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Models for Non-isothermal Steady-State
Diffusion in Porous Building Materials

T. Ficker, Z. Pode$vova

Two models for non-isothermal diffusion of water vapour in building materials have been developed and their numerical outputs compared

with a standard isothermal approximation.
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1 Introduction

The structure of most building materials of silicate origin
consists of mutually interconnected microscopic pores. The
diameters of the pores show wide dispersion in their values
ranging from nanometers to millimeters. Since the mean free
path of water vapour molecules at normal room conditions
lies below 1nm, almost all pores are open for vapour diffu-
sion. However, this is not the only transport mechanism that
enables moisture to enter a building material. At higher
relative humidity (approx. above 50 %) intensive capillary
condensation occurs on the surface of pores and the pores
are subsequently filled with liquid water which can migrate
into a material. Liquid transport in pores takes place both
by surface diffusion and by capillary flow. However, the pur-
pose of this paper is to deal with diffusion of the gas phase
only, i.e., of water vapour, without the liquid transport. This
simplification is commonly applied, e.g., within the Glaser
condensation model [1], widely used in thermal building
technology.

A common practice in thermal building technology is
to calculate the vapour diffusion flux and pressure profile
p(x) inside building envelopes within an isothermal model,
although the envelopes normally experience non-isother-
mal conditions throughout the year. The temperature of the
envelope within the isothermal model is represented by a
one-year average for a given climate region (e.g., 10 °C for
Central Europe). Such an approximation has been incorpo-
rated into the national thermal standards of various countries
[2], [3] and has been in service for many years. Although
this procedure might provide satisfactory results for one-year
assessment of envelopes, it is clear that that the results for a
shorter period can show severe deviations from the experi-
mental data.

2 Non-isothermal diffusion

Let us suppose that the building envelope through which
the diffusion flux goes is represented by a plain brick wall of
thickness d =44 cm. The wall separates a heated room with a
usual environment (surface temperature and relative humid-
ity: 7,=293.15 K, ¢,=60 % RH) from an outdoor space
(Ty,=255.15 K, ¢,=84 % RH). The atmospheric pressure of
dry air is usually considered to be approximately the same on
both sides (p,=98066.5 Pa — used in [4]). The atmospheric
pressure p consists of partial pressures of water vapor p,, and

dry air p,

pP=pwtbas Pw<pa, p=pa- (1)
Similar relations also hold for mass concentrations as well
C=Cy +Cqs CwSCya, CRCy . 2)

A reasonable choice [5] for the temperature profile T(x) of
a wall is the linear function

T - T;
T(x)=T, - 12

x, (I1>Tp). (3)

Fick “s first law for non-isothermal diffusion assumes the
following form [12]

¢, C
9w = yw(qw + qa) - CDWa(T)Vyw y dw = W W (4
c Cy t €y

where g, and g, are diffusion fluxes of water vapor and
air, respectively, and D, (T') is the temperature-dependent
diffusivity. The diffusion flow should fulfil the condition of
continuous flow
O

¢ = Vq (5)
which is Fick's second law. Assuming unidirectional steady-
-state diffusion (8y, /0¢=0) along the x-axis and a neglig-
ibly small diffusion flow (g, —0) of heavy air molecules
(Ng+Og+... ) as compared with lighter HyO molecules
(gw ® q,), Fick's two equations can be rewritten as follows

G =~ CDwa(T) %, _qi —r < 1’ (6)
1-9,(1+7) dx gy
—d—qw =0 = g, =const. (7)
dx
with the boundary conditions
3’w(0)=y1w, J‘w(d)=y2w . (8)

Following the work of Schirmer [4] and Krischer [6] the
diffusivity of water vapor in the air pores of a material can be
expressed as the function of temperature

p=E7n , 181, k=89718x10710 m%K-181  (9)
i

where p is the ‘diffusion resistance factor’ — a purely material

constant corresponding to the wall material. According to the

gas law, mass concentration ¢ is a function of pressure and

temperature

P ba -

~297 JkgT)K7,

R
“CRLT RT YT M, (10)
R=831] mol K™\,
From Egs. (3) - (10) it follows
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P_akf dy, [ h-% 1

