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Abstract. The paper deals with the examination of basic methods of evaluation of sensor signals in
terms of the information content of the given method and the used technical means. In this respect,
methods based on classical analog systems, digital systems in the time domain of signal processing,
hybrid systems and digital systems evaluating signal in the frequency domain are compared. A
significant increase in entropy in individual systems is demonstrated in the case of a more complex
signal evaluation. For each measuring system, the experimental setups, results, and discussions are
described in the paper. The issue described in the article is particularly topical in connection with the
development of modern technologies used in the processes and subsequent use of information. The
main purpose of the article is to show that the information content of the signal is increased because
the signal is more complexly processed.
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1. Introduction
The term data mining is used today mainly in man-
agement and marketing, where it is understood as
the process of obtaining information from the avail-
able data. In this “mining”, various methods and
procedures are used by employing among other things,
modern information technologies. We no longer meet
this concept in the field of control of production and
technological processes. It is in this area that infor-
mation as a basis for decision-making in the choice of
appropriate intervention in the process, is of a funda-
mental importance. With the increasing complexity
of processes such as controlled objects, with an in-
creasing computing and communication technology,
and progress in science disciplines, such as control
theory and artificial intelligence, the classical exact
control methods and new or modern methods are of-
fered. These methods are based on the acquisition
of qualitatively new types of information about the
controlled and monitored process.

We can define the sketched problem of “data mining”
from signal sensors in terms of information theory and
signal theory.

Information, from the viewpoint of information the-
ory eliminates uncertainty (i.e., entropy). The mea-
sure of information is the increment of probability
after receiving the message.

If we accept the A information that we can expect
with the probability p(A), then we receiv the amount
of information (bit) in the sense of Shannon’s entropy
theorem [1]:

I(A) = − log2 p(A) (bit). (1)

If we quantify the information according to Shan-

Figure 1. Relationship between the probability of
information and its entropy.

non’s theorem [2, 3] then it is valid that:

p(Ai) = 0.5⇒ I(Ai) = 1 (bit),
p(Ai)→ 1⇒ I(Ai)→ 0 (bit),
p(Ai)→ 0⇒ I(Ai)→∞ (bit).

From (1) and from Figure 1, it is clear that if the
specific information is less probable and if this infor-
mation occurs and we accept this information [4], we
obtain a larger amount of information [5, 6].

The theory of information for the purposes of active
and by time term periodically process of information
receiving defines the information source [7]. With
some simplification, based on the information theory
and probability theory, we can define the information
source as a probabilistic space [8]. We can write this
space in mathematical formalism as follows:

ϕ = (X∗, P ), (2)
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where X is the final set of elements X =
{x1, x2, . . . , xn}, which we call the source alphabet
and its element by the letter of the source, X∗ is the
set of all the final sequences of the elements of X and
represents a set of possible source messages, P is a
probability function defined on a set X∗. Function P
has these properties: P = { p(xi); xi ∈ X } ∈ 〈0, 1〉.

Obviously, the longer the fed information, the more
information can be sent. Therefore, as an information
content of an information source (entropy of an in-
formation source), the average entropy of the source
per information is used x (probability average) [9].
For stationary and ergodic sources of information, we
then obtain:

H(ϕ) = −
∑
x∈X∗

P (x) log2 P (x) (bit). (3)

By analyzing the relation (3), it is possible to come
to a serious conclusion, the higher the information
content of the source, the higher the amount of infor-
mation, which is generated with a uniform probability.
That is, the size of the probability space (i.e., the
number of elements of set X∗) directly determines the
“content” of a specific information source [10, 11].

From a functional point of view, we can divide
the information acquisition process into several basic
functions. It is clear that the key role in terms of the
adequacy of the information obtained and in terms
of its quantity is played by the sensor during the
measurement [12, 13].

Other processes can only damage the acquired infor-
mation or destroy it altogether. Consequently, it is not
possible to add relevant information to the measured
variable through the processes [14]. The problem lies
in how to “data mine” and then “use” the maximum
information contained in the signal from the sensing
element.

