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ABSTRACT. This paper deals with a logarithmic and a linear chirp sine generation on a fixed-point
FPGA mainly for vibration testing, nevertheless, the generator can also be used in other areas. A basic
overview of the logarithmic chirp sine signal is provided. Then, methods of software signal generation
as well as different hardware platforms are briefly described and their pros and cons are mentioned. A
DDS generator on FPGA needs the phase difference between samples as an input. This generation for
the logarithm chirp sine signal is presented, and its resolution, errors and limitations on fixed-point
arithmetic are revealed. Our implementation runs on Compact RIO 9067, uses 32-bit fixed-point and is
able to generate linear and logarithm chirp signals from 10 Hz to 7 kHz with a minimum chirp speed of
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1 oct/min.
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1. INTRODUCTION

Sinusoidal signals and their variations are, due to
their properties, commonly used in engineering [1].
Their usage varies from basic, such as an impedance
measurement, a system identification and a vibration
analysis, to more sophisticated ones, such as a motor
control, a nuclear magnetic resonance or an electron
paramagnetic resonance.

Sometimes, a chirp sine signal (CS), sinusoidal sig-
nal with a continuous frequency change, is used. The
most common frequency changes are linear or log-
arithmic, however, the change can be described by
other means. In some applications, for instance the
impedance measurement, the knowledge of the ac-
tual chirp sine frequency is essential, whereas other
application do not require it. Furthermore, in dwell vi-
bration testing [2], it is sometimes necessary to change
the chirp speed in dependence on the previous state,
therefore, a small delay is necessary. The change of
the chirp speed or the transition between the chirp
sine and sine has to be done with a minimal phase
noise.

Nowadays, linear and logarithmic chirp sine signals
can be generated very easily using, for example, a
direct digital synthesis, a voltage controlled oscillator,
a look-up table or a phase generation [I} 3, 4]. How-
ever, these methods do not allow a fast change of a
chirp speed together with the knowledge of the actual
frequency at the same time.

This can be done by a software generator based,
for instance, on a direct digital synthesis. However, a
point-to-point generation, which allows a fast response
time, needs fast computation. Furthermore, the algo-
rithm is relatively simple, without many branches and
conditions, therefore, it is more suitable for FPGAs
than processors.
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To allow the fast response time, a point-to-point
generation is crucial, for this type of generation the
FPGA is more convenient than processors. FPGAs
are becoming more and more popular because they
allow true parallelism and the computation power is
also sufficient [5].

Unfortunately, most of this power is available on a
fixed-point arithmetic, however, modern FPGAs also
contain some floating-point cores. Therefore, these
cores should be used wisely for precise computation.
For this reason, we have decided to use the fixed-point
arithmetic for the generator.

LabVIEW 2018 was selected as the platform for
programming and the generator is executed on Com-
pactRIO 9067, which contains Zynq xc7z020 equipped
with ARM cortex-A9 processor and a medium-sized
FPGA.

CompactRIO is a real-time embedded industrial
controller, which allows precision timing, such as
STC3, or TSN. Furthermore, it is compatible with
more than 100 different I/O types varying from in-
dustrial communication, via digital and analog signal
input/output, to specific sensor conditioning, for in-
stance, charge output, IEPE, thermocouple, bridge,
etc. This makes the Compact RIO a versatile tool
for various applications [6]. This combination of com-
putation power and various peripherals makes the
platform ideal for development and fast prototyping
as well as advanced control and monitoring.

2. CHIRP SINE SIGNAL

Chirp sine signal is a sine signal, whose frequency is
changing with time. Linear chirp sine signal is used,
for example, in radars. Specifically, a Frequency-
Modulated Continuous-Wave (FMCW) with frequen-
cies as high as possible is used because the higher
frequencies, the better resolution. For this reason, the
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FMCW signal for radars is often generated using the
FPGA and the maximal frequency of the signal is tens
of GHz [7]. The generation is explained in [8], [].

Some other papers focus on FPGA versatile chirp
and sine signal generators [8, [I0], nevertheless the
chirp signal is also only linear.

For this reason, this paper focuses on generation of
logarithmic chirp sine.

The speed of the LCS is defined by a constant,
which can be either (dec/s) or (oct/sﬂ Because the
sweep speed is usually low, the chirp constants are
often defined in different time units, such as (min=!)
or even (hour™!).

