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Abstract. The fabrication of Mg-Zn-Al Hydrotalcite (HT) was carried out by the co-precipitation
method at various molar ratios. The Mg-Zn-Al HT compound at the optimum molar ratio was then
calcined to determine the effect of calcination on the Pb2+ adsorption. The kinetics of the adsorption
type was determined by applying pseudo first order and pseudo second order kinetics models. Meanwhile,
to investigate the adsorption process, the Freundlich and Langmuir equations were applied to determine
the adsorption isotherm. The results showed that the optimum Mg-Zn-Al HT was at a molar ratio of
3 : 1 : 1 with an adsorption efficiency of 73.16%, while Mg-Zn-Al HT oxide increased the adsorption
efficiency to 98.12%. The optimum condition of Pb2+ removal using Mg-Zn-Al HT oxide was reached
at pH 5 and a contact time of 30minutes. The adsorption kinetics follows the pseudo second order
kinetics model with a rate constant of 0.544 g/mg·min. The isotherm adsorption follows the Langmuir
isotherm model with a maximum capacity of 3.916mg/g and adsorption energy of 28.756 kJ/mol.
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1. Introduction
Hydrotalcite compounds (HT), which are also known
as Layered Double Hydroxides (LDH) or anionic
clays, is are layered materials that have an anion
exchange capacity and a large surface area [1–4].
The HT compounds have a general formula: [M(II)1-
xM(III)x(OH)2]x+(An-)x/n. mH2O; in which, M(II)
is a divalent metal cation, and M(III) is a trivalent
metal cation. The An- is a balancing anion with x as
the molar ratio fraction and m as the number of water
molecules in the interlayer [1, 5]. The replacement of
several M(II) by M(III) cations in the HT structure
causes the hydroxide layer to be of an excess positive
charge. The excess positive charge is balanced by an
interlayer consisting of anions and water molecules
[6–8].

Some researchers applied the HT for a metal cation
adsorption including an adsorption of In3+ by Zn-Al
LDH [9], adsorption of Cr6+ using Mg-Al LDH, Ni-Al
LDH and Zn-Al LDH [10]. Adsorption of Cu2+ by
Ca-Al-Zn LDH oxide [11], and Pb2+ adsorption using
LDH Co-Mo [12]. The previous study shows that the
HT is a potential adsorbent for Pb2+, even though
the HTs also bear a positive charge on the hydroxide
layer. The positive charge on the surface of the HT
will interact with hydroxide ions in the solution that
forms metal hydroxide on the HT surface [9]. In
addition, a calcination treatment at 400-500 °C can
convert the HT to a metal oxide [13]. If the metal
oxide is dispersed into water, it will re-construct the

HT layered structure. This is named as the memory
effects. This unique character causes the HT to be
widely used as adsorbent, such as namely for heavy
metal pollutants [3, 5].

The heavy metal pollution is dangerous for the hu-
man health [14–16]. The Pb2+ ion is a kind of heavy
metals frequently found in liquid waste [3]. Due to
the negative impacts of lead, therefore, the presence
of lead in the environment must comply with regula-
tions. Several methods have been applied to reduce
the lead metal content from in a liquid waste, such
as precipitation method, ion exchange, electrolysis,
membrane filtration, and adsorption [17, 18]. The
adsorption method is considered, as the most effective
method due to lesser cost required. In addition, the
absorption capacity is higher, the process is simple,
and the efficiency is relatively high and does not pro-
vide have side effects in the form of toxic substances
[19]. Numerous adsorbents, for example, tourmaline,
biosorbent, montmorillonite, activated carbon, zeo-
lite, waste biomass, wheat straw, black phosphorous
nanosheet, and Sulfur-doped Graphitic Carbon Ni-
tride had been reported [20–28].

Therefore, the current study focused on a synthesis
of Mg-Zn-Al HT by a co-precipitation method and
their its possibility as an effective and economical
adsorbent for the Pb2+ ion removal. The variable
operating parameters such as the pH of a solution,
initial concentration of lead ions, and contact time
were examined. As the profile of adsorption equilib-
rium, was used the Langmuir and Freundlich isotherm
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was used. The adsorption behaviour occasionally was
occasionally studied by kinetics studies.

