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Abstract. This paper describes a theoretical background, implementation and validation of the newly
developed Jardine plastic hardening-softening model (JPHS model), which can be used for numerical
modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like
the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which
removes the main disadvantages of the MC model. The presented model is coupled with an isotopically
hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material
description and a cap yield surface. The validation of the model is done by comparing the numerical
results with real measured data from the laboratory tests and by testing of the model on the real
project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between
the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ
data is done.

Keywords: numerical modelling; advanced material model; soils; small strain stiffness; tunnel
excavation.

1. Introduction
In the last few years, the numerical analyses are in-
creasingly used in the design of the underground struc-
tures [1–8]. The designers can work with different user-
friendly commercial software and relatively easy simu-
late the behaviour of the soil mass. Unfortunately, one
important fact is overlooked. Numerical analyses are
only approximation of real behaviour and are highly
dependent on the input parameters [9, 10]. One area,
which can affect the calculated results, is the correct
choice of the material model [11–13]. Many laboratory
tests show that the behaviour of soils is highly non-
linear [14–16] and therefore the use of a common linear
elasto — perfectly plastic material models based on
the Mohr-Coulomb yield criterion is not appropriate.
Instead, the advanced material model like a newly
developed Jardine plastic hardening-softening model
(the JPHS model) should be used.

2. Theoretical background
of the model

The Jardine plastic hardening-softening model (the
JPHS model) is based on the elasto — plastic theory
as in geotechnics widely used Mohr-Coulomb model,
but it contains some other features, which improve
its capabilities and allow better simulations of the
ground behaviour. Firstly, the Mohr-Coulomb fail-
ure yield criterion is replaced by the Willam-Warnke
failure yield criterion, which eliminates the singular
tips from the Mohr-Coulomb surface and has a better
agreement with the data from the experimental tests.
Secondly, the model contains non-associated material

description and the plastic flow is controlled by the
Drucker-Prager potential function. Thirdly, the model
has the ability to simulate the non-linear isotropic
hardening and softening of the soils. Fourthly, it is
capable to increase the stiffness modulus with an in-
creasing depth or stress level. Fifthly, the volumetric
hardening is controlled by a cap yield surface and
finally, the model has the possibility to calculate the
non-linear stress-strain dependence in a small strain
range.

2.1. Yield failure criterion
The Mohr-Coulomb failure criterion for soils is one
of the oldest failure criteria. It is experimentally
verified in triaxial compression and extension, but it
is also very conservative for intermediate principal
stress states between the triaxial compression and
extension as can be seen in Figure 1. To eliminate this
conservative behaviour and approximate the JPHS
model more to the reality, the Willam-Warnke failure
criterion [17] is implemented in the model. If rc is
the distance from the hydrostatic axis to the failure
surface at the compressive meridian and rt at the
tension meridian, then at any intermediate position,
the distance r is given by (see Figure 2):

r = 2rc(r2
c − r2

t ) cos θ + rc(2rt − rc)
√
D1

4(r2
c − r2

t ) cos2 θ + (rc − 2rt)2 , (1)

where

D1 = 4(r2
c − r2

t ) cos2 θ + 5r2
t − 4rtrc. (2)
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Figure 1. The three-dimensional failure surface of
Kaolin Clay in octahedral plane, lab. data from [18].

After several mathematical operations, the locus of
yield surface in deviatoric plane can be written as:

g(θ) = 2(1− e2) cos θ + (2e− 1)
√
D2

4(1− e2) cos2 θ + (2e− 1)2 , (3)

where

D2 = 4(1− e2) cos2 θ + 5e2 − 4e, (4)

e = rc

rt
= 3− sinφ′

3 + sinφ′ . (5)

And the whole Willam-Warnke failure criterion can
be expressed as follows:

F = A1p+ q

g(θ) +A2 = 0, (6)

where

A1 = −6− sinφ′
3− sinφ′ , A2 = −6c− sinφ′

3− sinφ′ . (7)

