The balls (disks) are considered rigid. Introduce coordinate
system 0xyz in 3D. Then each disk has six degrees of freedom
(displacement u in direction x, displacement v in direction y ,
and displacement w in direction z, and three rotations with
respect to the three axes x, y and z. In what follows we restrict
our considerations to 2D for simplicity; generalization to 3D
is straightforward. The movement of each disk is described by
two displacements u, v and rotation �.

The forces concentrated at one contact point of the adja-
cent balls obey the contact conditions that are typical for soil
in our study. They determine the change of stages in the DSC
model. The plastic behavior, providing rigid balls, is im-
posed only by the forces brought about by spring stiffnesses
and eigenparameters, e.g., plastic strains (displacements), or
relaxation stresses (forces). When introducing some spring (of
the shape of a straight line, or more precisely of an abscissa)
spanned between two points, its stiffness is k, the relation
force F – displacement u in the elastic case may generally be
written as (considering one-dimensional case):

F ku� � �, or � �F k u� �� (10)

where respectively � is the eigenstress (eigenforce), and � is
the eigenstrain (eigendisplacement). Another possibility is to
drop out the eigenparameters and impose the nonlinear con-
ditions exceptionally on the springs. The eigenparameters
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enable a larger range of physical laws to be used in the
material models. This is why they are mostly applied in the
mechanical models.

3.1 Relations between disks
Let us take a set of disks describing a discontinuous me-

dium positioned in a coordinate system 0xy, see Fig. 2. At the
contact points (nodal points), the springs in the tangential
and normal directions are introduced, which have stiffnesses
kt in the tangential direction to the boundary of the disk and
kn in the normal direction to the boundary at the interface
nodal point connecting two adjacent disks.

Such a connection is described in more detail in Fig. 3 for
three disks in mutual contact. Fig. 3 depicts external (volume
weight) forces Fi, i 	 1,…, n (n is the number of all disks),
contact forces in normal and tangential directions Nij, Qij,
respectively, where i, j 	 1, 2, and reactions at the supports

(created in this case by a flat plate in 3D, or by a straight line in
2D) A, B, HA, HB. The first index denotes the number of the
current disk and the second index stands for the number of
the adjacent disk. This notation is kept in the following text.
The main objective is to formulate the equations of equilib-
rium in each disk i, i 	 1, …, n and from this equilibrium to de-
termine the displacements of the center ui, vi and the
rotations �

i of each disk. The connection with the adjacent

disks is created by the quantities with indices i (the current
disk) and j (the adjacent disk).

In the sense of (10) the physical equations at each nodal
point are formulated as:
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where �n
ij and �t

ij are respectively eigenforces in normal and
tangential directions. Indices i, j describe the numbers of
disks in mutual contact and �n

ij , �t
ij are the differences of dis-

placements in normal and tangential directions, respectively,
between disk i and disk j, i.e., �n
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n
ij

n
ji� �u u , �t

ij
t
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t
ji� �u u .

Let the nodal point ij under consideration be deviated
from the x-direction by an angle �

ij. Then the transformation
of forces to the 0xy coordinate system is written by:
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where Nx
ij, Ny

ij are forces in x and y directions, Tij is the trans-

formation matrix and superscript T denotes transposition.
Recall that matrix Tij is unitary, which means that

T Tij ij
T� �1 . Since the same equations hold for displacements,

the following forces – displacements relation holds valid as:
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n
ij ij� �cos sin2 2� � ;

� �k k k kxy
ij
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ij

n
ij

t
ij ij� � �
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2sin �

� � � � �x
ij

n
ij ij

t
ij ij� �cos sin ; � � � � �y

ij
n
ij ij

t
ij ij� �sin cos (14)

and �x
ij , �y

ij are differences of displacements in x and y

directions, respectively, in disks i and j, i.e., �x
ij

x
ij

x
ji� �u u ,

�y
ij

y
ij

y
ji� �u u .

A typical disk with springs introduced at nodes in x and
in y directions and the induced forces in the normal and
tangential directions are illustrated in Fig. 4.

If no rotations were considered, the above formulas would
be valid without improvement and the computation may start
with (13). For each disk two degrees of freedom in 2D (two
independent displacements are unknown), and three DOF
in 3D (three independent displacements) are sought.

In the case of admitted rotations of disks, additional
unknown angles �

i describing the rotations of the disks have
to be introduced. Recall that three DOF (two displacements
ui, vi and one angle of rotation �

i in 2D are to be sought. The
situation is depicted in Fig. 5.

Let us focus on one typical disk. Its basic movements and
their denotations are clear from Fig. 6. With respect to the
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Fig. 2: Structure of the balls

Fig. 3: Forces between disks



above-mentioned arguments, the three movements and their
parts are described in this picture.

The total displacement at any point on the boundary
of the disk in the x direction, or in the y direction, consists
of two kinds of displacements that are related to the rota-
tion (subscript rot), and translation (subscript tran), i.e.,
u u ux

i
x, rot
i

x, tran
i� � , u u uy

i
y, rot
i

y, tran
i� � .

Since the 2D case is under consideration, the unknown
quantities in each disk i are ux, tran

i , uy, tran
i and �

i. It only
remains to express the influence of rotation of each node.
From Fig. 6 it obviously holds:

� �� �
� �

u r

u r
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ij
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cos cos ,
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� � �

� �� �sin ,�ij
(15)

where �
ij is given for each node and ri is the radius of disk i.

The forces Nx
ij, and Ny

ij acting between disk i and disk j are

then given by (13).

