
1 Introduction
With ever increasing fault current levels in today’s inter-

connected power systems it is necessary to ensure very low
grounding resistance of transformer stations. In order to get
the best techno-economic solution in the design of grounding
systems for given safety criteria (IEEE, IEC, or some other
National standard) only computer-aided design can give an
optimal and fast solution of the given task. Low grounding
resistance and acceptable distribution of touch and step volt-
ages (as uniform as possible) for a high fault current level can

be simultaneously achieved only by using a grid-grounding
system.

The task for designers of grounding systems is to arrange
a buried metallic conductor with adequate equivalent radii to
achieve the safety criteria. The safety criteria in this paper are
based on IEEE Std. 80, 188 editions and IEC 479-1, 1984 and
some Croatian safety requirements. Another task is to check
some existing grounding grids for an increased fault current
level, i.e., to determine the fault current level which satisfies
the safety criteria. A typical grounding grid is designed and
simulated using the HIFREQ module. A design problem is
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Fig. 1: Simplified geometrical model of a transformer station grounding system and the conducting part



described and verified for several (110/35/10 kV) transformer
substations: “TS Našice”, “TS Osijek”, and “TS Valpovo”.
These transformer substations are in the eastern part of the
Croatian power system. Due to their operational time, TS are
exposed to potential fault conditions. In this sample case a
single line to ground fault is relevant for the grounding de-
sign. According to the technical specifications, single line to
ground fault currents entering the grounding system of these
transformer substations are in the order of 6 to 10 kA. The
analysed grounding system consists of a 110×80 m ground-
ing grid with 20–30 additional grounding rods of 3 m length.
When this happens, the potentials on the surfaces inside the
TS and nearby are on a much higher level than the reference
point away from TS.

2 Mathematical expression of the
electromagnetic field
The conductor network is subdivided into small segments.

This allows the thin-wire approximation to be used, which in
turn enables us to use linear current sources. The method
used to obtain the scalar potential and the electromagnetic
field in the frequency domain is described by using the follow-
ing 3 equations. Maxwell’s equations can be used to describe
electric field E and magnetic field H in terms of scalar � and
vector potential A:
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where: � complex conductivity of the medium,

� permeability of the medium,

� conductivity of the medium,

� permittivity of the medium.

3 Example of transformer station
grounding design
Through there is no conventional rule in designing trans-

former station grounding, some guidelines can be suggested
on the basis of this example using CDEGS, as follows. The
first step in the design of transformer station grounding is to
determine appropriate soil model, for predicting the effect
of the underlying soil characteristics on the performance of

the grounding system. From the resistivity measurement data
obtained using arbitrarily spaced 4-electrode configuration
methods (including Wenner or Schlumberger methods), the
RESAP module determines the equivalent soil layers. The
earth layers may be vertical or horizontal (a one-layer, a
two-layer or a multi-layer soil model). In this study, soil resis-
tivity is measured by a 4-point measurement (Schlumberger
method). The influence of seasonal variations in the last
several years on soil resistivity is estimated indirectly using sta-
tistical data collected in the course of preventive measure-
ments of the grounding impedance by a local utility. Accord-
ing to this simplified method, 100 �m soil resistivitiy can be
assumed as the worst soil top layer resistivity. The RESAP
program interprets the measured apparent earth resistivity
(or resistance) data to determine the equivalent earth struc-
ture model that is necessary for analysing the grounding
systems. The measured soil resistivity data is shown in Table 1.

Measured data entered in the RESAP (computations) win-
dow is shown in Fig 2. The 4-point Schlumberger measure-
ment method with necessary data for calculating soil resistiv-
ity is also presented. The RESAP module calculates the resis-
tivity using the following generalised equation:
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where: Se1 distance between current C1 and potential P1
electrodes,

Se2 distance between current C2 and potential P2
electrodes,

Si distance between potential electrodes,

� resistivity of soil,

R measurement of soil resistance.

The apparent soil resistivity in an �m (versus inter-elec-
trode spacing in m) relevant in this study is shown in Fig. 3.
According to Fig 3., after 2 m below the surface the apparent
resistivity becomes practically constant. Fig. 3. represents one
measurement series, which cannot represent the resistivity
during seasons. It is useful to remember that current depth
penetration in soil depends on current electrode spacing. It is
therefore useful to perform some additional measurements
with a very close inter-electrode to get a better interpolation
of the soil layer just below the surface, since the apparent re-
sistivity has changed rapidly in one layer.