2. Material and methods
2.1. Materials
Some materials for the Mg-Zn-Al HT synthesis were
Mg(NO3)2.6H2O, Al(NO3)3.9H2O, Zn(NO3)2.4H2O,
K2CO3, KOH, HNO3 and Pb(NO3)2 standard solu-
tion. All chemical reagents are analytical grade and
were procured from Merck, Indonesia. All were used
without any further purification.

2.2. Procedure
2.2.1. Fabrication of Mg-Zn-Al HT

adsorbents
The Mg-Zn-Al HT was fabricated from
Mg(NO3)2.6H2O, Al(NO3)3.9H2O and
Zn(NO3)2.4H2O by the co-precipitation method in
an alkaline media at a constant pH [29]. The molar
ratios of Mg:Zn:Al were 4 : 0 : 1, 3 : 1 : 1, 2 : 2 : 1 and
1 : 3 : 1. Based on the molar ratio, all chemicals were
dissolved in 200mL of distilled water. The K2CO3
and KOH were then added until the pH reached 10.
The mixture was then distilled at 80 °C for 4 h. The
precipitate formed was washed with water until the
pH reached 7, and then it was dried at 100 °C for
24 h. The prepared powder was then heated at 450 °C
for 5 h to produce the oxide of Mg-Zn-Al-HT.

2.2.2. Batch adsorption experiments design
Batch adsorption experiments were performed in a
series of 250mL conical flask containing 25mL of
Pb(NO3)2 solution. This solution was prepared to
study the effect of the contact time (15, 30, 60, 90
and 120min); pH (3, 4, 5, and 6); and the initial Pb2+

concentration (10, 20, 30, 40 and 50 ppm) at 120 rpm.
After the adsorption had finished, the solution was
filtered and the filtrate was analysed by an atomic
absorption spectrophotometer (AAS). The Pb2+ ad-
sorption efficiency was calculated by the equation (1)
[20, 30, 31]:

Adsorption efficiency (%) =
{

C0 − Ce

C0

}
× 100 %

(1)
The C0 and Ce are the initial concentrations of

Pb2+ (mg/L) at t = 0 and the equilibrium concentra-
tion, respectively. The adsorption capacity (q) was
calculated by a mass balance equation of adsorbent
as depicted in equation:

q = (C0 − Ce)V
W

(2)

In which, V is the volume of the Pb2+ solution (L),
and W is the mass of the adsorbent (g).

Adsorbents optimization
The adsorbents optimization was carried out by 0.05 g
adsorbent with a various Mg:Zn:Al molar ratio of
4 : 0 : 1, 3 : 1 : 1, 2 : 2 : 1, and 1 : 3 : 1 with 10mL of
Pb2+ 5 ppm solution. The adsorption was performed
for 2 h at 120 rpm speed. The remaining Pb2+ was
analysed by AAS.

Adsorbents effectiveness test
0.05 g of the prepared Mg-Zn-Al-HT adsorbent was
added to 10mL of the Pb2+ 5 ppm solution. The
mixture was stirred with a rotary shaker for 2 h at
120 rpm. The remaining Pb2+ in the solution was
analysed by the AAS.

The effect of pH solution
The effect of the pH solution to the Pb2+ removal was
investigated by conducting an adsorption experiment
under various pH values of 3, 4, 5 and 6. A define
amount of adsorbent was mixed with a 5 ppm Pb2+

solution and then, it was agitated for 2 h at a room
temperature. The remaining Pb2+ in solution was
analysed by the AAS.

The effect of contact time
The adsorption process was conducted under various
contact times 15, 30, 60, 90, and 120min at the opti-
mum pH. The Pb2+ concentration was 5 ppm. There-
after, samples were filtered and the Pb2+ content in
the filtrate was determined using the AAS.

