
1 Introduction
Efficient scheduling of computationally intensive

programs is one of the most essential and most difficult issues
to achieve high performance in a homogeneous computing
environment [1]. When the characteristics of an application
are known a priori, including tasks execution time, data size
of communication between tasks, and task dependencies, the
application is represented by a static model [2]. In the static
model, the application is represented by a directed acyclic
graph (DAG) in which the nodes represent the application
tasks and the edges represent intertask data dependencies.
Each node is labeled by the computation cost (expected
computation time) of the task and each edge is labeled by the
communication cost (expected communication time) between
tasks [3, 4, 5, 6, 7].

The objective of scheduling is to map the tasks onto
the processors (machines) and order their execution so the
that task dependencies are satisfied and minimum over-
all scheduling length (makespan) is achieved. Finding an
optimal solution for the scheduling problem is NP-complete
[3, 4, 5, 6, 7]. Therefore, it is necessary to have heuristics to
find the best scheduling rather than evaluate all possible
scheduling combinations.

Most scheduling heuristics algorithms are based on list-
-scheduling [2, 3, 4, 7]. List-scheduling consists of two phases:
a task prioritizing phase, where a priority is computed and
assigned to each node of the DAG, and a processor selection
phase, where each task (in order of its priority) is assigned
a processor that minimizes a suitable cost function. The
scheduling heuristic is called static if the processor selection
phase starts after completion of the task prioritizing phase
[2, 8] and it is called dynamic if the two phases are inter-
leaved [9, 10].

This paper presents the characteristics of the two main
static and the two main dynamic list-scheduling algorithms. It
also compares their performance over a 90K variant random
graph. The remainder of this paper is organized as follows.
The next section defines the static task-scheduling problem
and gives the background of the problem including some
definitions and parameters used in the algorithms. Section 3

presents a brief review of the examined algorithms. Section 4,
presents a performance comparison of the reviewed algo-
rithm. Section 5 provides the conclusion.

2 Task Scheduling Problem
This section presents the application model used for static

task scheduling and the homogeneous computing environ-
ments model that they will be used for the surveyed
algorithms. The application can be represented by a directed
acyclic graph G(V, E, C, W) where:

V is the set of v nodes, and each node v Vi � represents
an application task, which is a sequence of instructions
that must be executed serially on the same processor,

W is the set of computation costs, where w Wi � is the
execution time of task vi,

E is the set of communication edges. The directed edge
ei, j joins nodes vi and vj, where node vi is called the
parent node and node vj is called the child node. This
also implies that vj cannot start until vi finishes and
sends its data to vj.

C is the set of communication costs, and the edge ei, j has
a communication cost c Ci j, � .

A task without any parent is called an entry task and a task
without any child is called an exit task. If there is more than
one exit (entry) task, they may be connected to a zero-cost
pseudo exit (entry) task with zero-cost edges, which do not
affect the schedule.

The homogeneous computing environment model is a set
P of p identical processors connected in a fully connected
graph. It is also assumed that:
� any processor can execute the task and communicate with

other processors at the same time,
� once a processor has started task execution, it continues

without interruption, and on completing the execution it
sends immediately the output data to all children tasks in
parallel.
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The communication cost ci, j for transferring data from
task vi (scheduled on pm) to task vj (scheduled on pn), is defined
as:

c S Ri j i j, ,� � �� ,

where
S is the cost of starting communication between proces-

sors (in secs),
�i, j is the amount of data transmitted from task vi to task vj

(in bytes),
R is the cost of communication per transferred byte (in

sec/byte).

It is assumed that startup cost S is negligible and the
unit cost R is the same for any two processors, so that the
communication cost for any two tasks is a function of the
amount of transferred data only.

2.1 Basic Scheduling Attributes
The frequently used attributes for assigning priority in

list-scheduling are t � level (top level) and b � level (bottom
level). The t � level of node vi is the length of the longest path
from the entry node to vi (excluding vi). Here, the length of
the path is the sum of all nodes and edges weights along the
path. The t level vi� ( ) is computed recursively by traversing
the DAG downward starting from the entry node ventry as

follows:

� � � �	 
t level v t level v w ci
v pred v

m m m i
m i

� � � � �
�
max

( )
, ,

where pred(vi) is the set of immediate predecessors of vi and
t level ventry� �( ) 0.