On the one hand, it is evident that the formula is
relatively complex which can cause some difficulties
during evaluation of differential and secondary order
differential form, but on the other hand, this complex-
ity allows that the locus of yield surface in deviatoric
plane has the following features:
• fits with the Mohr-Coulomb key points; i.e., the
experimental extension and compression meridian
points are on the curve;

• it is differentiable at the compression and exten-
sion meridian points; i.e., the singularities in the
corner, which cause the numerical difficulties, are
eliminated;

• it is convex in the whole range of 0 < φ ≤ π/2
(0.5 < e ≤ 1).

Figure 2. The geometrical interpretation of Willam-
Warnke failure criteria.

2.2. Plastic flow
The JPHS model contains the non-associated mate-
rial description and the plastic flow is controlled by
the Drucker-Prager yield criterion [19] that has the
following form:

F =
√
J2 − αDPI1 − k = 0 (8)

The coefficients αDP and kDP are not commonly used
parameters in geotechnics and a proper calibration
can lead to some difficulties in practice. Since the
Drucker-Prager yield surface is a smooth version of
the Mohr-Coulomb yield function, the Drucker-Prager
constants can be expressed in terms of cohesion and
friction angle. By relating hydrostatic stress p and
deviatoric stress q to the invariants I1 and J2 the form
of Drucker-Prager yield criterion can be rewritten as
follows :

F = q√
3
− 3pαDP − k = 0, (9)

→ F = −3
√

3pαDP + q −
√

3k = 0, (10)

where the coefficient αDP and kDP can be expressed
for the triaxial compression and extension:

αCTC = 2 sinψ√
3(3− sinψ

, αCTE = 2 sinψ√
3(3 + sinψ

, (11)

kCTC = 6c sinψ√
3(3− sinψ

, kCTE = 6c sinψ√
3(3 + sinψ

. (12)

And the general form of the Drucker-Prager poten-
tial function is then:

F = A1p+ q

g(θ) +A2 = 0, (13)

59



Jan Vesely Acta Polytechnica

Figure 3. The hardening-softening law — depen-
dence of friction angle on equivalent deviatoric plastic
deformation.

where

A1 = −6− sinψ
3− sinψ ,A2 = −6c− sinψ

3− sinψ , g(θ) = 1. (14)

2.3. Non-linear hardening/softening
In the JPHS model, the isotropic hardening rule is
used to describe the hardening and softening law. The
change in yield criterion can be described as follows:

dF = ∂F

∂σij
dσij + h(dεp). (15)

According to the strain hardening hypothesis [20],
hardening process can be work hardening or strain
hardening. To cover both cases, it is useful to define
the hardening variable dκ and the parameter H, which
express the dκ in terms of equivalent plastic strain
dεp:

H = dκ
dεp . (16)

The change in the yield function can then be rewritten
as follows:

dF = ∂F

∂σij
dσij + ∂F

∂κ
dκ = 0, (17)

→ dF = ∂F

∂σij
dσij + ∂F

∂κ

dκ
dεp

dεp
dλ dλ = 0, (18)

where the equivalent plastic strain can also be charac-
terised as follows:

dεp =
√

2
3dεp : dεp =

√
2
3dλ

√
dQ. (19)

Finally, substituting equations (16), (17) and (19)
gives the expression of the hardening function hκ,
which is directly related to the input parameter H:

hκ =
√

2
3H
√

dQ∂F
∂κ

. (20)

Figure 4. Cap yield surface in p-q plane.