The chirp speed can also be defined by a start and
a stop frequency and a duration of the sweep. From
these, the speed of the logarithmic chirp signal can
easily be calculated (eq. and vice versa. In this
paper, everything is demonstrated, for simplicity, on
the same LCS signal with parameters fsior = 10 Hz,
fstop = 100 Hz, k = 0.1 dec/s, so the duration is

t =10 s.
logio (;Swp )
k _ - start (1)

where k (dec/s) is the chirp speed constant, fsiop (H2)
is the stop frequency, fstart (H2) is the start frequency
and t (s) is the sweep duration.

3. FPGA SINE GENERATORS

There are several FPGA sine generators, some are
described in the literature [8, @, 11, 12] and some
are commercially available, for instance, the NCO
IP Core [13] from Intel (former Altera), or DDS [I14]
from Xilinx. Some of them put an emphasis on the
generation speed or maximal frequency of the gen-
erated signal, whereas other on spectral purity and
maximal resolution. Nevertheless, all generators use
the phase difference between samples as an input, as
shown on block diagram (fig. . Determining the
phase difference for sine signal is easy, nevertheless,
in the case of sweep sine signals, the phase difference
changes for every sample. Moreover, the accuracy of
the phase difference defines the quality of the sweep
signal.

Some FPGA sine generator implementations [, [9]
use a look-up table as a source of the phase difference.
Other implementations [IT] [I2] generate the phase for
the linear chirp signal via integration. Nevertheless,
neither of these methods can be effectively used for
the logarithm chirp sine signal, as the phase difference
changes non-linearly in dependence of the chirp speed
and frequency range.

The calculation of the phase difference for the loga-
rithm sweep signal as well as its errors and limitations
caused by the fixed-point arithmetic is the aim of this
paper. To generate an actual signal, a simple sine

11 dec/s =log, 10 oct/s = 3,32 oct/s
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FI1GURE 1. Principle of sine generation on FPGA of
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FIGURE 2. Principle of logarithm chirp sine generation
on FPGA.

generator was created, however, it can be replaced by,
for instance, some of the aforementioned solution.

4. FPGA CHIRP SIGNAL GENERATION

To achieve a point-to-point generation of a phase, it
is necessary to integrate an angular velocity, which
is the same, except the constant 27w, as a frequency.
Consequently, it is more convenient to integrate fre-
quencies, because the information about the actual
frequency can be useful. Moreover, this way allows
easier phase-wrapping to achieve the best available
phase resolution as shown in (sec. .

The actual frequency of each sample can be cal-
culated (eq. by a multiplication of the previous
frequency. In the case of the linear sweep, there is
a simple addition of a frequency difference Af and
in the case of a pure sine signal, the frequency re-
mains the same. This is the only variation of signal
generation in our method. The block diagram of the
generator is shown in figure (fig. [2)).

f(n) = f(n—1)-10% (2)

where f(n) and f(n — 1) are actual and previous
frequencies (note that f(0) is a start frequency), k is
a chirp speed constant in (dec/s) and f, is a sampling
frequency.

The point-to-point phase generation from a known
frequency can be done either by a numerical integra-
tion or by an integration from the analytical prescrip-
tion.

4.1. NUMERICAL INTEGRATION

The trapezoidal method appears convenient for a nu-
merical integration, because this method needs only
the current and the previously calculated frequency.
Equation shows the calculation. Exactly the same
calculation can be used for the linear chirp sine and
pure sine signals as well. However, this integration
method generates an error, which is visualized on
(fig. , where it is visible that for shorter durations,
the error fades into insignificance compared with f.e.
the DAC quantization error or noise.
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FIGURE 3. A phase error between the logarithmic
chirp signal generated by a numerical integration using
the trapezoidal rule and a LabVIEW built-in function.
Signal parameters fs = 10 kHz, fstart = 10 Hz,
fstop =100 Hz.

on)=pmn—-1) + 2x-T- (W) (3)

where p(n) and p(n — 1) are the current and previous
phases, T is the sampling period, f(n) and f(n —1)
are the actual and previous frequencies.

4.2. ANALYTICAL INTEGRATION

To calculate the phase from the angular velocity (or
frequency) is analytically simple (eq. due to the
trivial frequency function. The calculation is very
simple because the In(k) is a constant so it can be
calculated beforehand.