The effect of Pb2+ ion concentration
In order to investigate the effect of the Pb2+ con-
centration, an adsorption experiment was conducted
under the optimum pH for 120min. The experiment
used various Pb2+ initial concentrations, i.e., 5, 10,
20, 30, 40 and 50 ppm. The adsorption result was
then filtered and the Pb2+ content in the filtrate was
analysed by the AAS.

3. Results and discussion
3.1. Characterization of Mg-Zn-Al HT
3.1.1. XRD analysis
The identification of Mg-Zn-Al-HT product samples
was conducted by comparing 2 theta values from the
peaks of the synthesized compounds with a standards
of the Joint Committee on Powder Diffraction Stan-
dard (JCPDS). The JCPDS standards used are Mg-Al
hydrotalcite (JCPDS Number 89-0460) and Zn-Al hy-
drotalcite (JCPDS Number 38-0486). The diffraction
patterns are presented in Fig. 1.
According to Rodriguez-Chiang et al., 2016 [32];

Ghashghaee and Farzaneh (2018) [33], the main fea-
tures of the HT were 2 theta at 11, 23, 35, 39, 46, 61,
and 62 °. Based on the 2 theta value, the fabricated
Mg-Zn-Al-HT is in an agreement with Mg-Al-HT and
Zn-Al-HT as reported by Valente et al., 2010 [34],
and Elsayed et al., 2016 [2]. This proves that divalent
ions (Mg2+ and Zn2+) and trivalent (Al3+) are the
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Figure 1. Diffractogram of (a) JCPDS Mg-Al-HT(b) JCPDS Zn-Al-HT (c) Mg-Al-HT (d) Mg-Zn1-Al HT (e)
Mg-Zn2-Al HT (f) Mg-Zn3-Al HT.

constituent ions of Mg-Zn-Al-HT, which are bound in
the HT layer together with the hydroxyl groups. In
general, Mg-Zn-Al-HT is more likely to form a hydro-
talcite compound in which the divalent ions that play
a role are Mg2+ ions. However, Zn2+ ions are also
bound in the HT layer with the hydroxyl groups and
trivalent ions. This was proven by the appearance
of a peak that is similar to the peak of Zn-Al-HT.
The Mg2+ and Zn2+ ions, which are bound to the
HT layer, can undergo exchanges due to the similar
atomic radius difference. The dimensions of the Mg2+,
Zn2+, and Al3+ radii are 0.72Å, 0.74Å and 0.54Å,
respectively [5, 35]. According to Cavani et al., 1991
[1], divalent metal cations with radii between 0.3-0.9Å
and trivalent metal cations with radii of 0.5-0.8Å will
form a more regular octahedral coordination with the
hydroxyl groups.

3.1.2. FTIR analysis
Figure 2 shows four FTIR Mg-Zn-Al-HT spectrums
at various molar ratios.
Fig. 2 shows the absorption at wavenumbers be-

tween 3490-3457 cm−1. That was identified as the
absorption of O–H group (hydroxyl) stretching. The
O–H group in the absorption is possible to come
from a hydroxyl group that binds to M–OH or it
comes from H2O, which is bound to the interlayer
anion. The absorption in wavenumbers between 1642-
1506 cm−1 is the absorption of O–H groups bending
that are possibly water molecules in the interlayer [2–
5, 35, 36]. The FTIR spectra of Mg -Al-Zn-HT also
shows the absorption of wavenumbers in the area of
1384-1381 cm−1, which is a typical absorption of the C–
O group (carbonyl) of CO3

2− acting as an interlayer

balancing anion [2–5, 36]. The existence of divalent
and trivalent metals in the structure of Mg-Zn-Al-
HT can be seen with the appearance of the metal
absorption bound to oxygen (M–O) at wavenumbers
414-835 cm−1. Wavenumbers in the 783 cm−1 regions
are the absorption of Al–O and Zn–Al–O at the hydro-
talcite layer. In addition, the absorption at wavenum-
bers 670-620 cm−1 is the absorption of C=O from
carbonate vibrations, 590-560 cm−1 is the absorption
of M–O, M–O–M, and O–M–O. While the absorption
in wavenumbers 460-420 cm−1 is the absorption of
Mg–OH, Al–OH, Zn–OH at the hydrotalcite layer in
the octahedral coordination [5].