R —l—ylw(1+r)~ qwo T+ y x| dx (11)
Dw

Inserting the second boundary condition (8) into (11) we
obtain the diffusion flux

k@) Ty 1-33,(47)
Y Rydu(l+7) Tl2_" —T22_" 1=y, (1+7) | (12)
n =181

which, together with (11), gives the vapor profile y,, (x)

1
= — —1— .
yw(x) 1+7 1 [ ylw(l"'r)]
(13)
72" '[Tl =l fx
,{1 —yow(l+ T)J -1
l—ylw(1+7)

Taking into account the diffusion through an immobilized air
layer (DIAL model), i.e., g; = 0 (r — 0), relations (12), (13)

can be simplified

2= 019p,k T -T, lnlil = yQW} 14
w y
Radu T10.19 _ T20'19 1- P

T -1, \*1°
0.19 2
T —(Tl —l—d—x]

. 1 - you, 7018 _7.0.19
(%) = 1-(1—y1w)-[i} S . (13)
1— Nw
Relation (14) may be formally rewritten as follows
h{i—ﬂ} ]
go =), Rip=—S% [kg'm’s), (1)
Reff eff
where
bt _01%kpy =T
eff = "T2m _g2-n
kR, T -T,
5629 x 10_8 Tl '—T2 |
= . [kgm s ].
" 7019 _ 7,019

Since y,,,< 1 and y,< 1, further simplification can be per-
formed

1- . ~
ln{ ym]”‘ylw oy G S kgm L (1)
l_ylw Reff

4

3 DRAL model

Relations (14) - (17) hold within the framework of the
DIAL approximation, when the air layer embedded in a po-
rous material is only slightly perturbed by the diffusion of
water vapor molecules that possess smaller mass and much
lower concentration than those of air. It seems to be natural
that not only the pressure of dry air remains constant but also
the concentrations of dry and wet air vary only slightly across
the wall. This can be nicely illustrated when the concentration
ratios are calculated for a particular case, e.g., for the internal
and external conditions defined at the beginning of the previ-
ous Section

c»iynner Cguter =1623,
U [ [OWET . R, (18)
Cinner/Couter -0883

From (18) it can be seen that the variations of air concen-
trations ¢,, ¢ across the wall are negligibly small and, thus,
the profiles ¢,(x), ¢(x) may be considered as approximately
horizontal, i.e., constant for common climatic conditions.
This does not hold at all for water vapor whose concentration
varies considerably and, thus, its profile shows clear func-
tional dependence on x

Cw =f(x)’

¢ ~const.,

¢, ~const.,
cu(x) <cy . (19)

If these relations are included into Fick’s Eq.(6), we can
obtain a more simplified transport equation
de, (T, p
4d =~ wa(T)"—w%’ 1

X

—Jw =l (20)

r~0, c¢=const.

An analogous transport equation holds for non-isother-
mal diffusion of a gas in a solid compact body, so present ap-
proximation might be termed as Diffusion through a ‘Rigid’
Air Layer (DRAL model). At first sight this approximation
might seem rather unrealistic, but the final account of all
physical factors and their approximate behavior leads to such a
conclusion. Eq. (20) is quite analogous to those presented in
technical literature for cases when the total concentration is
constant (see e.g. Eq. 16.2-3 in [7]). The assumption ¢ = const.
does not necessarily mean the condition for the isothermal
state. Nearly constant total concentration ¢ can be expected
not only with non-isothermal diffusion of a gas in a solid com-
pact body which does not contain any air pores but also in
solid materials containing closed pores (cavities) filled with air.
The diffusion flux in such materials goes either through the
airless solid structures whose concentration (density) is almost
unaffected by temperature and through voids with a constant
air content (constant concentration), provided the walls of
the voids are hardly penetrable for heavy air molecules in
contrast to lighter water molecules. Foam building materials
such as foam polyethylene approach this type of material. It
seems probable that the DRAL model might be more applica-
ble to such materials. However, it is necessary to stress that if a
strong non-isothermal state causes essential variations in the
total concentration profile, i.e., ¢ =f(x), the DRAL model will
fail to determine a realistic diffusion flux. Briefly, the trans-
port equation (20) should enable the diffusion flux of water
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vapor in various materials to be approximated only under
usual climatic conditions, since such conditions represent
a weakly non-isothermal state which does not essentially dis-
turb the total concentration profile. Nevertheless, for a highly
non-isothermal state, the DRAL model can yield correct
results only with quite special materials. Numerical compari-
son of the results obtained by various models is presented in
Section 5.