As the calculation follows the analytical rule, the
method error should be zero. However, there is an
error (fig. |4) between the fixed-point implementation
of this method and the floating point function. This
is due to the limited fixed-point resolution.

fn) = f(n—1)
In(k)

where p(n) and p(n — 1) are the current and previous
phases, f(n) and f(n— 1) are the actual and previous
frequencies and k is the chirp speed constant.

The numerical integration is less accurate, however,
it is more sophisticated, as it can be used for the
linear sweep and the sine generation as well. Because
the method error in the presented case is significant
only for long sweep durations (hours), it seems more
practical to use the numerical integration method
instead of the analytical one.

p(n) =pn—1) + 2m- (4)

5. FIXED-POINT LIMITATIONS

FPGAs are working with a fixed-point number repre-
sentation to achieve the desired speed of computation
and parallelism. This approach provides several differ-
ences compared to the floating-point numbers. On the
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FIGURE 4. A phase error between logarithmic chirp
signal generated by an analytical integration using
fixed-point and floating point representation. Signal
parameters fs = 10 kHz, fstart = 10 Hz, forop =
100 H=z.

10 kHz 50 kHz
24-bit, 32-bit ‘ 24-bit 32-bit
0.0988832  0.0999955 | 0.0957778 0.0999843
0.0994009 0.0999975 | 0.0983664 0.0999944
0.0999186 0.0999995 | 0.1009550 0.1000045
0.1004363 0.1000016 | 0.1035436 0.1000147
0.1009541 0.1000036 | 0.1061322 0.1000248
0.1014718 0.1000056 | 0.1087208 0.1000349

TABLE 1. Possible values of a chirp speed in (dec/s)
closest to the presented chirp speed k = 0,1 dec/s
for fixed-point bit lengths 24 and 32 and sampling
frequencies 10 kHz and 50 kH z.

one hand, there are some advantages such as numeric
overflow, and on the other hand some disadvantages
like a lower resolution.

5.1. RESOLUTION LIMIT

Since the resolution limit seems to be a great issue,
it can be solved easily by increasing the number bit
length. However, the higher the bit length, the higher
the resources consumption is, which limits the amount
of code to fit in the FPGA. For this reason, it is essen-
tial to determine the necessary bit length beforehand.
In this paper, two different bit lengths, 24 and 32, are
used to show the differences.

As visible from (eq. , the actual frequency is
calculated from the previous one by multiplication by
a number, which is very close to ondﬂ The resolution
of this multiplier affects the possible chirp speeds and
it is the main limitation of the fixed-point generation.
This also limits the possible chirp speeds to several
discrete values (tab. [1)) and leads to a frequency error.
The error between the ideal (float-point calculation)
and actual (fixed-point calculation) frequency is shown

in (fig. |9)).

2in presented case the number is 10%:00001 = 1.0000230261
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FIGURE 5. A frequency error between a logarithmic
chirp signal generated by 24 and 32-bit fixed-point
arithmetic with rounding and a floating-point genera-
tion. Signal parameters fs = 10 kHz, fstart = 10 Hz,
fstop =100 Hz.

However, it is usually enough to keep the chirp
speed within a certain limit. For example, the [2]
limits the frequency error for a vibration testing to
+5 %. This can also be easily achieved with the fixed-
point computation, where the errors can be much
smaller (tab. [I]).

More important is the accuracy of the actual cal-
culated frequency (phase). As the calculation itself
produces no error, the result has to be rounded to fit
into the fixed-point range. The maximum rounding
error for one calculation is one least significant bit
(LSB), so it can be neglected. However, the rounding
error is accumulated throughout the whole signal gen-
eration, where it can cause a significant differences as
shown in (sec. . For this reason, it is necessary
to handle the rounding properly. In conclusion, the
calculated frequency is the actual frequency of the
generated sample up to an error of the sine function,
which is defined by an actual implementation. How-
ever, the frequency is different from the ideal one due
to the rounding.

