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Anisochronic Internal Model Control
Design

T. Vyhlidal, P. Zitek

The features of internal model control (IMC) design based on the first order anisochronic model are investigated in this paper. The structure
of the anisochronic model is chosen in order to fit both the dominant pole and the dominant zero of the system dynamics being approximated.
Thanks to its fairly plain structure, the model is suitable for use in IMC design. However, use of the anisochronic model in IMC design may
result in so-called neutral dynamics of the closed loop. This phenomenon s studied in this paper via analysing the spectra of the closed loop

System.
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1 Introduction

Internal model control (IMC) is a well-known control
design method in the field of control engineering, see [1, 2].
The strategy of IMC design is based on knowledge of the sys-
tem model that is finally involved in the control loop. Since
the structure of the resulting control algorithm arises from
the structure of the system model, the IMC controller may
acquire a quite complicated form. That is why the obtained
IMC controller is often substituted by a classical PID control-
ler, which approximates its features. The motivation for using
the PID controller as the final control algorithm is given by
the convention (PID algorithm is available in most program-
mable controllers). Thus, in this approach, the resulting IMC
controller is utilised only in designing the parameters of
the PID controller. On the one hand, this approach provides
easier implementation of the control. However, on the other
hand, the dynamics of the final control loop with a PID
controller loses some of the merits of IMC design as the
consequence of simplifying the controller. Nevertheless,
thanks to progress in the hardware and software equipment of
programmable controllers, it is not beyond the scope of a
reasonable effort to implement (to program) the algorithm
resulting from the IMC design on a programmable controller.
For this purpose, the task is to search for a model of the lowest
possible order to obtain an easily applicable control algo-
rithm. However, use of the classical approach in modelling
(based on describing the system dynamics by linear differen-
tial equations) often does not allow us to make a satisfactory
approximation of the system dynamics using low order mod-
els. Particularly if the system involves time lags, distributed
parameters or transport phenomena (note that such phe-
nomena can be encountered, e.g., in heat transfer, chemical
and biological processes) the order of the model resulting
from the classical approach is as a rule high. Therefore, in
such applications, it is advantageous to use the anisochronic
modelling approach based on involving time delays in the lin-
ear model. In this paper, we first introduce the first order
anisochronic model able to fit the dynamics of a broad class of
systems. Then, analysing the closed loop spectrum, we inves-
tigate the features of the closed loop dynamics with the IMC
controller derived from the anisochronic plant model.
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2 First order anisochronic model

In many industrial applications, the following first order
model with the input delay can be encountered
G(S):y(s) _ Kexp(=1) )
u(s) Ts +1

where K is static gain coefficient, 7"is time constant and 7 is in-
put time delay, see, e.g., [3]. In fact, according to [4], see also
[5], the model is adequate for approximating most industrial
processes with well-damped dynamics. On the other hand,
since there is only one parameter in the denominator of (1),
supposedly, higher order system dynamics (damped as well
as oscillatory) cannot be satisfactorily approximated by this
model. In order to further extend the applicability of the first
order anisochronic model, let another delay n be introduced
into the model. The anisochronic model then acquires the

following form
G(s) = y(s) _ Kexp(=s1) ©
u(s) Ts+exp(-sm)
see [6]. An analogous but second order model has been used
in [7]. The enhanced universality of model (2) is due to the
possibility to assign its dominant pole couple arbitrarily in the
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Fig. 1: The trajectory of the dominant couple of roots of the char-
acteristic function M(s)=1+ exp(—sn) with respect to n,

=Bl/®, s, , =B £ jo (the time constant 7" is considered
1,2 J
here as a time-scale unit)
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left half of the complex plane. The sposition of the dominant
pole of (2) with respect to the values of 7" and n can be esti-
mated from Fig. 1. The crucial values of the ratio /7" are
following: n/T" =exp () for which the model has a double
real pole and n/T = n/2 for which the dominant couple lays
on the imaginary axis, which is the last value for which model
(2) is stable. For n/T <exp(-) the poles of the dominant
couple are real, while forn/T >exp(-)they are complex con-
jugate. For more details about the distribution of the poles of

(2), see [6].