Let us continue determining the solution of differential
equation (20). First, it is necessary to specify the complete set
of Fick’s equations within the DRAL approximation

qw:_ii(i’w(x)} oy =2 R, =462 Jkg K, (21)

R, dx\ T(x) v R,
d — T d Pul*) )] =
x[u 3 (x) x[ ) H 0, n=1.81 (22)

and the boundary conditions belonging to a non-isothermal
wall of thickness d

Pu(0) _ prw

pw(d)_pQ_w C
TO) T, } e

T(d) T,

Since the non-linear temperature profile T(x) appears in
common walls only under special conditions [10], a linear
profile is assumed here as well

T(x):TI—Tl;Tgxza—bx. (24)

Inserting (24) into Fick’s equations (21), (22) and taking
into account the first boundary condition (23), the corre-
sponding solution can be found

JPRRTECH {7 W
o (a - bx) dx[ Tj qq =const., (25)
pu(x)T(x)
f d(PTi) = f -%ﬂ(a —bx)dx, (26)
plwlTI 0

Prw _ Pow _
(T] TﬂQ jkb(l n)
w =

- HRw[al_n —(a _bx)l—n] ’

Inserting the second boundary condition (23) into (27),
we can express the steady-state diffusion flux ¢,

[le = pw(x)jkb(l _n)

(27)

R T(x)
HRw[al—n _(a _bd)l—n]
which goes through a non-isothermal wall with a linear

temperature profile (24). The symbols a, b in (28) can be
specified using (24)

P P\ _gy)
_kA-n){h T )
uR,d Tll—n _ T21—n
Relation (29) can be rearranged and the effective diffusion
resistance R,;and effective coefficient D ; may be introduced

(28)

w

, n=181 (29)

Gw

Ow ~Cow
Reff

d
Regr =
Deff

Ko -G - Ty
Degr= 1-n (_ 1-n )
M (T2 h )

Gw = [kgm %7,

[(m~s], (30)

[m%1]

where

Pow
RwT2

Oy = pl w
" Rle

By means of relations (30) the non-isothermal diffusion
flux g, expressed within the DRAL approximation can be
easily calculated.

For completeness, the partial pressure profile p, (x) inside
the wall should be presented. Functions p,(x) and c,(x) are
given by Egs. (27) and (28)

[kgm™], g, =

Ty =T,
pu=(n -],
1-n
Vil
o —(T1 _h-T ’Cj 31)
_@L@L@q d
n n T -1y
i _(r I=5 ]l
_ P [ v pow | "4
Cw (x) - 1-n 1-n
Rle RWTI RW’FZ Tl —TQ
(32)

For n=1.81 the profiles p,,(x) and ¢,,(x) will read
T -Tp
pw(x)=(T1— Id x]'

~0.81
I-081 -[Tx _h ;72 xj (33)

I

Prw [plw p?wj

-0.81
T - T
77081 _(Tl _h=5 xj

. (34)
7081 _ 77081

cw(x) =c1y _(Clw “CQW)

At first sight it is obvious that the p, (x) and ¢, (x) profiles are
not linear. Nevertheless, for usual temperature and partial
pressure differences between outdoor and indoor spaces in
the Central European climatic region the graphs of p, (x) and
¢, (x) will closely follow linear behaviour, as can be easily
verified.

4 IM-TDR and IM-TIR models

Glaser’s standard condensation model [1] is based on
isothermal diffusion, i.e., the temperature of a wall is con-
sidered to be a constant T, and equal to the mean value of the
surface temperatures

T +T:
T, set—d,
2

Fick's equations for diffusion in an isothermal structure

can be obtained from (21) and (22) after inserting T=T,,

(35)
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D d d
i (36)
R, T, dx dx
where
k on
D :—Tm , N= 1.81
u
Using the following boundary conditions
pw(0)=P1w’ pw(d)=ib2w (87)
the solution of (36) can be found easily
_ d n-1
qdzpl_wi%’_, Rd=E—’ 5=kTL, 7 =181 (38)
Ry 5 R,
p(x) = pryy - D0 P (39)

d

As can be seen, the pressure profile p(x) is a linear func-
tion of x in contrast to non-isothermal profiles (15) and
(34), which are non-linear. In spite of the fact that Fick’s
Egs. (36) hold exactly for isothermal structures only, i.e., for
constant temperature, the thermal resistance R, is actually
temperature dependent R4(T,). Such a model may be termed
as an ‘isothermal model with temperature dependent resistance’, i.e.,
IM-TDR.