The JPHS model allows to assume the variation of
friction angle φ′ with accumulated plastic strain as
shown in Figure 3. There are three zones. In zone 1,
φ′ is assumed to increase from the initial value (φ′crit)
to the peak value (φ′peak) while in zone 2, φ′ is reduced
from the peak value to the residual value (φ′res) and in
zone 3, φ′ remains constant and equal to the residual
value (φ′res). In each of these zones, mathematical
expressions can be assigned to the variation of φ′
with equivalent plastic strain dεp, and therefore the
hardening/softening rules can be expressed in a piece-
wise manner and the parameter H is defined in the
JPHS model as follows:

Hhardening =
(φ′peak − φ′)δ

εhardening
, (21)

Hsoftening = (φ′ − φ′res)δ
εsoftening

. (22)

Note that φ′peak, φ′res, δ, εhardening, εsoftening are in-
put parameters, which are based on the result of the
triaxial tests

2.4. Cap yield surface
The shear yield surface defined in § 2.1 does not ex-
plain the plastic volume strain that is measured in
the isotropic compression. Therefore, the second type
of yield surface is implemented in the JPHS model
to close the elastic region for compressive stress path.
The shape of cap yield surface in p-q plane (see Fig-
ure 4) is chosen in the way to get the best agreement
with the laboratory test data and is defined as follows:

F = p+ kcap −
qc − q
qc

− pc = 0. (23)

The initial pre-consolidation is calculated according
to the following equation:

pc,ini = OCR(pini + kcapqini), (24)

qc,ini =
6 sinφ′peak

3− sinφ′peak
pc,ini +

6c sinφ′peak

3− sinφ′peak
. (25)

During the volumetric strain hardening, the value of
pre-consolidation pressure is then updated as follows:

pc = pc,ini +Kεv. (26)
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2.5. Non-linear elasticity
The strain range, in which the soils can be considered
truly elastic, is very small and with increasing strain
amplitude, soil stiffness decays non-linearly. To simu-
late this soil behaviour, non-linear elastic stress-strain
law, based on the Jardine function, is implemented in
the model.
Jardine et al. [14] proposed a periodic logarithmic

function to express the non-linear relationship between
the normalized secant Young’s modulus Eu and axial
strain εa as follows:

Eu

cu
= A+B cos

(
α log

(εa
C

)γ)
, (27)

where A, B, C, α, γ are the Jardine material model
constants based on triaxial tests.
The normalized tangent Young’s modulus Eut cor-

responding to the secant Young’s modulus Eu can be
derived by a differentiating and rearranging (27):

Eut

cu
= A+B cos

(
α log

(εa
C

)γ)
−
Bαγ log

(
εa
C

)γ−1

2.303 . (28)

For the purpose of the numerical modelling, it is ap-
propriate to replace the axial strain εa by deviatoric
strain invariant εdev that is defined as:

εdev =
√

2
3
(
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2

)
.

(29)
By substituting the stress state of the undrained tri-
axial test (ε1 = εa and ε2 = ε3 = − 1

1εa) into the
equation (29), the dependence between axial strain
εa and deviatoric strain invariant is εdev =

√
3εa and

the normalized tangent Young’s modulus Eut can be
rewritten as follows:
Eut

cu
= A+B cos

(
α log

( εdev√
3C

)γ)

−
Bαγ log

(
εdev√

3C

)γ−1

2.303 . (30)

Finally, to simulate the dependency of the modulus
with the depth or stress level, the equation is modified
as follows [21]:

Eut = σm

(
A+B cos(αIγ)− BαγIγ−1

2.303 sin(αIγ)
)
,

(31)
where σm is mean stress pressure and I = log εdev√

3C .

Due to the Jardine model’s trigonometric nature, it
is also mandatory to specify the exact strain range, in
which the non-linear stress-strain law is to be applied.
When exceeding the upper (εmax) or lower (εmin) limit
of the strain range specified, stiffness is set as constant.
A practical value for εmin is the smallest strain for
which the test data is available. For εmax it is required
to ensure compatibility with onset of plastic yield and
check that high value will not gain to the negative
tangent Young’s modulus (see Figure 5).

Figure 5. Jardine function — strain range.