Thus, the output analog signal of the sensor in oper-
ation can be understood as the bearer of the informa-
tion, as a continuous information source. It is demon-
strated in the literature [15, 16] that the maximum
amount of information is contained in such sensor
signal having a limited average power Pm and whose
amplitude probability density distribution p(x) is by
Gaussian distribution on interval x ∈ 〈xmin, xmax〉:

p(x) = 1√
2πePm

exp− x2

2Pm
. (4)

Its information content (4) then acquires the maxi-
mum value:

maxHa = 1
2 log2(2πePm) (bit)., (5)

where e is the operator with an expected value. In-
formation content by (5) is only the theoretical value
because it assumes the ability of the sensor to gener-
ate at its output infinitely many amplitude levels of
the signal from the interval x ∈ 〈xmin, xmax〉. With

a real sensor, this is not possible due to its limited
sensitivity and its inaccuracy.
The sensor with the accuracy class δ can generate

a signal of about n = 1
2δ + 1 amplitude levels. This

then causes a decrease of the information content of
the sensor towards the theoretical value (5) and in
accordance with (3).

Another important moment that essentially decides
about “data mining” is that the maximum amount
of information contained in the analog signal of the
sensor is the signal evaluation process itself. At present
we can talk about two basic ways:
• evaluation of the amplitude of the analog signal in
the time domain by a standard analog or modern
digital system;

• evaluating the amplitude of the analog signal in
the frequency domain using a digital measurement
system.
As mentioned above, from (3) follows that the sen-

sor as a discrete information source has the higher
information content, the more amplitude levels of its
output signal x(t) we can distinguish.
With certain simplifications, when we neglect the

sensitivity and accuracy class of the real sensor, we
can deduce from the entropy Ha equation (4) of the
analog signal that is continuous both in time and
amplitude on the final amplitude range.

2. Analog measuring system
The measurement system generally represents a sum-
mary of the elements that provide the measurement
task. The behaviour of the measured signal is inter-
preted mainly by using the signal analysis at certain
points of amplitude, time and the frequency view.
From these characteristics, it is possible to obtain
information about a process that could not be cap-
tured using the basic signal processing functions. This
includes the processing of average data values, deter-
mination of their distribution, correlations, transfor-
mations, and also the functions necessary to describe
deterministic or stochastic signals in static processes or
in transition processes [17]. Signal analyses are most
often solved by an external host computer without
requiring a real-time operation [18]. As an example,
the determination of the sampling period of a process
variable based on the analysis of the frequency spec-
trum of the measured signal according to Shannon
theorem can be used [19].
The processing of this signal in the time domain

deals about analysis of its overall amplitude. In the
past and in many cases even today, this is the most
common way of evaluating the measurement of physi-
cal variables [20]. The visual display of the correspond-
ing amplitude of the one-way signal of the sensor is
realized by means of an analog apparatus calibrated
in the corresponding physical units (see Figure 2).

As mentioned above, analog measurement systems
are classified based on the accuracy class δ (%) e.g.,
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Figure 2. Signal evaluation by analog measuring
instrument.

0.01, 0.02, 0.05, 1.0, 1.5 and 2.5. For the accuracy
class, it is valid δ = ±max ε

range 100 %. It causes the so-
called uncertainty band of a relative width ε = 2δ
near the result of a measurement. An analog measur-
ing system with a relative error δ provides n of the
distinguishable amplitudes of the measured physical
variable, with regards to the following equation:

n = 1
2δ + 1 = 1

ε
+ 1. (6)

If, for simplicity, we assume an uniform distribution
of the probability density of the measured quantity,
i.e., all values have the same probability of occurrence
p = 1

n , it is possible to simplify the differential entropy
of an analog measuring system with a given accuracy
class δ based on (3) into the following form:

Haδ = log2 n = log2

( 1
2δ + 1

)
(bit). (7)

This equation gives the maximum boundary value
of information that one measurement can contain. If,
for example, the relative error of the analog measuring
system δ = 0.01 %, it allows the instrument to measure
51 different measured values on a given range. Then,
according to (7), we receive the information content of
this measurement system Haδ = log2 51 = 5.67 (bit).