Nevertheless, in civil engineering practice Fick’s iso-
thermal equations are combined with thermal resistance that
is not temperature dependent, because the average temper-
ature is fixed to the one-year average, i.e., 7,,=283.15 K,
regardless of the actual value T, of a particular structure.
Such a model may be called an ‘isothermal model with temper-
ature independent resistance’, i.e., IM-TIR.
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Fig. 1: Diffusion fluxes in dependence on temperature

5 Results and conclusions

In order to analyse the behaviour of all the models discus-
sed, their results for the structure given at the beginning
of Chapter 2 are presented in Fig. 1 and Table 1. The
calculations were done under the assumption that the
external partial pressure of water vapour remained constant
while the external temperature was successively increas-
ing, i.e., the external relative humidity was decreasing. Such
conditions enable us to study the influence of temperature
difference AT =T; - T, on the numerical compatibility of the
models.

Table 1: Diffusion fluxes through the brick wall (u=9) separating external space (¢ =84 % R.H., Ty=255.18 K, py,,= 105 Pa) and an
internal room with increasing temperature (20 °C-5000 °C)

Quantity 293.15K | 803.15K | 323.15K | 3873.15K | 773.15K | 1273.15K | 5273.15K
(20 °C) (30 °C) (50 °C) (100 °C) (500 °C) (1000°C) | (5000 °C)

., [Pa] 1402.2 1402.2 1402.2 1402.2 1402.2 1402.2 1402.2
6o % 10° [kgm™] 10.350 10.000 9.392 8.1340 3.9300 2.3800 5.7600
5, X 10° 9.1 9.1 9.1 9.1 9.1 9.1 9.1
IMTIR 20.956 20.956 20.956 20.956 20.956 20.956 20.956
Ryx 10 [ms™
IM-TDR 21.61 21.61 21.29 19.85 12.98 9.42 3.32
Ryx 10 [ms™)
DIAL 14.18 13.98 13.61 12.8 9.1% 7.07 3.13
R;ﬂ‘x 10—4
kg m_ls_l]
DRAL 17.13 16.62 15.68 18.75 7.00 4.38 1.15
Regx 107 m%7)
IMTIR 6.19 6.19 6.19 6.19 6.19 6.19 6.19
g% 10® kgm™27
IM-TDR 6.00 6.00 6.10 6.70 10.00 1B 89.07
g X 108 [kg m%s!
DIAL 5.93 6.02 6.18 6.57 9.21 11.9 26.87
g% 10% [kgm%7)
DRAL 5.52 5.48 5.42 5.27 4.34 3.40 -2.83
g% 10° [kgm™27)
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Table 1 and Fig. 1 show that at ‘small’ temperature dif-
ferences (AT < 40K) the heat fluxes of all four models differ
only by a few percent and, thus, under such ‘quasi-isothermal’
conditions all the models give nearly identical results.
Since the temperature difference AT in the Central European
climatic region does not usually exceed fifty Kelvin during a
year, all the models seem to be applicable within civil engine-
ering practice.

Nevertheless, if strongly non-isothermal conditions are
established (AT>40 K), it is necessary to distinguish carefully
between computational models. While the IM-TIR scheme is
not applicable at all under such conditions, the applicability
of the remaining three models will depend on the material
structure. For materials with macroscopic open pores filled
with air (such as silicate building materials or mineral wool)
the most convenient models seem to be DIAL and IM-TDR,
the first of which should be given priority in practical
calculations. The applicability of the DRAL model under
strongly non-isothermal conditions is more problematic since
it requires a constant total concentration profile to be es-
tablished, which is fulfilled only with special materials.
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