The dynamics of the introduced first order anisochronic
models (1) and (2) are determined by the system poles only.
Involving a dynamic term into the numerator of the model
transfer function, i.e., introducing the zeros into the model
dynamics, further extends the applicability of the first order
anisochronic model. One possible way of involving a zero-
-effect in the system dynamics consists in using the model

_ K(Ls +exp (=s7))exp(-s1)
GGs)= Ts +exp(—sn) ’ ©

where the ratio 3 /L determines the distribution of the roots
of Ls +exp(—sy) =0 (the positions of the zeros of (3)) in
the same way as the ratio n/7" determines the distribution
of the poles. Using (3) is effective only in case of the re-
quirement to involve the zeros that are located on the left
half of the complex plane. Model (3) cannot be used to ap-
proximate the dynamics with a positive real zero because the
equation Ls +exp(—sy ) =0 does not have positive real roots
for any y /L, provided that L >0, y > 0. If the zero is positive
real and single given by u =1/L, it can be added to the model
dynamics simply by using —Ls + 1 instead of Ls +exp(—sy)
(using —Ls +exp(—sy) does not bring about considerable
merits because its dominant root is positive real for any y > 0).
A more difficult task is to involve dominant complex zeros
with positive real parts. Theoretically, it is possible to use the
term Ls +exp(—sy), but as [Re(p)|/Im (1) > 0.5 (where m is a
dominant zero of the system) the ratio /L becomes very
large, which is not convenient from the numerical point of
view. Another problem arising from the use of model (3) is
that the degree of the numerator is equal to the degree of the
denominator, i.e., there is a direct input-output link in the
model. To avoid such an inconvenient model structure, in-
stead of the first order anisochronic model (3), the following
second order model may be used

$) = K(Ls +exp (=s7))exp(=s1)
G(s) (T + 1T + exp(—=sm))

with the additional mode with time constant 7', see [7]. An
alternative way of involving the zeros into the first order
anisochronic model that does not have the drawback of equal
degrees of the numerator and the denominator consists in
using the following model

_ K(l —aexp (—sx)) exp (1)
Ts +exp(—sn)

)

G(s) (5)

in which instead of the quasipolynomial, the exponential
polynomial is used in the numerator, see [8]. The zeros of
system (5) are the roots of the following equation

N(s)=1-aexp(-syx)=0 (6)
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Considering variable s as a complex variable, i.e.,
s =B+ jo, the complex roots of (6) are the solutions of the
equations

Re(N(s))=1-aexp(—xB)cos(xo)=0  (7)

Im (N(s))=aexp(—xB)sin(xw) =0 8)
which result from splitting equation (6) into real and imagi-
nary parts. Separating the exponential term from (7)

exp (1) =———— ©)

acos (wy)

and substituting (9) into (8), the following expression results

tan () =0 (10)

Since (10) is satisfied for @ = kn/y and the right-hand side

of (9) has to be positive to obtain real 8, the rootss = + joof
(6), 1.e., the zeros of (5) are given by

5o Ll

X la

o=x2kn/y if a >0

o=*2k+Dr/y ifa<0

(1)

,k=0,1,2, ... (12)

Thus, by means of parameters ¢ and y, we can assign the
horizontal chain of the roots arbitrarily in the complex plane.
Prescribing the real parts of the roots B yields

la| =exp (Bx) (13)
and parameter y, results from
_2r i (14)
®p

where ), prescribes the spacing of the imaginary parts of the
roots. If a is chosen positive, equation (6) has one real root.
The closest complex root (of the horizontal chain) to the real
one has an imaginary part equal to ®,. If a is chosen negative,
equation (6) does not have a real root. In this case, the roots
of the chain closest to the real axis have the imaginary
parts equal to ia)[) /2. To sum up, if @ >0, the roots are
given as s =P and Sop 941 =B * j(km],), k=1, 2, ... and if
a<0, the roots are givesn as Sohe1,2(ke1) = B+ j((2k+l) o, /2),
k=0, 1, ... Thus, by means of involving exponential poly-
nomial (6) we can assign either one real dominant zero or the
pair of complex conjugate dominant zeros.

3 IMC design based on a universal
first order anisochronic model

In [7, 9, 6], the features of internal model control (IMC)
design based on low order models with time delays are stud-
ied. The scheme of IMC is shown in Fig. 2, where R*(s) is
the controller, P(s) denotes the dynamics of the plant which is
being controlled, and G(s) is the model of the plant.

P(s)

Y

R?s)

> G

Fig. 2: Internal model control (IMC) scheme
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Fig. 3: Scheme of the controller (16)

Using universal first order anisochronic model (5) and
provided that the system being approximated does not have
positive zeros, the transfer function of the controller is given

by
* 1
R(s)=——=F(s)=
Gi(s ) (15)
_ Ts +exp(—sm) 1

K(1-aexp (=sy)) Tys +exp(—sng)’
where G;(s) is the invertible part of model (5) (the only
uninvertible part of model (5) is the term corresponding to
the input delay, which is separated) and F{(s) is the first order
anisochronic filter with F(0) = 1. The transfer function of the

inner control loop (which is the controller transfer function if
the classical control loop is considered) is given by

s) = R'(s) = & =
R() R() I—R*(S)G(s) (16)
_ Ts+exp(—sn)
K(l —aexp (—SX))(TfS + exp(—snf) —exp(—sr))

see its block diagram in Fig. 3.