3. Implementation of the model
The software PLAXIS allows users to implement a
wide range of material models into the program. These
models must be programmed in FORTRAN language,
compiled as a Dynamic Link Library (DLL), and then
added to the PLAXIS program directory. These mod-
els simulate the soil behaviour in a single material
point and the global behaviour is then governed by the
Finite Element Method implementation in PLAXIS.

The whole flow chart containing all steps needed for
implementation of the model is presented in Figure 7.
The first action that must be done is the declara-
tion and initialization of the material properties and
state variables and the specification of the undrained
behaviour.

The second action is to calculate the current value
of the E-modulus. This is done by calling the following
three subroutines:
STRAIN_CALCULATION: This subroutine is
calculating the deviatoric strain invariant εdev ac-
cording to the formula (29). The input parameters
are all components of the total strains and the out-
put is the deviatoric strain invariant εdev.

JARDINE: This subroutine is calculating the cur-
rent E-modulus according to the formula (31) and
rules mentioned in Section 2.5. The input parame-
ters are the deviatoric strain invariant εdev and the
JPHS model parameters. The output is the actual
E-modulus

UNLOADING: This subroutine is controlling the
value of the E-modulus during unloading and reload-
ing cycles according to the formula:

Eunload = Ekunload, (32)

where kunload is an unloading coefficient
The fourth action is the calculation of the actual hard-
ening / softening parameter by using the user defined
subroutine HARDENING. The input of this subrou-
tine is the JPHS model parameters. The output is a
new value of the Hardening / Softening parameter H,
determined according to the formulas (21) and (22).
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Figure 6. Jardine model — secant stiffness defined as a logarithmic function of strain [14].

The last action is the definition of the constitutive
stresses. After the calculation of the actual E-modulus,
the new stiffness matrix is determined and the trial
stresses are calculated as follows:

predσn+1 = σn +Dεn+1. (33)

These stresses are one of the main inputs into the
user-defined subroutine STRESS_INTEGRATION.
This complex subroutine is the core element of the
implementation and the backward return-mapping
algorithm is implemented there. The first step in
the subroutine is the check of the trial stresses. The
JPHS model contains three different yield surfaces
(Willam-Warnke yield surface Fs, Cap yield surface
Fc and Tension cut-off yield surface Ft), and therefore
the trial stresses can occur in 6 different regions:
• elastic region (Fs < 0, Fc < 0 and Ft < 0);
• Willam-Warnke region (Fs ≥ 0, Fc < 0 and Ft < 0);
• cap region (Fs < 0, Fc ≥ 0 and Ft < 0);
• tension cut-off region (Fs < 0, Fc < 0 and Ft ≥ 0);
• Willam-Warnke and Tension cut-off region (Fs ≥ 0,
Fc < 0 and Ft ≥ 0);

• Willam-Warnke and Cap region (Fs ≥ 0, Fc ≥ 0
and Ft < 0).
If the trial stress occurs in the elastic region (Fs < 0,

Fc < 0 and Ft < 0), then the strain increment is
elastic and the trial stress is the real stress for the
increment:

σn+1 = predσn+1. (34)
If the trial stress occurs in other regions (Fs ≥ 0 or
Fc ≥ 0 or Ft ≥ 0), then the trial stress is an inad-
missible stress state and return-mapping algorithm
is called. The general implementation of the return
mapping algorithm is as follows [22]:
(1.) Calculate the starting point:

(a) calculate the derivatives (according to the re-
gion)

n+1nmn =
(

∂F

∂σmn

)
n+1

, (35)

n+1mpq =
(
∂Q

∂σpq

)
n+1

; (36)

(b) update the plastic multiplier λ (yield function
predF according to the region)

dλ(0) =
predF

prednmnDijkl
predmpq − hκ

; (37)

(c) update stress and state variable

(n+1)σ(0)
mn = predσmn − dλ(0)Dmnpq

predmpq,
(38)

(n+1)κ(0) = predκ+ dλ(0)hκ. (39)