5.2. NUMBER WRAPPING

To keep the phase accumulation error as low as pos-
sible, it is necessary to have a maximal fixed-point
resolution. However, the phase of the logarithm chirp
signal is exponentially rising, so it is necessary to
wrap it. Phase wrapping is normally done as a re-
mainder after division, however, this method requires
a fixed-point division, which is inaccurate and time
demanding. For this reason, it is better to let the
phase wrap when the fixed-point overflows. If we use
modified units (7 - rad) instead of normal phase units
(rad) modified units (7 - rad), then the phase can eas-
ily be wrapped, when it exceeds the value 2, because
it means 27 rad, so one period of a sine function.
Moreover, it is very easy to wrap around this value
just by ignoring the overflow status and keeping the
rest.

— Truncate
12 |—Round

N
o
!

Frequency error (Hz)

Time (s)

FIGURE 6. A frequency error between a logarithmic
chirp signal generated by 24-bit fixed-point arithmetic
with different coercing options, truncate and round
and a floating-point generation. Signal parameters
fs =10 kHz, fstart = 10 Hz, fotop = 100 Hz.

5.3. RESULT ROUNDING

A result from the fixed-point arithmetic operation has
to be rounded to fit into the predefined bit length.
There are two possible ways how to proceed. Unnec-
essary bits can be either cut off (truncate mode) or
the number can be coerced. This is done by adding
half of the LSB to the result and then the result is
truncated. The truncate mode is very fast, however,
it can produce error of up to one LSB. However, coerc-
ing requires a little bit more resources and one more
adding operation, but the error is half of the LSB
maximum. More information is provided in [5].

Both methods can be used in the chirp signal gen-
eration with a different impact on the result. The
truncate method consumes less resources, but pro-
duces a bigger error than the other method, which is
more resource demanding. The errors for the 24-bit
calculation are shown in (fig. [6). The error of the
rounded result is clearly visible in (fig. . Moreover,
the actual change of rounding from lower to higher
value and vice versa, which causes the non-monotony
of the error curve, is also visible .

6. LIMITAIONS

When considering appropriate bit length of a fixed-
point representation, it is necessary to consider its
limitations. A maximal frequency is determined by
a decimal part of the fixed-point, whereas the rest, a
fractional part, limits a resolution, a chirp speed and
a sampling frequency.

The maximal frequency in the chirp signal has to
be lower than the maximum represented value of the
fixed-point. Otherwise, the frequency will be coerced
or even worse, wrapped. This will result in a com-
pletely different signal. Fortunately, the maximum
frequency can be easily calculated from the number
of decimal bits.

The length of the fractional part indicates the fre-
quency resolution, which has to be lower than the
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FIGURE 7. A minimal length of a fractional part of
a fixed-point number in dependence on a minimal
frequency in a chirp signal for different chirp speeds
and sampling frequencies.

difference between two lowest frequencies in the chirp
signal. Otherwise, the new frequency will be coerced
to the previous one, which results in a sine signal
instead of the chirp one. The difference is determined
by the chirp speed and the sampling frequency. The
calculation of the necessary fractional resolution is
presented in (eq. [5]) and it is visualized for the selected
cases in (fig. [7)).

1
fonin - (107 1)

res > logs

()

where res (bit) is a minimal number of fractional
bits in fixed-point number, f,.; (Hz) is a minimal
frequency in signal, k (dec/s) is a chirp speed and
fs (Hz) is a sampling frequency.

The amplitude of the signal is, when an appropriate
fixed-point representation is selected, determined by
a used analog output card. However, especially small
amplitudes can also be affected by rounding in the
sine evaluation. However, this possible issue should
be solved in advance by selecting necessary precision
of the function used.

For example, a versatile fixed-point generator for a
vibration testing should be able to generate a chirp
signal from 10 Hz to 7 kHz with a chirp speedﬂ
1 oct/min. In this case, a 50 kH z sampling frequency
is sufficient. Then, the versatile generator requires
13 bits of the decimal part and 19 bits of the fractional
part. So, in general, a 32-bit fixed-point representation
of a frequency is enough for this generator.

7. IMPLEMENTATION

The generator was implemented in LabVIEW 2018
and executed on Compact RIO 9067. The data type
used for the implementation was a 32-bit fixed-point
with rounding after an arithmetic operation, because

31 oct/min = 0.005dec/s
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FIGURE 8. Comparison of the actual chirp speed
frequency generated on 32-bit fixed-point and floating
point arithmetics.

in our case, this representation can meet the afore-
mentioned criteria.