If G(s)=P(s), the closed loop dynamics are given by the
first order anisochronic model

G (s) =P (D 17
() Tys +exp (=sng) (17
and the dynamics of the closed loop can be chosen by
the ratio of parameters 7; and m;. However, the model
approximates only a part of the dynamics as a rule. There-
fore, let us study the closed loop dynamics for the case
G(s)# P(s). Let the filter be F(s)=1/F(s), (Fp(s)=Tgs +
+exp (=sng)), the model G (s) = K N (s)/M(s)exp(-s1),
(N(s)=1-aexp(-sy), M(s)=Ts +exp(-ns)) and the true
plant model P(s)=Q(s)/S(s), then the controller transfer
function is given by

N M(s)

RN ) —exp(59)

and the transfer function of the closed loop is the following
N M()Q(s)

o) TS RNG () —exp () - MEQE)

Thanks to N(s), obviously, there are delayed terms of the
highest derivative of y(/) in the model of the closed loop. Thus
the closed loop is of neutral dynamics, [10]. In general, this
fact rather restricts the class of models that may be used in the
described anisochronic IMC design, see [13]. This is due to

(18)
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the fact that the asymptotic features of the spectrum of the
poles of (19) are determined by the roots of the exponential
polynomial N(s). The problem is that the spectrum of N(s)
may be very sensitive to the changes in the delays involved in
N(s), see [8]. However, if N(s) involves only one delay, as in (6),
the distribution of the root spectrum of N(s) and also the dis-
tribution of the pole spectrum of (19) are rather insensitive
with respect to small changes in the delay. The basic features
of such IMC design are shown in the following example.

4 Application example, spectrum
based analysis of the dynamics

In order to demonstrate the outstanding approximation
features of a first order anisochronic model, consider that the
plant is originally described by the tenth order model with the
transfer function

P(s)=22* 1 (20)

(25 +1)

with the multiple pole A, ;o =-0.5 and the single dominant
zero n =-0.05. Let us find the parameters of model (5) that
approximates model (20) in the low frequency range. Assess-
ing ©=8 and y =10, which implies @ =0607 (according to
(13), p=-005) and K =1/(1 —a) =254, the dead time of the
system and the rising part of the response are approximated
quite well, see Fig.4.

The remaining two parameters of model (5), i.e., 7" =131
andmn =525, have been assessed using the least squares method
to approximate two points of the frequency response of (20).

2

15}

0.5¢

0 10 20 30 40 50 60 70 80 90 100
t
Fig. 4: Step responses of system (20) (dashed) and of its ap-

proximation (5) (solid)
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Fig. 5: Frequency responses of system (20) (dashed) and of its
approximation (5) (solid)

Since model (5) is supposed to approximate model (20)
in the low frequency range, the points of the frequency
response being approximated have been chosen those with
(o)) =arg (P(jor)) =-1/2 and @ () =arg (P(joy)) =-n.
As can be seen in Fig. 5, the frequency response of model (5)
approximates the frequency response of (20) very well (even
in the third quadrant of the frequency response). Also the
approximation of the system step response is very good
considering that the anisochronic model (5) is of the first
order.

Let us use the given parameters of model (5) in controller
(16) and let us investigate the dynamics of the closed loop.
The closed loop system is of the 11™ order with the transfer
function given by (19). Choosing Ty =10 andn ¢=7 the closed
loop dynamics are supposed to be given by the dominant cou-
ple of poles .7:1,2 =-0081£0156] (the dominant pole of the

ideal closed loop (17) with relative damping &=051, see
Fig. 1). Thus, let us investigate the distribution of the closed
loop with the system having the dynamics described by (20)
and the IMC controller based on approximation model (5).
Since the closed loop characteristic function is the quasi-
polynomial, a special numerical algorithm known as a
mapping based rootfinder, see [11, 12, 13], is to be used to
locate the characteristic function roots. The characteristic
function of the closed loop (19) is given by

Myy(s) = (25 + 1)10K(1 —aexp (—xs))-
(Tys +exp (=sn¢) —exp (-s1)) + (21)
+(Ts +exp (—s))(20s +1)

The first step of the mapping based rootfinder
consists in substitutings — B + joand splitting the character-
istic function into real and imaginary parts, ie.,
R(B, ®) =Re [Mw}(B + Jc))] and I(B, ) =Im [Mwy(B + Ja))]
Then, the implicit functions R(B, 0)) =0 and [ (B, (o) =0 are
mapped in the s-plane and their intersection points are locat-
ed determining the positions of the roots of (21). The result
of the mapping based rootfinding technique can be seen in
Fig. 6, where the decisive part of the root spectrum of (21) is
shown.