The � �b level vi� of node vi is the length of the longest
path from vi to the exit node. The � �b level vi� is computed
recursively by traversing the DAG upward starting from the
exit node vexit as follows:

� � � �	 
b level v w b level v ci i
v succ v

m i m
m i

� � � � �
�
max

( )
, ,

where succ(vi) is the set of immediate successors of vi and
� � � �b level v w vexit exit� � .

If the edge weights are not taken into account in comput-
ing the b level� , the b level� in this case is called the static
b level� or simply the static level (SL). The SL can be computed
recursively by traversing the DAG upward starting from the
exit node vexit as follows:

� � � �	 
SL v w SL vi i
v succ v

m
m i

� �
�
max

( )
,

where succ(vi) is the set of immediate successors of vi and
� � � �SL v w vexit exit� .

Two other attributes are also used to assign priority to the
nodes: EST (Earliest Start Time), also called ASAP (As Soon As
Possible), and LST (Latest Start Time), also called ALAP (As
Late As Possible).

The EST(vi) of vi is highly correlated with the t level� of
vi and the procedure for computing the t level� can be used
to compute the nodes earliest start times. The EST can be
computed recursively by traversing the DAG downward start-
ing from the entry node vexit as follows:

� � � �	 
EST v EST v w ci
v pred v

m m m i
m i

� � �
�
max

( )
, ,

where pred vi( ) is the set of immediate predecessors of vi and
EST ventry( ) �0 .

The LST can be computed recursively by traversing the
DAG upward, starting from the exit node vexit, as follows:

� � � �	 
LST v LST v c wi
v succ v

m i m i
m i

� � �
�
min

( )
, ,

where succ(vi) is the set of immediate successors of vi and
LST v EST vexit exit( ) ( )� .

The critical path (CP) of a DAG is the longest path from
the entry node to the exit node. Clearly a DAG can have more
than one CP. Consider the DAG shown in Fig. 1, where each
node has two labels, the upper one is indicating the node la-
bel and the lower one is indicating the node weight. In this
DAG, the nodes v1, v2, v9, v10 are the CP nodes and are called
CPNs (Critical Path Nodes). The edges on the CP are shown
by thick arrows. The values of the priorities discussed above
are shown in Table 1.
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Fig. 1: Application directed acyclic graph (DAG)

Node SL t � level & EST b � level LST

1 80 0 104 0

2 60 28 76 28

3 50 24 60 44

4 55 22 65 39

5 45 28 61 43

6 40 24 52 52

7 30 52 32 72

8 35 52 39 65

9 40 56 48 56

10 20 84 20 84

Table 1: Priority attributes



3 List-Scheduling Algorithms
This section presents the two main static list-scheduling al-

gorithms and the two main dynamic list-scheduling
algorithms. All these algorithms are for a limited number of
homogeneous processors.

3.1 Static List-Scheduling Algorithms
This section briefly reviews the two main static list-sched-

uling algorithms, which are the Highest Level First with
Estimated Time (HLFET) algorithm [2] and the Modified
Critical Path (MCP) algorithm [8].

3.1.1 HLFET algorithm
The Highest Level First with Estimated Time (HLFET)

algorithms [2] is one of the simplest list-scheduling algo-
rithms and is described as follows in Fig. 2.

The complexity of the HLFET algorithm is O(pv2). For
the DAG shown in Fig. 1, the scheduling trace of HLFET al-
gorithm is given in Table 2. In the table, the execution start
times of each node on all available processors at each step are
given, and the nodes on the list are scheduled one by one, to
the processor that allows the earliest execution start time.