3. Digital measuring system
Nowadays, in the practical applications of the the-
ory of the automatic control or digital signal process-
ing [21], we very often counter the issue of communi-
cation of discrete technical devices with a continuous
environment [22]. The bridges, which enable us to
connect digital and continuous worlds, are digital-to-
analog (DAC) and analog-to-digital (ADC) converters.
At present, the evaluation of a measurement of the
variable by digital systems prevails.

Digital measurement systems are based on the digi-
tization [23] of the analog signal by the m-bit analog-
to-digital converter. If the width of the AD converter
is m-bits, then this converter will distinguish, on the
interval of x ∈ 〈xmin, xmax〉, the total n = 2m am-
plitude signal levels. The differential entropy of this
sampled signal is generally given by (3). In the case
of a uniform distribution of signal probability, the
simplified equation applies:

HDIGm = log2 n = log2 2m = m (bit). (8)

Figure 3. Digital signal evaluation by digital system.

If, for example, we consider a common 12-bit AD
converter in technical practice, this allows us to distin-
guish up to the given signal range of n = 212 = 4096
different levels i.e., measured values. Assuming the
uniform distribution of the probability of the mea-
sured values, we receive the information content of
this measuring system HDIG12 = log2 4096 = 12 (bit).
From the comparison results that in practice are

valid Haδ < HDIGm. Thus, numerical methods
achieve significantly higher accuracy than analog meth-
ods. They have better static properties, but the price
is worse dynamic properties. An illustrative diagram
of a signal evaluation by a digital system is shown in
Figure 3.

4. Hybrid measuring system
Another type of digital measurement systems are sys-
tems based not on the processing of the sampled sensor
signal but on the evaluation of the analog signal of
the sensor itself. The analog signal of the sensor is
evaluated by a special set of analog and digital cir-
cuits. This is a hybrid measurement system, although
its fundamental is the use of special programmable
digital circuits. To calculate the differential entropy of
such measuring systems, we usually have to approach
them individually.
As an example of a digital or hybrid measuring

system, it is possible to include a device for measuring
a Young’s elastic modulus of steel ropes [24].
This is a method of indirectly measuring the elas-

ticity modulus of steel rope under traction based on
the measurement of propagation velocity of longitu-
dinal wave caused by a mechanical shock. From a
physical point of view, the method relies on a known
dependence between the rate of sound propagation in
the material v (m s−1) and modulus of elasticity E
(MPa) of steel rope, whose mass density of material
is ρ (kg m−3) [25, 26]. For a more accurate idea of
dependence, we also present the following equation:

E = v2ρ (MPa). (9)

The velocity of the propagation of the longitudi-
nal acoustic wave in the steel rope can be converted
to two time-shifted τ pulses using suitable sensors
and pre-amplifiers [27]. By a time shift τ , the time
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Figure 4. Hybrid measurement system with a pulse
width modulation signal.

period after which the mechanical shock from one
cross-section of the rope passes to the other is meant.
The implemented flip-flop circuit converts these two
time-shifted pulses into one width-modulated pulse.
The counter is controlled by the impulse so that it
only works for the duration τ commensurable to the
velocity of the wave propagation velocity and also to
indirectly measured modulus of elasticity of a steel
rope (see Figure 4). The presented hybrid measuring
system is implemented in practice and is still func-
tional for the purpose of assessing the quality and
damage of the steel rope [28].

Counting the generated pulses by the counter for a
time τ may cause an inaccuracy of a unit size. This
means that in one measurement we obtain the un-
certainty of ε = (τfG)−1 for the impulses τfG. The
maximum distinguishable number of levels n of mea-
sured variable is:

n = 1
ε

+ 1 = τfG + 1, (10)

where the value of one represents a zero amplitude
value.

This basic equation (10) is valid for a digital mea-
surement and shows that an increase in the num-
ber of distinguishable levels and thus the entropy of
the measurement will be achieved by increasing the
clock frequency fG of the generator. It is assumed
that this frequency fG of the used generator is de-
termined without an error. If, for example, we use
the generator with a frequency fG = 10 (MHz), then
on a unit scale τ ∈ 〈0, 1〉 in seconds, we can distin-
guish n = 107 levels, which correspond to an entropy
HHYB = log2 107 = 23.25 (bit).