3.1.3. Mg-Zn-Al HT optimization
The effect of Zn2+ addition to the Pb2+ adsorption is
shown in Fig. 3.
In accordance with Fig. 3, it is known that the

addition of Zn2+ is directly proportional to the Pb2+

ions adsorption efficiency. The efficiency of the Pb2+

adsorption on Mg-Zn1-Al HT with a molar ratio of
3 : 1 : 1 is only 73.16%. However, the efficiency of
the Pb2+ adsorption to Mg-Zn-Al HT with a molar
ratio of 2 : 2 : 1 and 1 : 3 : 1 does not increase
significantly. The Mg-Zn2-Al HT adsorbent has an
adsorption efficiency of 75.48%, while the Mg-Zn3-Al
HT has an adsorption efficiency of 77.41%. Therefore,
for the optimization of the effect of adding Zn2+ on the
adsorbent, Mg-Zn-Al HT was chosen with a 3 : 1 : 1
molar ratio. Even with a small Zn2+ molar ratio,
it has been able to increase the adsorption ability
almost equal the addition of a larger number of moles.
The increase of Zn2+ addition causes the surface of
Mg-Zn-Al HT become more positively charged and
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Figure 2. FTIR spectra of (a) Mg-Al-HT, (b) Mg-Al-Zn1-HT, (c) Mg-Al-Zn2-HT, (d) Mg-Al-Zn3-HT.

Figure 3. The effect of Zn2+ addition on the structure
of Mg-Al HT on Pb2+ metal ions adsorption.

it will attract more hydroxide ions. Along with this,
the hydroxide ion will attract Pb2+ which will form
Pb(OH)2.

3.1.4. Characterization of metal oxide
formation from Mg-Zn-Al HT

The adsorbent of Mg-Zn-Al HT and its oxides were
characterized by the XRD to determine the effect
of calcination on the formation of Mg-Zn-Al HT ox-
ide. The XRD diffractogram of Mg-Zn-Al HT and its
oxides is shown in Fig. 4.

It can be seen, in Fig. 4, that the calcination causes
the intensity of the HT peak to decrease and also
forms a new peak, namely MgO (JCPDS No.78-0430)
and ZnO (JCPDS No.89-1397). The calcination treat-

ment at 450 °C causes a loss of water molecules and
carbonate ions in the interlayer due to the damage
of Mg-Zn-Al HT structure. The FTIR spectrum of
Mg-Zn-Al HT and Mg-Zn-Al HT oxides are shown in
Fig. 5.
Based on Fig. 5, it can be seen that there is an

absorption at the wavenumber 3525-3490 cm−1 which
is identified as the absorption of O – H group stretch.
The stretched O – H group is probably coming from
hydroxyl groups, which bind to divalent and trivalent
cation metals in the layer or can also be possible from
H2O present in the interlayer [2, 5]. The absorption
in the wavenumber 1607-1527 cm−1 is the absorption
of the O – H group bending of water molecules in the
interlayer. A typical absorption of the C – O group
(carbonyl) of CO2−

3 , which is the interlayer balanc-
ing anion, is shown by the absorption at wavenum-
bers 1384-1381 cm−1. The absorption of C=O from
carbonate vibrations is shown by the absorption at
wavenumbers 648-636 cm−1. Absorption at wavenum-
bers 460-420 cm−1 is the absorption of Mg-OH, Al–
OH, Zn–OH at the hydrotalcite layer in the octahedral
coordination [5].

3.2. Effectiveness test of Mg-Zn-Al HT
and its oxide to Pb2+ adsorption

The test results of the adsorption effectiveness of Mg-
Zn-Al HT and its oxidized form for Pb2+ removal are
shown in Fig. 6.
As seen in Fig. 6, it appears that the adsorption

ability of Mg-Zn-Al HT oxide on Pb2+ metal is higher
than that of Mg-Zn-Al HT. The high adsorption ability
of Mg-Zn-Al HT oxide due to the calcination treat-
ment could disperse the metal cations in the layer

263



E. Heraldy, F. Rahmawati , D. Ardiyanti, I. Nurmawanti Acta Polytechnica

Figure 4. The diffractogram of (a) JCPDS Mg-Al HT (b) JCPDS Zn-Al HT (c) JCPDS MgO (d) JCPDS ZnO (e)
Mg-Zn-Al HT and (f) Mg-Zn-Al HT oxide.