3.1.2 MCP Algorithm
The Modified Critical Path (MCP) algorithm [8] uses

the ALAP attribute (LST defined in section 2) of a node as
the scheduling priority. The MCP algorithm first computes
the ALAPs of all nodes, and then constructs a list of nodes
in ascending order of nodes ALAP. In the case of equiva-
lent ALAP values, the ALAPs of the children are taken into
consideration to break the tie. The MCP algorithm then
schedules the nodes on the list one by one such that a node is
scheduled to the processor that allows the earliest execution
start time. The MCP algorithm is shown in Fig. 3.

The complexity of the MCP algorithm is O(pv2). For the
DAG shown in Fig. 1, the scheduling trace of MCP algorithm
is given in Table 3.

3.2 Dynamic List-Scheduling Algorithms
This section briefly reviews the two main dynamic list-

-scheduling algorithms, which are the Earliest Time First
(ETF) algorithm [9] and the Dynamic Level Scheduling (DLS)
algorithm [10].
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1. Compute the SL (static level) for each node in the
graph

2. Put all nodes in a list L and sort L in a descending order
of nodes SL

3. while not the end L do
� dequeue vi from L
� compute earliest execution start time for vi in all

processors
� schedule vi to the processor that minimizes the

node earliest execution start time

Fig. 2: HLFET algorithm

Step Selected v p1 p2 p3 Selected p

1 1 0 0 0 p1

2 2 20 28 28 p1

3 4 40 22 22 p2

4 3 40 37 24 p3

5 5 40 37 44 p2

6 6 40 42 44 p1

7 9 50 48 50 p2

8 8 45 68 53 p1

9 7 60 68 44 p3

10 10 76 68 76 p2

Table 2: A scheduling trace of the HLFET algorithm
(makespan � 88)

1. Compute the ALAP (LST in section 2) for each node in
the graph

2. For each node, create a list, which consists of the ALAP
of the node itself and all its children

3. Sort these lists in an ascending order of nodes ALAP
4. Create a node list L sorted in ascending order of nodes

ALAP. Use nodes sorted lists (previous 2 steps) to break
a tie

5. while not the end L do
� dequeue vi from L
� compute earliest execution start time for vi in all

processors
� schedule vi to the processor that minimizes the

node earliest execution start time

Fig. 3: MCP algorithm

Step Selected v p1 p2 p3 Selected p

1 1 0 0 0 p1

2 2 20 28 28 p1

3 4 40 22 22 p2

4 5 40 37 28 p3

5 3 40 37 33 p3

6 6 40 37 53 p2

7 9 41 48 53 p1

8 8 61 44 53 p2

9 7 61 61 53 p3

10 10 65 69 69 p1

Table 3: A scheduling trace of the MCP algorithm
(makespan � 85)



3.2.1 ETF Algorithm
The Earliest Time First (ETF) algorithm [9] computes, at

each step, the earliest execution start time (EEST) for all
ready nodes and selects the one with the lowest value for
scheduling. The ready node is defined as the node having all
its parents scheduled. When two nodes have the same value of
EEST, the ETF algorithm breaks the tie by scheduling the one
with the higher static level. Fig. 4 shows the ETF algorithm.

The complexity of the ETF algorithm is O(pv3). For the
DAG shown in Fig. 1, the scheduling trace of ETF algorithm
is given in Table 4.

3.2.2 DLS Algorithm
The Dynamic Level Scheduling (DLS) algorithm [10] uses

an attribute called the dynamic level (DL), which is the dif-
ference between the static level of a node and its earliest
execution start time. In each scheduling step, the node-
processor pair that gives the largest value of DL is selected.
This mechanism is similar to the one used by the ETF algo-
rithm. However, there is one subtle difference between the
ETF and DLS: the ETF algorithm schedules the node with

the minimum earliest execution start time and uses the static
level merely to break ties. In contrast, the DLS algorithm
tends to schedule nodes in descending order of their static
levels at the beginning of the process, but tends to schedule
nodes in ascending order of EEST near the end of the pro-
cess. The DLS algorithm is shown in Fig. 5.