(2.) Calculate Backward Euler algorithm:
DO WHILE n+1F (i) < tol

(a) calculate the yield function n+1F (i) (according
to the region)

n+1F (i) = f
(
n+1σ

(i)
ij ,

n+1κ(i)); (40)

(b) calculate the derivatives (according to the re-
gion)

n+1n(i)
mn =

(
∂F

∂σmn

)
n+1

, (41)

n+1m
(i)
kl =

(
∂Q

∂σkl

)
n+1

, (42)

∂mkl

∂σmn

∣∣∣∣(i)
n+1

,
∂mkl

∂κ

∣∣∣∣(i)
n+1

; (43)
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Figure 7. JPHS model — flow chart.
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(c) update the plastic multiplier λ (yield function
predF according to the region)

dλ(i+1) =
n+1F (i) − n+1n

(i)
mn

oldrij(n+1Tijmn)−1

D3 − n+1hκ
,

(44)
where

D3 = n+1n(i)
mnDijkl

n+1mkl(n+1Tijmn)−1 (45)

n+1Tijmn = δimδnj + λ(i)Dijkl
∂mkl

∂σmn

∣∣∣∣(i)
n+1

, (46)

rij = σij − (predσij − λ(i)Dijkl
n+1m

(i)
kl ); (47)

(d) update stress and state variable

(n+1)σ(i+1)
mn = predσmn − dλ(i)Dmnpq

n+1mpq,
(48)

(n+1)κ(i) = predκ+ dλ(i)hκ. (49)

(e) i = i+ 1
END DO

4. Validation of the model
The following chapter is focused on the validation and
verification of theJPHS model. The basic soil tests
(the triaxial test and oedometer test) are simulated
by using the numerical analyses and the results are
compared with the real measured data from laboratory
tests done on the Brno clay [15].

4.1. The triaxial test
The 2D analysis (PLAXIS v.2016) of the triaxial test
is simulated by using the axisymmetric model. The
input parameters for the JPHS model are summarized
in Table 1 and Table 4. The coarseness of the mesh,
geometry and dimensions of the model are presented in
Figure 8. The left and the bottom boundaries are fixed
in horizontal and vertical directions respectively. The
isotropic / axial loading is represented by a distributed
load and is applied on the top and right boundary.
The modelling sequence is as follows:
(1.) Initial conditions.
(2.) Isotropic loading (The loads applied to the top
and right boundary are activated, the undrained
behaviour is ignored. After the isotropic loading,
the prescribed displacements are set to zero).

(3.) Axial compression to the failure (The load applied
to the top is increased to a value which causes the
failure, the undrained behaviour is active).
Figure 9 and 10 presents the results of the triaxial

tests for different values of initial stress conditions
(275, 500 and 750 kPa). The results confirm that the
JPHS model predicts a good match with the labora-
tory data. Slightly over predicted is only the peak
strength for 750 kPa, but this initial value corresponds

Figure 8. The Triaxial Test — 2D model.

Figure 9. The Triaxial Test Results — strain versus
deviatoric stress, lab. data from [15].

to the depth of approximately 100 m that is not a com-
mon area for the construction of geotechnical struc-
tures.

The comparison of water pressure development is
shown in Figure 11 and again confirms a good match.
The curve’s shape is almost identical with the labora-
tory data and the slight underprediction of maximum
excess pore pressure is only 15%.

4.2. Oedometer test
The numerical simulation of the oedometer test is
done by a 3D analysis (PLAXIS v.2013). The input
paramters for the JPHS model are summarized in
Table 1 and Table 4. The coarseness of the mesh,
geometry and dimensions of the model are presented in
Figure 12. The side boundaries are fixed in horizontal
directions; the vertical fixities are used on the bottom
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Figure 10. The Triaxial Test Results — hydrostatic
pressure versus deviatoric stress, lab. data from [15].

Figure 11. The Triaxial Test Results — strain versus
water pressure, lab. data from [15].

side. The axial load σ1 is represented by a distributed
load on the top plane. The modelling sequence is as
follows:

(1.) Initial conditions.