5. Processing the signal in the
frequency domain

The basic method of a signal processing in the fre-
quency domain is the analysis of its spectrum (see
Figure 5). It is based on the fact that the sequence
of N samples (i.e., the record xs) of any real signal
can be expressed in terms of the approximation of the

sums of the unique series of N harmonic components,
each of which has its complex amplitude Fk, frequency
fk and phase shift ϕk, k = 0, 1, 2, . . . , N − 1, is valid
equation:

xs(t) =
N−1∑
k=0

Fke
ik2πf1t+ϕk , t ∈ 〈0, T 〉. (11)

Equation (11) is valid for the real signal that is lim-
ited by the highest frequency component fs/2, while
we assume its periodicity with the base time period
N/fs. For the first frequency component in the spec-
trum (the so-called base frequency) f1 and for the
frequency resolution ∆f in the spectrum, it is valid
f1 = ∆f = 1

T = fs

N , where T is the length of the
record of analysed sensor signal in time units. The
record length T depends on the number of samples
N and the sampling frequency of signal T = N

fs
. In

equation (11), the coefficient was limited to the range
0 to N−1, because in the sense of the discrete Fourier
transform (DFT), the number of the spectrum lines
must correspond the number of samples in the record.
The spectrum is complex, thus comprised of the ampli-
tude spectrum and the phase spectrum. The number
of spectral lines represented in the spectrum is equal
to the number of N samples in the analysed signal
recording. Due to the aliasing and the symmetry of
the discrete spectrum around the axis fs, the usable
part of the complex spectrum is only until the Nyquist
frequency fs/2. Therefore, for the frequency analysis
and industrial practice, the usable number of discrete
complex spectrum lines is according to (11) N/2 (see
Figure 6). To assess the amount of information con-
tained in the signal spectrum, we must build on the
number n|F | of possible shapes of amplitude spectrum
and also on the number nϕ of phase spectra. Due to
the discreet signal evaluation, this is the final count.
For simplicity, consider only the amplitude spectrum
analysis, which is more common in practice. When
calculating the number of possible amplitude signal
spectra, we must realize that this spectrum consists
of N/2 spectral lines, each of which can have one of
2m values. From a combinatorial point of view, there
are variations of N/2 class from 2m elements with
the repeating. Each of the amplitude levels can occur
across multiple spectral lines. Then it is valid that:

n|F | = V ′N/2(2m) = (2m)N/2. (12)

Then the entropy Hf (bit) of the measurement
based on the amplitude spectrum examination of the
sensor signal is given by:

Hf = log2 n|F | = log2(2m)N/2

= N

2 log2 2m = N

2 m (bit) (13)

If, for example, we used an m=12 (bit) sensor and
an AD converter to digitize the analog signal, and
we would evaluate the two-sided complex amplitude

342



vol. 58 no. 6/2018 Evaluation of Sensor Signal Processing Methods

Figure 5. Signal evaluation by a digital system in
the frequency domain.

spectrum of this signal with the length of N=1024,
then the entropy of such measurement would be Hf =
1024

2 12 = 6144 (bit).
In Figure 6, as an example from practice, a one

two-sided complex amplitude spectrum of the accom-
panying acoustic signal generated in disintegration
of the rock by the rotation drilling is exemplified is
shown [29]. The entropy of the spectrum has a value
of 6144 (bit). The measurement was carried out on
the horizontal laboratory drilling stand. A record of
N = 1024 samples obtained at a sampling frequency
of fs = 18 (kHz) from the microphone signal was
evaluated using a m = 12 (bit) AD converter. The
purpose of analysing this acoustic signal is to find
the information in the signal that can be used for
an optimal control of the drilling process [30]. The
basic criteria for optimizing the process are in this
case the minimal specific energy of disintegration and
the maximum drilling speed [31].
In practice, in some cases, spectrum changes are

examined depending on the change of a given variable.
For example, in the technical diagnostics of rotary
machines, it is interesting to observe the change of
spectrum of their vibration when increasing the revo-
lutions (rpm). We talk about so-called spectrogram,
i.e., spectrum dependence on time (or, in the example,
on increasing revolutions).
Let’s assume that we have measured a number

of s spectra corresponding to a time interval of
0, 1, 2, . . . , s− 1.
This sequence of spectra represents the spectro-

gram as a highly integrative information source. In
calculating its entropy as a potential information con-
tent, we must calculate the number n|F |s of possible
spectrograms consisting of spectra s.