The generator is able to generate a logarithmic and
a linear chirp signal as well as a sine signal. This
is possible due to a different method of the actual
frequency calculation. It can be calculated by a mul-
tiplication for the logarithmic sweep, an addition for
the linear sweep or remain the same as a previous
frequency for the sine signal.

Parameters for the generation are sent to the FPGA
from a superior control system. The start and stop
frequencies and the amplitude are transmitted un-
changed, but the chirp speed is recalculated according
to the sampling frequency to a multiplier (eq. [2).
Whereas the sampling frequency is determined by an
analog output card speed so it is not necessary to
transmit it.

The actual frequency is coerced to fit between the
start and stop frequencies. When the stop frequency is
reached, a flag about the chirp completion is set. This
is due to the unknown duration of the chirp caused by
the discrete chirp speeds (tab. [1)) and rounding. After
the completion, a sine signal with the same frequency
(stop frequency) and amplitude is generated until the
superior system does not change the parameters or
shut down the generation.

This algorithm consumes 406 total slices, 1317 slice
LUTs and 8 DSP48, which are used for the sine eval-
uation.

7.1. GENERATED SIGNAL

The implementation results are shown on the loga-
rithm chirp sine with aforementioned parameters (
fstart =10 Hz, fsiop = 100 Hz, k = 0.1 dec/s).

Due to the resolution limit, the chirp speed is a
little bit higher than the selected value (sec. ,
therefore, the duration is shorter, as can be seen in
the figure .

Unlike the chirp speed, where slight differences are
usually tolerable, the spectral purity is essential, es-
pecially in the transition between the chirp and sine
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FIGURE 9. Detail of the transition between the chirp
and sine signal generated by our 32-bit fixed-point
generator.

signal. In our implementation, the transition seems
smooth, because it changes only the phase difference
calculation. The transition is shown in figure (fig. E[)
Nevertheless, more sophisticated sine signal generator
with this phase generator can be used to ensure a
better signal purity.

One can see that the implementation of the fixed-
point generator provides a trustworthy signal with
only few limitations.

8. RESULTS

This paper describes the point-to-point generation
of a logarithm and linear chirp as well as pure sine
signal using a fixed-point number representation to
use the algorithm on the FPGA. Main errors and
limitations are also discussed. For the selected FPGA,
the platform implementation of the point-to-point
signal generation method is used. This method and
its errors are explained in (sec. , where it is shown
that the method errors fade into insignificance when
compared to others.

Transferring the calculation from a floating-point to
a fixed-point arithmetic comes with other limitations,
such as discrete chirp speeds (tab. , and of course,
accuracy errors (fig. . Moreover, the fixed-point
calculation suffers from additional issues, which have
to be considered, such as results rounding (fig. E[)
Using a specific fixed-point length also limits the range
of possible frequencies in dependence on the chirp
speed and the sampling frequency. These limitations
are explained and evaluated (fig. 7).

The actual implementation of the method is de-
scribed in (sec. [7]). The implementation was done to
meet the vibration testing criteria according to [2], so
the parameters are selected accordingly. The genera-
tor is able to generate not only the logarithmic chirp
sine signal, but also the linear chirp and sine signal
and is able to switch between them instantaneously
and with minimal phase noise. Furthermore, the ac-
tual frequency of the sample is always known. The

implementation also deals with some fixed-point gen-
erated issues, such as the discrete values of the chirp
speed or the frequency outside limits, which makes it
a versatile tool for different engineering areas.

9. CONCLUSION

This paper presents an universal point-to-point
method of chirp sine signal generation on a fixed-
point FPGA. Differences between the floating and the
fixed-point generation as well as the most significant
error sources are described. Moreover, the evaluation
of the minimal fixed-point resolution and overall error
of the method are presented. The generator is able
to instantaneously switch between chirp sine and sine
signal without any additional phase noise. The gener-
ator has been realized on Compact RIO 9067 and is
used for vibration testing from 10 Hz to 7 kHz with a
minimal chirp speed of 1 oct/min. Nevertheless, the
generator is versatile, therefore it can be used in other
areas with a different frequency and speed range. In
the future, we would like to implement a vibration
control to the fixed-point arithmetic, so the whole
process will be on FPGA.
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