(2.) Axial compression (the load applied on the top
is gradually increased).

(3.) Unloading (the load applied on the top is gradu-
ally decreased).

The results are shown in Figure 13 and confirm a
good match between the JPHS model simulation and
the laboratory data for both the loading and unloading
stages. If the absolute values of axial strain are com-
pared, then the JPHS model slightly underestimates
the maximum value (approx. 10%).

Figure 12. Oedometer Test — 3D model.

Figure 13. Oedometer Test Results — strain versus
stress, lab. data from [15].

5. Practical use of the model —
numerical modelling
of tunnel excavation

The 3D numerical analysis of the shallow tunnel in
stiff clay is performed to verify the JPHS model and to
compare the results calculated by this model with the
real data from the geotechnical monitoring. For the
calculation, the Kralovopolske tunnels (exploration
adit) is chosen. The Kralovopolske tunnels are a part
of the ring road of Brno town in the Czech Republic
and are excavated in difficult geological conditions.
The overburden varies between 6m to 22m, the tun-
nels are excavated in Brno clay and there is an urban
area on the surface.

5.1. Model discretization
and boundary conditions

The numerical analysis is carried out in the software
PLAXIS 3D v.2013. Model represents 100m wide,
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Loess and clay loams Sand Deposits Stiff Clay
Unit weight γ [kNm−3] 19.0 19.0 18.0
E-modulus E [MPa] 10 65 15
Poisson’s ratio ν [–] 0.35 0.35 0.40
Cohesion c’ [kPa] 10 5.0 5.0
Friction angle φ′ [°] 20 30 26
Dilatation angle ψ [°] 4.0 8.0 1.0

Table 1. MC model — geotechnical parameters.

Cam-Clay
swelling
index

Cam-Clay
compression

index

Tangent of
critical state

line

Initial void
ratio

Poisson’s
ratio

κ [–] λ [–] M [–] e [–] νur [–]
Stiff Clay 0.2 0.09 1.55 0.5 0.2

Table 2. Modified Cam Clay model — geotechnical parameters.

48m high and 90m deep section of the soil mass, where
the top boundary of the model represents the ground
surface. The bottom and the side model boundaries
are set at a distance required to reliably predict stress
redistribution and ground deformation around the
tunnel. The tunnel has a triangular shape with 4.8m
width and 4.2m height and the crown of the tunnel
is situated in a stiff clay approx. 22m under the sur-
face. The model geometry including the mesh and
coordination system is presented in Figure 14. The
model boundary conditions are set that the vertical
displacement is fixed at the bottom boundary and the
horizontal displacements are fixed at the side bound-
aries.

5.2. Ground properties
and primary stress conditions

The area of Kralovopolske tunnels is formed by
Miocene marine deposits of the Carpathian fore deep.
The main geological strata, taken from the ground
surface to bedrock, are loess and clay loams with a
thickness between 3–10m, followed by the layer of
sand deposits (thickness approx. 10m) and stiff clay
(locally called Brno clay). The thickness of this clay is
expected to be several hundreds of meters and most of
the route of the tunnels is located there. The ground
water level is connected with a sand layer and observed
in the depth of 13–20m.

According to the study done by Svoboda et al. [15],
material properties of the loams and sand deposits
have an only small influence on the prediction of
surface settlement, and therefore they are modelled
only by using the Mohr-Coulomb model in this study.
However, the stiff clay is modelled using the JPHS
model and its prediction is then compared with the
prediction calculated by the Mohr-Coulomb model,
Modified Cam Clay model and Hardening Small Strain

Figure 14. Model geometry.

model. The model parameters are calibrated based
on laboratory tests [15], which have been carried out
during the site investigation. The parameters used
for the numerical analysis are summarized in Table 1
to Table 4 and the calibration of the stiff clay for
the JPHS model is shown in Figure 9, Figure 11,
Figure 13 and Figure 15. The calibration of other
models is mentioned in [23].
To set the initial stress conditions, it is necessary

to determine the coefficient of earth pressure K0. The
Brno clay can be characterized as over-consolidated
clay with OCR = 6.5 [15]. By using the formula by
Mayne and Kulhawy [24] the K0 coefficient is:

K0 = (1− sinφ)OCRsinφ

= (1− sin 26.5)6.5sin 26.5 = 1.25. (50)

5.3. Primary lining and modelling stages
The Kralovopolske exploration adit is excavated by
the New Austrian Tunnelling Method (NATM) with
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E-modulus
Eref

50 [MPa] Eref
oed[MPa] Eref

ur [MPa] Gref
0 [MPa] γ0.7 [–]

Stiff Clay 3.0 2.9 9.0 11.0 2.0 · 10−4

Power stress
dependency Poisson’s ratio K0 value for

NC
Reference
pressure

m [–] νur [–] KNC
0 [–] pref [kPa]

Stiff Clay 1.0 0.2 0.54 100

Table 3. HSS model — geotechnical parameters.

Stiff clay
Jardine Stiffness
Parameters

A [–] 180
B [–] 165
C [–] 1.7 · 10−5

α [–] 0.85
γ [–] 1.05
εmin [–] 1.701 · 10−5

εmax [–] 0.02
Critical Friction angle φ′crit [°] 15.0
Peak Friction angle φ′peak [°] 28.0
Residual Friction angle φ′res [°] 18.0
Hardening constant εhardening [–] 0.07
Softening constant εsoftening [–] 0.04
Hard./soft. constant δ[–] 1.075
Unloading coefficient kunload [–] 2.7
Cap coefficient kcap [–] 0.45

Table 4. JPHS model — geotechnical parameters.

Figure 15. JPHS model calibration- small strain
stiffness, laboratory data from [15].

a full-face adit excavation. The numerical analysis
corresponds to a construction process with the round
length of 1.0 m that leads to 90 calculation phases.
Each phase represents excavation progress of 1.0 m

and installation of the tunnel lining in period of 8
hours. The tunnel lining consists of 100 mm of sprayed
concrete, lattice girders (1m span) and wire meshes.
The lining is modelled using shell elements, which are
capable of taking normal forces and bending moments.
The lining is directly connected to the soil mass and
is modelled as linearly elastic. To simulate the in-
fluence of the lattice girders on the stiffness of the
lining, the homogenization of a steel-concrete lining is
done according to [25]. This procedure converses the
cross-section of a lining consisting of two components
with different E-modulus to a substitute-homogenized
cross-section with only one modulus of elasticity. To
simulate the increase in stiffness of the sprayed con-
crete with the time, the Young’s modulus of shotcrete
is updated in the construction stage process and is
based on the Menschke equation [26]:

Et = βEtE28, (51)

where

βEt =

0.0468t− 0.00211t2 if t < 1 day,

βEt =
(

0.9506 + 32.89
t−6

)−0.5
if t ≥ 1 day.

(52)

5.4. Results of the numerical analysis
Four 3D analyses are carried out to determine the
effect of the material models on the deformation of
the ground during the excavation of the adit in stiff
clay. Three analyses are done using the standard
material models included in software PLAXIS (Mohr
Coulomb, Modified Cam-Clay and Hardening Small
Strain model) while the fourth analysis is done using
the JPHS model. In the following chapter, the results
of all analyses are discussed and compared with the
real data from geotechnical monitoring.

Figure 16 presents the surface settlement after the
full excavation of the adit. The results show that the
settlement trough calculated by the MC model has a
totally unrealistic shape. The vertical displacement
above the tunnel is lower than at the certain distance
from the axis. This phenomenon is caused by a high
value of K0 and it is evident that the MC model is
not suitable for a numerical modelling of the overcon-
solidated soils. The other models predict better shape
of settlement though and differs mainly in its width
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Figure 16. The settlement trough after full profile
excavation, monitoring data from [11].