The complexity of the DLS algorithm is O(pv3). For the
DAG shown in Fig. 1, the s of DLS algorithm is exactly the
same as the scheduling trace of the the ETF algorithm as
shown in Table 4.

4 Experimental Results and
Discussion
This section presents a performance comparison of the

four algorithms given in section 3. For this purpose, we
used randomly generated task graphs and the following
comparison metrics are used.

4.1 Comparison Metrics
The comparisons of the algorithms are based on the

following metrics.

Makespan
The makespan is defined as the overall Completion time,

and can be specified as follows:
makespan FET vexit� ( ) ,

where FET vexit( ) is the finishing time of the scheduled exit
node.

Scheduling Length Ratio (SLR)
The main performance measure is the scheduling length

(makespan) of its output schedule. Since a large set of task
graphs with different properties is used, it is necessary to
normalize the schedule length to the lower bound, which is
called the Schedule Length Ratio (SLR). The SLR value of an
algorithm on a graph is defined as

SLR
makespan

wi

i CP

�

�

�
.

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 19

Acta Polytechnica Vol. 43  No. 6/2003

1. Compute the SL (static level) of each node in the graph
2. Initially, the ready nodes list includes only the entry

node
3. while the ready list is not empty do

� compute the earliest execution start time on each
processor for each node in the ready list

� select the node-processor pair that gives the ear-
liest execution start time. Ties are broken by
selecting the node with a higher SL

� schedule the node to the corresponding selected
processor

� add the newly ready nodes to the ready list

Fig. 4: ETF algorithm

Step Selected v p1 p2 p3 Selected p

1 1 0 0 0 p1

2 2 20 28 28 p1

3 4 40 22 22 p2

4 3 40 37 24 p3

5 5 40 37 44 p2

6 6 40 42 44 p1

7 7 52 52 44 p3

8 8 45 53 53 p1

9 9 50 48 50 p2

10 10 76 68 76 p2

Table 4: A scheduling trace of the ETF and DLS algorithms
(makespan � 88)

1. Compute the SL (static level) of each node in the graph
2. Initially, the ready nodes list includes only the entry

node
3. while the ready list is not empty do

� compute the earliest execution start time for
every ready node on each processor

� compute the DL of every node-processor pair by
subtracting the earliest execution start time from
the node’s static level (SL)

� select the node-processor pair that gives the
largest DL

� schedule the node to the corresponding selected
processor

� add the newly ready nodes to the ready list

Fig. 5: DLS algorithm



The denominator is the sum of the computation costs of
the tasks on a critical path (CP). The SLR of a graph (using
any algorithm) cannot be less than one, since the denomina-
tor is the lower bound. Average SLR values are used in our
experiments.

Speedup
The speedup value is computed by dividing the sequential

execution time (i.e., the cumulative computation costs of the
tasks) by the parallel execution time (i.e., the makespan of the
schedule).

Number of occurrences of better quality of schedules
The number of times that each algorithm produced a bet-

ter, worse, and equal quality of schedules compared to every
other algorithm is counted in the experiments.

4.2 Random Graph Generator
The random graph generator was implemented to gener-

ate weighted application DAGs with various characteristics
that depend on several input parameters. The generator
requires the following input parameters to build weighted
DAGs.

� number of tasks in a graph v,
� graph levels l,
� communication to computation ratio CCR, which is

defined as the ratio of the average communication
cost to the average computation cost.

In all experiments, graphs with a single entry and a single
exit node were considered. In each experiment, the values of
the previous parameters are selected from the corresponding
set given below.

	 
v

v l v

CCR

�

� �

�

20 30 40 50 60 70 80 90 100
02 08

05

, , , , , , , , ,
. . ,

. ,	 
10 20. , . .

These input parameters were used to generate 10k dif-
ferent DAGs with various characteristics for each v from the
used v set.

4.3 Performance Results
The performances of the algorithms were compared with

respect to different graph size. The experiments were re-
peated for each v from the v set given above. For each v, 10k
graph were generated using random selection for CCR and
levels (l) (given above) for each graph. The average SLR for
each v is given in Fig. 6. In general the performances of the
dynamic algorithms are better than those of the static ones.
The static algorithms have near equal performance while
the ETF algorithm is better than the DLS in the dynamic
algorithms.