Figure 5. The FTIR spectrum of (a) Mg-Zn-Al HT and (b) Mg-Zn-Al HT oxide.
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Figure 6. Adsorption efficiency of Mg-Zn1-Al HT
and Mg-Zn1-Al HT oxide to Pb2+ metal ion.

Figure 7. Effect of pH on Pb2+ metal adsorption
efficiency.

homogeneously. As a result, the O – H group on
the layer is evenly distributed on the entire surface
of the Mg-Zn-Al oxide, which can then precipitate
Pb2+ more effectively on the surface of the layer as
Pb(OH)2. In addition, the structure regeneration of
Mg-Zn-Al HT when dispersed into the water-known
as the ‘memory effect’ tends to attract hydroxide ions
on the surface of the positively charged Mg-Zn-Al HT
layer so that it can precipitate metal on the surface
of Mg-Zn-Al HT [2, 11].

3.3. Adsorption studies of Pb2+ using
Mg-Zn-Al HT oxide

3.3.1. Optimum pH determination of
Pb(NO3)2 solution

The pH variations were 3, 4, 5, and 6. The effect of the
pH variation on the Pb2+ ions adsorption efficiency
is shown in Fig 7.

According to Fig. 7, it can be seen that the optimum
pH condition is achieved at pH 5. Similar results have
been reported in previous studies by Yang et al., 2016
[3] that determined the optimum pH of Pb(NO3)2 to

Figure 8. Effect of contact time on Pb2+ metal
adsorption efficiency.

Figure 9. Effect of initial concentration on Pb2+

metal adsorption on (a) adsorption efficiency and (b)
adsorption capacity.

be at pH 5. The adsorption efficiency of Pb2+ ion
at pH 5 is 92.23% with an adsorption capacity of
0.81mg/g. At pH 3, the adsorption efficiency only
reached 10.83% and at pH above 5, the adsorption
efficiency decreases.

3.3.2. Effect of contact time
The profile of the contact time variation effect to the
Pb2+ adsorption efficiency is illustrated as shown in
Fig. 8.
Under certain conditions, based on Fig. 8, the ad-

sorption percentage decreases and then becomes con-
stant. The optimum contact time is 30minutes with
an adsorption efficiency of 93.88% and an adsorption
capacity of 0.86mg/g.

3.3.3. Effect of initial concentration
The effect of the initial concentration on the Pb2+

adsorption was carried out at concentrations of 5, 10,
20, 30, 40, and 50 ppm. The profile of the effect of the
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initial concentration on the efficiency and adsorption
capacity is presented in Fig. 9.
It is known that the initial concentration of

Pb(NO3)2 solution is inversely proportional to the
adsorption ability. Fig. 9(a) shows that the decrease
in adsorption efficiency occurs as the initial concen-
tration of Pb2+ increases. According to Elsayed et al.,
2016 [2], the decreasing of the adsorption efficiency
occurs at higher concentrations; the amount of Pb2+

ions in solution is not proportional to the number
of available adsorbent particles. Hence, the surface
of the adsorbent will reach a saturation point and
then the adsorption efficiency will decrease. While
Figure 9(b) shows that the increasing of the adsorbed-
Pb2+ per gram adsorbent is proportional to the initial
concentration of Pb2+ solution. When the adsorbate
concentration increases, more molecules are adsorbed
per unit surface area of the adsorbent. The increasing
concentration of Pb2+ will give the thrust of Pb2+

ions to be adsorbed in the adsorbent pores [37].