Figure 17. Development of the settlement in the
longitudinal direction, monitoring data from [15].

and depth. The closest results to the real monitored
data are calculated by the JPHS model. If we look at
the absolute values of the surface settlement, we can
clearly see that the JPHS model almost predicts the
same values (difference around 5%), while the HSS
model underestimates the vertical displacement by
more than 25%. Also, the width of the settlement
trough calculated by the JPHS model is almost two
times more accurate than the one predicted by the
Modified Cam-Clay model.
Another interesting results can be observed when

the development of the settlement in the longitudinal
direction is compared (see Figure 17).
The development of the settlement in the longitu-

dinal direction calculated by the MC and Modified
Cam-Clay model has an unrealistic shape. The models
are predicting that 80% of the deformation will occur
before the adit face pass through the measured profile.

Figure 18. Horizontal displacement after full profile
excavation, monitoring data from [15].

Figure 19. Deformations of the adit lining, monitor-
ing data from [15].

One of the reasons for this behaviour is that the MC
and Modified Cam-Clay model does not contain the
non-linear small-strain behaviour of soils. However,
this feature is implemented in the HSS and the JPHS
model and especially the JPHS model fits very well
with the monitoring data.

The similar results can also be observed for the
horizontal displacement as presented in Figure 18.
The JPHS model is closest to the real measured

data. The difference is higher (approx. 50%), but
one of the reasons can be the anisotropy of Brno
Clay (mentined by [27]), which is not implemented in
the model. The JPHS model is also the only model
that correctly simulates the increase of the horizontal
displacement near to the ground surface.

The good match is also indicated when comparing
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the deformations of the adit lining. The differences
between the material models are, in this case, not so
significant but the JPHS model is still closest to the
reality (see Figure 19).

6. Conclusions
The presented results show that the choice of the ma-
terial model has a significant influence on the correct
modelling of the soil behaviour. The commonly used
Mohr-Coulomb is not appropriate for the numerical
analysis in the overconsolidated clay and it is neces-
sary to use advanced material models. The presented
JPHS model demonstrates that is able to quite pre-
cisely simulate behaviour of the soils and with proper
calibration of input parameters, it is possible to pre-
dict the correct displacements of the ground during
excavation.

List of symbols
αDP Drucker-Prager coefficient [–]
δ Hard./soft. constant based on the triaxial test [–]
εa Axial strain [–]
εdev Deviatoric strain invariant [–]
εhardening Hardening constant based on the triaxial test

[–]
εn Strain tensor [–]
εsoftening Softening constant based on the triaxial test [–]
εv Volumetric strain [–]
dεp Plastic strain scalar [–]
κ Hardening/softening variable [–]
λ Plastic multiplier [–]
φ′ Actual friction angle [rad]
φ′

peak Peak friction angle [rad]
φ′

res Residual friction angle [rad]
ψ Dilatation angle [rad]
σm Mean stress pressure [kPa]
σn Stress tensor [kPa]
θ Loge angle [rad]

cu Undrained shear strength [kPa]
kcap Cap coefficient [–]
kunload Unload coefficient [–]
p Hydrostatic stress [kPa]
pc Pre-consolidation stress [kPa]
q Deviatoric stress [kPa]
rc Distance from the hydrostatic axis to the failure

surface at the compressive meridian [m]
rt Distance from the hydrostatic axis to the failure

surface at the tension meridian [m]

A,B,C, α, γ, εmin, εmax Jardine material model constants
based on the triaxial test [–]

D Stiffness matrix [–]
Et Young’s modulus of sprayed concrete in time [kPa]
E28 Young’s modulus of sprayed concrete after 28 days

[kPa]
Eunload Unloading Young’s modulus [kPa]

Eu Secant Young’s modulus [kPa]
Eut Tangent Young’s modulus [kPa]
F Yield function [–]
K Bulk modulus [kPa]
OCR Over consolidation ratio [–]
Q Potential function [–]
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