As it is shown in Fig. 6, the following poles A; =-0.05,
Ao 3 =-0081+0176jand A4 5 =-0126 + 0089 jare the closest
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Fig. 6: Poles of the closed loop system with plant model (20) and
controller (5), Re(Mwy(s)) =0 - solid, Im(Mm.(s)) =0 -

dashed, M, (s)- given by (21)

poles to the s-plane origin which are likely to be the dominant
poles of the system. The poles of couple A9 5 are quite close to
the prescribed poles 4 9. However, from the distribution of
the other dominant poles, it is not obvious that poles ho 3 de-
termine the dynamics of the closed loop (A is even closer to
the origin of the s-plane). Since the closed loop is the neutral
system we also analyse the essential spectrum of the neutral
system. The essential spectrum of the system is here given by
the solutions of the equation N(s) =0, see [10]. The spectra of
the poles (black circles), zeros (empty circles) and the essential
spectrum (asterisks) corresponding to closed loop system (19)
with chosen 7y =10 and n¢="7 are shown in Fig. 7. As can be
seen, pole A; is likely to be compensated by the real zero. Also
the couple of poles A4 5 are quite close to a couple of zeros and
they are also partly compensated. Consequently, the domi-
nant mode of the set-point response is really given by the cou-
ple of poles %9 5 (see Fig. 7, the poles of the prescribed
anisochronic dynamics are marked by squares). The domi-
nant role of the couple 29 3 in the set-point response dynam-
ics of the closed loop is confirmed by the responses of the real
closed loop system (19) and the ideal closed loop system (17)
shown in Fig. 8. As can be seen, the real set point response
(solid) is very close to the ideal one (dashed). The characteris-
tic feature of the class of neutral systems, i.e., some of the
poles converge to the eigenvalues of the essential spectrum,
can be seen in Fig. 7 and in the enlarged region in Fig. 9.

The consequence of using the numerator of form (6) to
approximate the system dominant zero is that the closed loop
system has infinitely many poles with real parts close to the
value given by (11). Therefore, controller (16) cannot be used
to control systems with zeros in the right half of the complex
plane. On the other hand, if the dominant zero is negative
and not too close to the imaginary axis, the neutral character
of the closed loop system does not bring about any features
that are risky to the dynamics. Provided that closed loop sys-
tem (19) (with negative dominant zero) does not have any
unstable poles close to the s-plane origin, it does not have any
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Fig. 8: Comparison of the ideal and real set-point responses,
ideal - dashed, real - solid

unstable poles at all. This is given by the fact that the chain of
the poles converging to the spectrum of the difference equa-
tion has the tendency to get closer to the eigenvalues of the es-
sential spectrum as the magnitudes of the poles in the chain
increase.

5 Conclusions

The prime objective of the paper is to break the conven-
tional concept of a PID controller by including the delayors
in its structure and in this way to reduce the order of models
needed for controller design. In fact, the resulting IMC
controllers are somewhere between the analog and discrete
principles of operation, with the specific feature that the time
shifts (sample-delays) are not integer multiples of a sampling
time interval. It should be noted that the delays in the control-
ler model do not serve only for compensating some specific
delays (e.g., transport delays) in the plant. The purpose of
delayors is to fit the dynamic effects of various origin, includ-
ing the distributed parameters of the plant. The first order
example model (5) used in the paper actually represents
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Fig. 9: Spectra of closed loop system for T; =10 and ny= 7. Spec-
tra of closed loop system (19): black circles — poles of (19),
empty circles — zeros of (19), asterisks — roots of N(s),
squares — poles of system (17) (ideal closed loop).

those plants classified as “higher-order” in the usual sense of
the term. Controlling these plants by a conventional PID
controller is doubtful. The use of delays in the modelling
results in a quite plane structure of the final control algo-
rithm, which can easily be implemented on a programmable
controller, where simultaneous application of the integrators
and delayors is quite possible. As has also been shown, imple-
mentation of the IMC controller based on the anisochronic
model can result in the so-called neutral character of the
closed loop dynamics, which may introduce risky features into
the closed loop system dynamics. However, if the controller of
structure (16) is used (provided that the dominant zero being
approximated is located in the left half of the complex plane)
the neutral character of the closed loop does not bring any
substantially negative features to the dynamics.
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