The computed soil resistivity and layer thickness for a
2-layer soil model are given by the text report, and are shown
below in the computer generated report.
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Measurement number 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Distance between electrode [m]
Se 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.75 5.75

Si 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Measured resistance [�] R 42.200 6.130 2.530 1.372 0.906 0.604 0.446 0.338 0.214 0.148

Table 1: Measurement data



R E S I S T I V I T Y
(SYSTEM INFORMATION SUMMARY)

System of Units: Meters
Soil Type Selected: Multi-Layer Horizontal
RMS error between measured and calculated: 2.08052 %

resistivities

Soil layer resistivity calculated by RESAP is the initial data
for a further study. From the computer generated report for
soil resistivity, a two-layer soil model is made, which gives sat-
isfactory solutions in most cases including this study. The data
entered in the second module HIFREQ is shown in Fig. 4.
Data for relative permeability and permittivity is irrelevant in
this study.

The grounding system described in this study consists of a
110×80 m grounding grid plus an additional ring 5m away
from the grid. The grounding system is buried 0.8 meters be-
low the transformer station surface. The ground fault current
in this study is assumed to be 7 kA. The grounding grid con-
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Fig. 2: RESAP (computations) window with measurement data relevant in this study

Fig. 3: Apparent soil resistivity versus inter-electrode spacing

Layer
Number

Resistivity
(� m)

Thickness
(m)

Coefficient
(p.u.)

Contrast
Ratio

1 infinite infinite 0.0 1.0

2 78.17224 0.2106636 �1.0000 0.78172E�18

3 33.55941 infinite �0.39929 0.42930

Fig. 4: A HIFREQ (Soil type) window is used to specify the type
of soil



sists of rectangular cross section Fe/Zn conductors (30×4 mm)
with an equivalent radius equal to 10.83 mm. A geometrical
position of the grounding grid is shown in Fig 5.

This first iteration is without additional rods, e.g., the
grounding could consist of the grounding grid, with rods and
an additional ring around it at the same depth. Division of the
grid into smaller windows is not appropriate in the first
design iteration. The result of simulation is presented in the
following figures. First, a 3D plot of scalar potential at the
surface of TS is shown in Fig. 6. The scalar potential peaks
correspond to the nodes of the grid, e.g., the valleys corre-
spond to the centre of the windows in the grid (see Fig. 6).
This 3D view is useful in visualisation of the scalar potential

shape. This shape should look as uniform as possible. Fig. 7
shows the reach touch voltages in 3D view with references to
the worst system grounding potential rise (GPR). Fig. 7 shows
that the reach touch voltages are worst in the corners of TS,
and additional measures must be taken to decrease these volt-
ages below safety limits.

Since a 3D plot loses some detailed information about
scalar potential or step/touch voltages, an additional investi-
gation must be made for suspicious areas or profiles. An addi-
tional inspection can be made in a 2D view for arbitrary pro-
files (see Fig. 8). Reach touch voltages for the worst system
GPR at the surface of TS, for three profiles with numbers 1, 3
and 100, are shown in Fig. 8.
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Fig. 5: Geometry of the grounding grid with data relevant in this study

Fig. 6: Scalar potential at the surface of TS



A similar investigation can be made in a 2D view, as shown
in Fig. 9. These 2D contour views show lines of the same reach
touch voltages with the superposed grid.

The safety limits for step and touch voltages are generated
by CDEGS according to user defined standards. Several dif-
ferent standards can be chosen ( IEEE, IEC or some national
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Fig. 7: Reach touch voltages in 3D plot, corresponding to the worst system GPR

Profile

Number 1.

Profile

Number 3.

Profile

Number 100.

Fig. 8: Reach touch voltages/worst system GPR
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Fig. 9: Reach touch voltages/ worst system GPR contour plot

Fig. 10: Reach step voltages/ worst system GPR contour plot



standard). In this study the fibrillation current is calculated
according to the C1-IEC standard and body resistance for
95 % population, see Fig. 11. If crushed rock is used to im-
prove the safety limits for step and touch voltage, it can be
included and entered in the window.

4 Conclusion
Manual calculation of the equivalent resistance of com-

posite grounding can lead to incorrect results if the mirroring
effect is not taken into account. Because of the large geo-
metric structure of a grid, all additional metallic conductors
such as rods, rings and another additional structures can
influence each other. This gives advantages to computer
design, especially to specialised programs that take into ac-
count all physical phenomena. Since TS is a restricted area for
non-operating personnel (civilian personnel), it is protected
by a metallic fence. Attention must be taken to prevent the rise
in the potential of fence due to fault conditions in TS. Fatal ac-
cidents caused by dangerous touch voltages when someone
touches the fence can be avoided by placing an additional
buried ring conductor outside TS, one meter away from the
fence, which is in galvanic contact with the main grounding
but not with the fence. This additional ring is added in this

study. The main purpose of this additional ring conductor is
to shape the electric potential at the surface around the fence.
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Fig. 11: Window for Safety assessment limits with data relevant in this study

Fig. 12: Computed safety Step and Touch Voltage for an addi-
tional layer (rocks) at the surface of TS
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