Figure 6. The two-sided complex amplitude spec-
trum of an acoustic signal from the rock drilling pro-
cess.

Based on previous considerations, starting from the
combinatorial one, we can conclude that a spectro-
gram containing the spectra of signal records with
a length of N samples obtained by the m-bit AD
converter represents variations of the s-class of n|F |
elements with the repeating. Each of the spectra may
occur at multiple time moments. If this equation is
valid:

n|F |s = V ′s (n|F |) = ns|F |. (14)
Then the entropyH|F |s (bit) of measurement, based

on the investigation of spectrogram of the sensor signal
is given by the equation:

H|F |s = log2 n|F |s = log2 n
s
|F |

= s log2 n|F | = s
N

2 m (bit). (15)

If, for example, we used an AD converter with the
width of m = 12 (bit) to digitize the analog signal
of the sensor and we would evaluate a spectrogram
containing s = 10 complex amplitude spectra, each of
which was generated by analysing a signal recording
with the length of N = 1024 samples, then the entropy
of such measurement would, according to (15), have
the value of H|F |s = 10 1024

2 12 = 61440 (bit).
As an example of the spectrogram investigation,

we can present the spectral analysis of an acoustic
signal of the accompanying noise in the rock drilling
process [32, 33]. The aim of the analysis is to obtain
the information on the actual conditions of the rock
disintegration by rotary drilling in terms of an optimal
control of this process (see Figure 7) [34–37].
Thus, the increase of the entropy compared to the

classical analog technique as well as in the time domain
digital technique is significant in the case of the signal
evaluation in the frequency domain. This is illustrated
in Table 1.

To highlight the differences in measurement systems,
the potential entropy values of the individual signal
processing methods were recalculated to the decimal
logarithm log10 H(ϕ). It is shown in Figure 8.
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Figure 7. Spectrogram of acoustic signal as accom-
panying noise in rotary disintegration of granite.

Measuring system Entropy
1 – Analogue system Haδ = 5.67 b
2 – Digital system HDIGm = 12b
3 – Hybrid system HHYB = 23.25 b
4 – Spectrum Hf = 6144 b
5 – Spectrogram H|F |s = 61440 b

Table 1. Approximate entropy values for individual
methods of evaluating the sensor signal.

6. Summary and conclusions
Table 1 shows the comparison of the individual mea-
suring systems. Based on the entropy values of the
sensor signal evaluation, it can be seen that the analog
measurement system has the lowest information no-
tice value. This is understandable because this system
belongs to classical measurement systems, but is still
used at the lowest procedural level of control. The
digital measuring system is an extension of the analog
system by a part, which ensures the conversion of
the analog variable into a number in a suitable form
and for subsequent processing. The hybrid system is
an example of a measurement system in which the
benefits of both systems are interconnected.
The signal processing of the sensor in terms of en-

tropy in the frequency domain has a high information
value. This is confirmed by the numerous uses in indus-
trial practice and in various areas ranging from mining
(e.g., processing of signals from geological survey wells)
through the automotive industry (e.g., signal process-
ing gerenerized by the car and its influence on the
driver) to medicine (e.g., EKG cardiac signal process-
ing, EEG brain). The successful implementation of
the developed experimental measuring systems, and
thus their practical applicability, is always decided by
a deployment in a real environment.
It is necessary to say that the current industrial

distributed control systems have an increasingly more
complex and more extensive transmission and process-
ing of data. Distributed control systems use a variety

Figure 8. Potential entropy values of individual
signal processing methods.

of communication buses. This means that at the
lower levels of control, the necessary technical means
are used with the digital processing of information
from intelligent sensors, analyzers to PLC systems
and workstations. At this lower level, the current
state is characterized by the use of classic measure-
ment systems along with intelligent or smart elements
that are capable of cooperating through industrial
communications networks.
The described problem is so serious when imple-

menting new measurement systems or signal process-
ing that it deserves an increased attention.
Verification of the correctness and effectiveness of

the presented measuring systems was carried out in the
framework of research activities and problem-oriented
projects.
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