3.2 Governing equations
Equation (13) can be rearranged in a more suitable way

for algorithmization:
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and from (15):
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The third unknown �i appears in the conditions of equi-
librium in nonlinear terms, namely in cosines and sines (recall
that �

ij is the angle of deviation from the x-axis of the point ij
on the boundary of disk i being in contact with disk j). In
order to avoid very complicated and unreliable nonlinear
computation, the load (for example volume weight) will be
divided into increments, and in each increment the small
displacement (or more precisely small rotation) theory will
be considered. Assuming small enough increments, small
enough angle � also results, and (17) is substituted by:
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In each increment ux,tran
i , uy,tran

i , and �i are parts of the

total values, as also are the forces computed from these
movements. Another advantage of this incremental process is
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Fig. 4: Starting model of one disk for further computation

Fig. 5: Additional displacements at the point ij from rotation

Fig. 6: Three basic movements of a disk



the possibility to test the contact conditions, as described in
the following section.

An additional condition is necessary to complete the equa-
tions for three unknowns in each disk. This is the moment
condition with respect, for example, to the center of the disk
under study:

Q ij i

i

r

j

M

�
� �

1

0 , (18)

where Mi is the number of nodes on the boundary of disk i.
Since ri is constant in each disk i, it may be dropped out and
the three conditions in disk i are obtained as:
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where Fx
i and Fy

i are volume weight forces. If only gravitat-

ion is considered, the denotation F Fi y
i� , and assumption

Fx
i �0 can be used, as in Fig. 3.

After introducing boundary conditions and eigenforces,
the equations (19) create an algebraic system for unknown
displacements ux,tran

i , uy,tran
i , and rotations �i of the disks.

Solving this, the forces can be determined from (16). Note
that when properly stated, system (19) has a unique elastic
solution, providing that the incremental formulation (17a) is
assumed, i.e., small displacement theory may be employed.

3.3 Interfacial conditions
In geotechnics and mining engineering it is well known

that the material behavior of the soil mass is not elastic, but
exhibits either plastic behavior, or localized damage, or both.
Contrary to the case of free hexagons, plastic behavior has to
be employed only for spring properties. For the sake of
completeness, an example of such properties is discussed
here.

Consider two balls that are connected by the above-de-
scribed system of springs. For the sake of simplicity, we again
concentrate our attention on the 2D case. Using formula (11),
the normal forces Nij and tangential forces Qij can be obtained
for each linear state. Vector transformation of the coordinates
applied to (17) provides displacements un

ij and ut
ij.

In a wide range of problems, the classical plastic laws
of deformation and stress state, e.g., elasto-plastic law, are
formulated as:

N Q kij ij 0
2 2 24� � , i.e.,

� � � �k u k u kn
ij

n
ij

t
ij

t
ij

0
2 2 24� � (20)

where k0 is a given positive number. In the case of violating
conditions (20), new kt

ij may be determined. While the value

of kt
ij is restricted by (20), un

ij is mostly bounded by some value

that cannot be exceeded. Moreover, kn
ij changes nonlinearly

with un
ij. A parabolic rule is mostly applied as:

� �k k un
ij

n0
ij

n
ij s

� �1 (21)

where s is an exponent to be stated from laboratory tests,
as well as the starting value of kn0

ij . The value of Nij increases
nonlinearly and when the strength is reached, a crack is
assumed at point ij and the spring is suddenly removed.
In practical examples, the spring that is in tension is re-
moved gradually to stabilize the convergence and speed
up the iteration process. On the other hand, at this point
“penetration” of one disk into the adjacent disk is fully per-
mitted. This is an impact of the nonlinear behavior (21) of the
spring being compressed in the normal direction.

Damage occurs when the Mohr-Coulomb hypothesis is
violated or tensile strength is reached. In this case, it means
that

a) � �Q N Nij ij b ij� � �tan � � 
 ,

where �b is the shear strength (cohesion), 
 is the Heaviside
function, and � is the angle of internal friction,

b) N Nij ij
+� ,

where Nij
+ is the tensile strength.

When condition a) is not fulfilled, then a “cut” of Qij is
supposed according the following rule:

� �Q N Nij ij b ij t
ij� � � �tan � � 
 � .

Note that more complicated rules may be imposed. For exam-
ple, both internal parameters, angle of internal friction and
shear strength, may change with the values of Qij.

In the case of violation of condition b), a local discon-
nection (debond) occurs and the spring is removed again.
This is not due to local cracking but because of disconnection
of the disks that were originally in contact at point ij.

Eigenforces have not been discussed in this paper. They
are additional design parameters for optimal approximation
of reality or of laboratory tests in such a numerical model.
They may also simulate other phenomena, such as change of
temperature, gas emission, blasting at some local sources, etc.

Conclusions
Two new discrete element methods have been introduced

in this paper. One of them is an extension of the well-
-known particle flow code. The solution of this method is very
easy and fast. On the other hand, it bears the same dis-
advantages as PFC itself. The interpretation of the material
properties currently obtained from laboratory tests is quite
complicated, if possible at all. If the material properties are
properly chosen, the results seem to be realistic, as shown in
the forthcoming paper by the authors. A much more complex
and suitable method for predicting the real behavior of the
test material is the method of free hexagons, which involves
both mechanical and geotechnical properties received from
the experiments. The hexagons can cover the entire domain
describing the physical body, and along the local boundaries
between elements the geotechnical properties can be im-
posed. The material behavior inside the elements is described
by virtue of boundary elements, which are more appropriate
than finite elements in this case. When using the finite ele-
ment method, the local tractions are polynomials of one
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order higher than the boundary displacements, while the
boundary element method delivers polynomials of the same
order along the boundary. The spring condition is then better
fulfilled by the boundary elements.
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Fig. 7: Geometry for calculating boundary integrals
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