3.3.4. Characterization of Mg-Zn-Al HT
oxide adsorbent after Pb2+ adsorption

The characterization of the Mg-Zn-Al HT oxide adsor-
bent after the Pb2+ adsorption process was conducted
with the FTIR and XRD. The functional group of
Mg-Zn-Al HT oxide adsorbent before and after the
Pb2+adsorption are shown in Fig. 10.
Figure 10 shows an absorption of O – H group

stretching at a wavenumber of 3525 cm−1, in the Mg-
Zn-Al HT before the adsorption. The similar peak
appears at 3480 cm−1 in the Mg-Zn-Al HT after the
adsorption. Meanwhile, the absorption of O – H
groups bending from H2O molecules in the interlayer
before adsorption at wavenumbers of 1527 cm−1 and
after the adsorption at 1575 cm−1. The typical ab-
sorption of the C – O group (carbonyl) of CO3

2− that
is the interlayer balancing anion before the adsorption
is shown at 1381 cm−1 and after the adsorption, it is
shown at 1379 cm−1. The absorption of C=O from
carbonate vibrations is shown by absorption at 636-
610 cm−1. Absorption at 460-420 cm−1 is the absorp-
tion of Mg-OH, Al–OH, Zn–OH on the hydrotalcite
layer in octahedral coordination [5].
The diffractogram of Mg-Zn-Al HT oxide before

and after the adsorption is shown in Fig. 11.
Based on Fig. 11, it can be seen that the peak of

metal oxides, such as MgO and ZnO, formed by the
calcination treatment is not formed again after the
adsorption process. The intensity of typical HT peaks
also increases after the adsorption process due to the
nature of the memory effect on the HT. The structure
reverts back to the initial Mg-Zn-Al HT structure
after being dispersed in a solution.
The elemental composition of Mg-Zn-Al HT oxide

adsorbent before and after the adsorption of Pb2+

ions was analysed by Scanning Electron Microscopy-
Energy Dispersive X-Ray (SEM-EDX). Each element’s

percentage in the Mg-Zn-Al HT oxide is presented in
Table 1.

According to the data in Table 1, it can be seen
that Pb is present in the Mg-Zn-Al HT oxide after
the adsorption. It proves that the Pb2+ ions were
adsorbed onto it. The morphology of Mg-Zn-Al HT
oxide adsorbent before and after the Pb2+ adsorption
process was characterized by the SEM, and the result
is depicted in Fig. 12.
Figure 12(a) shows that on the surface of the Mg-

Zn-Al HT oxide adsorbent, there are hollow holes with
different shapes and sizes, while Fig. 12(b) indicates
the adsorbent surface tends to be coarser with more
closed holes. The closed-holes indicate that the holes
were filled with the Pb2+ adsorbed on the surface of
Mg-Zn-Al HT oxide during the adsorption. Similar
result had been reported by Mostafa et al., 2016 [12]
in his study using Co-Mo hydrotalcite adsorbents.

3.4. Determination of adsorption
kinetics

The kinetic models used in this study are a pseudo
first order (3) and pseudo second order (4) kinetics
models [3].

log(qe − qt) = log qe − k1

2.303 t (3)

where qe is the quantity of the solute adsorbed at an
equilibrium per weight unit of adsorbent (mg/g), qt is
the quantity of the solute adsorbed at any time (mg/g),
and k1 is the sorption constant. For the pseudo-second-
order model, the kinetic data were examined using a
formula shown below:

1
qt

= 1
k2q2

e

+ 1
qt

(4)

where k2 (g/(mg·min)) is the pseudo-second-order
rate constant; t (min) is the sorption time; qe (mg/g)
is the equilibrium Pb2+ adsorption capacity of the
adsorbent, and qt (mg/g) is the sorption capacity at
a time t.

Figure 13 shows the kinetic curve of the Mg-Zn1-Al
HT oxide adsorption on Pb2+ metal. A comparison of
adsorption kinetics parameters is presented in Table 2.
Based on the adsorption kinetics parameter data

presented in Table 2, it can be seen that the adsorption
of Pb2+ using Mg-Zn-Al HT oxide tends to follow the
pseudo second order equation. It is proved by the
R2 value for the pseudo second order, which is closer
to one. The pseudo second order adsorption kinetics
indicate that the adsorption occurs chemically. A
research conducted on Pb2+ adsorption using the HT
tends to follow a pseudo second order as in the study
of Mostafa et al., 2016 [12] using Co-Mo HT and Yang
et al., 2016 [3] using modified Mg-Al HT palygorskite.