The average speedup is given in Fig. 7. In general, the
speed up of the dynamic algorithms is better than the static
algorithms. The two dynamic algorithms have almost the
same performances, while HLFET is better than MCP.

Finally, the percentage of situations that each scheduling
algorithm in the experiments produced better (B), equal (E)
or worse (W) scheduling length compared to every other
algorithm was counted for 90k DAGs used. Each cell in Ta-
ble 5 indicates the comparison results of the algorithm on the
left with the algorithm at the top.

Table 5 indicates that the dynamic algorithms are bet-
ter than the static ones. As regards the static algorithms,
the HLFET algorithm is better than the MCP, while the DLS
algorithm is better than the ETF algorithm as regards the
dynamic algorithms.

We note that the algorithm complexity is an important
factor that has to be taken into account when comparing the
performance of different algorithms. As shown in Table 6, the
complexity of the dynamic algorithms is much higher than
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Fig. 6: Average SLR

Fig. 7: Average Speedup

HLFET MCP ETF DLS

B 49.15 % 37.75 % 22.62 %

HLFET E 12.47 % 22.37 % 42.17 %

W 38.39 % 39.89 % 35.22 %

B 38.39 % 40.84 % 36.41 %

MCP E 12.47 % 5.84 % 8.35 %

W 49.15 % 53.33 % 55.24 %

B 39.89 % 53.33 % 26.93 %

ETF E 22.37 % 5.84 % 39.53 %

W 37.75 % 40.84 % 33.54 %

B 35.22 % 55.24 % 33.54 %

DLS E 42.17 % 8.35 % 39.43 %

W 22.62 % 36.41 % 26.93 %

Table 5: Pair-Wise Comparison of the examined algorithms



that of static ones. This makes it unfair if the static algorithm
gives the same schedule length as the dynamic one, to con-
sider it as an equivalent trial. If we consider the equivalent
scheduling length of two algorithms as a better trial of the
lowest complexity algorithm, the better, equal, and worse
comparison between the examined algorithms will be as
shown in Table 7.

4.4. Ranking of Examined Algorithms
Based on the above comparison metrics and the average

results for 90k randomly generated DAGs, the ranking for the
examined algorithms was as follows:

average Makespan: DLS ETF HLFET MCP
average Speedup: DLS ETF HLFET MCP
average SLR: ETF DLS MCP HLFET
best results: DLS ETF MCP HLFET
complexity: HLFET & MCP DLS & ETF

5 Conclusion
In this paper we present a brief description of the charac-

teristics of the two most known static and also the two most
known dynamic list-scheduling algorithms. The perfor-

mances of these algorithms were examined using variant ran-
dom generated graphs. Six comparison matrices were used
to measure their performance. In general the dynamic
list-scheduling algorithms performed better than the static
list-scheduling algorithms. For the static list-scheduling algo-
rithms, the HLFET performed better than MCP and for
the dynamic list-scheduling algorithms, the DLS algorithm
performed better than the ETF algorithm. If the complexities
of the algorithms are taken into account, it is highly recom-
mended to use static list-scheduling.
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Algorithm Complexity

HLFET O pv( )2

MCP O pv( )2

ETF O pv( )3

DLS O pv( )3

Table 6: Algorithms complexity

HLFET MCP ETF DLS

B 49.15 % 60.12 % 64.79 %

HLFET E 12.47 %

W 38.39 % 39.89 % 35.22 %

B 38.39 % 46.68 % 44.76 %

MCP E 12.47 %

W 49.15 % 53.33 % 55.24 %

B 39.89 % 53.33 % 26.93 %

ETF E 39.53 %

W 60.12 % 46.68 % 33.54 %

B 35.22 % 55.24 % 33.54 %

DLS E 39.53 %

W 64.79 % 44.76 % 26.93 %

Table 7: Pair-Wise comparison of scheduling algorithms com-
plexity based