3.5. Determination of adsorption
isotherm

The type of the adsorption is obtained by plotting
the adsorption data based on the Langmuir and Fre-
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Figure 10. The functional group of Mg-Zn-Al HT oxide adsorbent (a) before and (b) after adsorption.

Figure 11. Diffractogram of (a) JCPDS Mg-Al HT (b) JCPDS Zn-Al HT (c) JCPDS MgO (d) JCPDS ZnO (e)
Mg-Zn-Al HT oxide before adsorption and (f) Mg-Zn-Al HT oxide after adsorption.

Adsorption
process

Element (%)
C O Mg Al Zn Pb

Before - 34.50 27.36 11.10 27.04 -
After 37.11 24.74 16.27 10.00 20.60 1.27

Table 1. The EDX result of Mg-Zn-Al HT before and after adsorption.
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(a). (b).

Figure 12. Morphology of Mg-Zn-Al HT (a) before and (b) after adsorption.
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Figure 13. Adsorption kinetics curve of (a) pseudo first order and (b) pseudo second order.

Pseudo-first-order | Pseudo-double-order
k1 (1/min) qe (mg/g) R2 k2 (g/mg·min) qe (mg/g) R2

0.0084 0.134 0.405 0.544 0.809 0.988

Table 2. Pseudo-first and pseudo-second-order models for the sorption of Pb2+ ions onto Mg-Zn-Al HT oxide.

Freundlich | Langmuir
KF (mg/g) n R2 KL (L/mmol) Ea (kJ/mol) R2 Qm (mg/g)

0.044 2.711 0.735 90.644 28.756 0.876 3.916

Table 3. Adsorption isotherm parameters for sorption of Pb2+ ions onto Mg-Zn-Al HT oxide.

Adsorbent Adsorption capacity
of Pb2+ (mg/g) References

Cedar leaf ash 8.000 Hafshejani et al. [38]
Expanded perlite (EP) 13.390 Sari et al. [18]
Almond shells 4.500 Brudey et al. [39]
ZnO nanoparticles 6.700 Ma et al. [40]
Mg-Zn-Al HT 3.916 Present study

Table 4. The comparison of Pb2+ adsorption capacity on some adsorbent.
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Figure 14. Adsorption isotherm curve of (a) Freundlich and (b) Langmuir.

undlich isotherm adsorption. The results are shown
in Fig. 14. Meanwhile, the isotherm parameters are
listed in Table 3.
Table 3 shows that the Pb2+ adsorption tends to

follows the Langmuir isotherm with an adsorption
capacity of 3.916mg/g, the R2 value is close to one.
It indicates that the Pb2+ adsorption occurs due to
a chemical bonding between the Pb2+ and hydroxide
groups located on the surface of the Mg-Zn-Al HT
oxide layer. The Langmuir isotherm model implies a
homogeneous distribution of a single layer adsorbed-
molecules on the surface of the adsorbent. It is possi-
bly caused by each hydroxide group as the active side
on the surface of Mg-Zn-Al HT only adsorbing one
Pb2+ ion.
Table 4 portrays other adsorbents used for a Pb2+

removal from aqueous solutions. These results indicate
that the studied adsorbent is not appropriate for a
Pb2+ removal from an aqueous solution without any
modifications.

4. Conclusion
The molar ratio variation of Mg-Zn-Al HT increases
the positive charge of Mg-Zn-Al HT. The calcination
also increase the adsorption effectivity of Pb2+. The
adsorption, whether to Mg-Zn-Al HT or Mg-Zn-Al HT
oxide, follows a pseudo-second-order kinetics model.
While the isotherm follows the Langmuir model with
a maximum adsorption capacity of 3.916mg/g at pH 5
and the optimum contact time is 30min at a room
temperature.
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