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Abstract. The presented research contains a description of a non-destructive laser ultrasound internal
structure analysis of aluminium joints made by friction stir welding. In the research, four selected
technological parameter groups were taken into account. Modifications used in different parameter
groups included changing tool traverse speeds and also its rotation speeds. The most important goal
of this research was to determine the joint quality using a non-destructive laser amplified ultrasound
method. To verify obtained test results, an additional microstructural analysis was also conducted.
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1. Introduction
FSW (Friction Stir Welding) is a very promising
method in terms of joining aluminium alloys, which
are difficult to weld using conventional methods [1–4].
This method is a solid-state welding process, where
the joint is formed by plasticizing and mixing two
workpieces by a specially designed tool [1, 5–7]. An
example of an aluminium alloy difficult to weld by
conventional means is AA2519 – armour grade alloy
used for light military constructions [8, 9]. Due to the
relatively high concentration of copper (above 5.3%),
solidification of this alloy in traditional welding causes
a problem of low melting phase Al2Cu (548 °C) and as
a result, a high risk of hot cracking [10–12]. Although
the low temperature of the FSW process (400−500 °C)
allows to avoid this problem, it is still important to
properly select welding parameters determining the
quality of the obtained joint [13–16].
It is very important to determine the joint quality

not only using destructive but also non-destructive
methods to analyse joints right after the process. It is
very important to determine the proper joint-quality
check method to ensure the required welded material
properties. Ultrasound testing methods are useful in
determining the internal quality of the material includ-
ing internal and surface inclusions and defects [17–19].
This method is also useful for analysing material prop-
erties by measuring the shear wave velocities [20, 21].
The ability to use a laser to amplify the signal allows

the possibility of analysing elements whose thickness
is greater than 10 millimetres [22].

2. Materials and methods
The workpiece to be joined was a 5mm thick AA2519-
T62 extrusion with the chemical composition pre-
sented in Table 1. The friction stir welding process
was performed using the ESAB FSW Legio 4UT ma-
chine with an axial force equal to 17 kN and the tilt
angle of the MX Triflute tool set to 2o. The used
welding parametres, together with a designation of
the samples, are presented in Table 2.
The joint was analysed along the entire length of

the weld and also perpendicularly to the traverse
transition direction.

This kind of analysis was made using an optoacous-
tic equipment and a measuring technique based on
the generation of an ultrasonic signal, with ultrashort,
high power pulses amplified by a 10-ns 0.1mJ pulse
generated by a Nd: YAG laser, which is transmitted
to the front side of a special optoacoustic generator
(OAG) via an optic fibre cable, an optical beam form-
ing system, and a transparent prism. The OAG is a
plane-parallel plate made of ad hoc plastic absorbing
light [23].

The transparent prism is in an acoustic contact with
the OAG, being at the same time a sound conduct-
ing channel of a broadband piezoelectric transducer
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Fe Si Cu Zn Ti Mn Mg Ni Zr Sc V Al
0.11 0.08 0.32 0.05 0.08 0.17 0.33 0.02 0.19 0.16 0.10 Base

Table 1. Chemical composition of AA2519-T62 extrusion.

Sample designation Tool rotation speed Tool traverse speed
[rpm] [mm/min]

T41 400 100
T81 800 100
T82 800 200
T84 800 400

Table 2. Welding parameters and designation of samples.

made of polyvinylidene fluoride (PVDF) film. One-
side access and the acoustic contact are ensured by
pressing the OAG plane to the front side of the object
with a thin layer of contact fluid in between. The
laser pulse absorption by the near-surface layer of the
OAG and the subsequent thermal expansion produce
an ultrasonic pressure pulse with a known temporal
shape and amplitude. The pulse wave propagates
through the prism and is recorded by the piezoelectric
sensor (direct wave) and towards the sample, where
it is partially reflected at the OAG-sample interface
due to difference in acoustic impedance; this reflection
is recorded by the piezoelectric sensor with the time
delay equal to the double travel time in the OAG. The
remainder of the pulse energy enters the sample and
is scattered by its heterogeneities and reflected from
the back side of the sample. In the case of sufficiently
strong scattering (which is indicative of a high degree
of heterogeneity), the reflection from the back-side
may not be observed. Additionally, the samples were
sectioned perpendicularly to the welding direction
and were metallurgically examined. The microstruc-
ture investigation was performed using an Olympus
LEXT OLS 4100 digital light microscope. As part of
the metallographic sample preparation, samples were
mounted in resin, ground with an abrasive paper of
80, 320, 600, 1200, and 2400 gradations, and polished
using diamond pastes (3 and 1 µm gradation). The
samples were etched using the Keller reagent (20ml
H2O + 5ml HNO3 + 2ml HF + 1mL HCl) with an
etching time equal to 5 s.

3. Results
The internal structure of the samples is shown in Fig-
ure 1. In both samples, where the traverse speed was
100 mm/min (T41 & T81), some imperfections can be
observed, they appear as different coloured structures
and wave shape distortions. This could also be con-
nected with the density change, which is caused by the
welding process. As can be seen, the wave shape dis-
tortions are present in the samples obtained with the
lowest tool traverse speed, which entails the longest
affecting time of the tool on the welded AA2519-T62.

This leads to phenomena, such as substantial dissolu-
tion and coarsening of the strengthening phase and
fragmentation of the remaining Al2Cu precipitates
in the stir zone, and it can partly explain the wave
distortions in Figure 1 [14].
In the course of scanning, local velocities are de-

termined. The velocities dependent on density are
related to local modules of elasticity; they can be
calculated as follows:

E = ρC2
t

[
3 − 1

x2 − 1

]
(1)

G = ρC2
t (2)

where: E is Young’s modulus, G is shear modulus.
Note that an S-wave pulse is recorded in the interval
between the first and second reflections of P-waves
from the back side; the time delay of the S-wave’s
arrival can be used to calculate its velocity.

Density was determined by hydrostatic weighing of
the samples in distilled water. The mean density of the
AA2519 alloy is ρ = 2 820 000 kg·m−3. The average
obtained values of the elastic moduli for the aluminium
alloy were E = 67.5GPa and G = 28.5GPa.
Zones of recrystallization and thermomechanical

affection relative to the base material are distinctly
distinguishable in the analysis. During the scan, it
was found that the elastic modules in the thermo-
mechanically affected zone and the recrystallization
zone are reduced by 15%, relative to the base material.
The changes in elastic modules in these areas can
be explained by far-reaching changes in the welded
material microstructure.
The mechanical properties of AA2519 are mostly

determined by the presence of the strengthening phase.
During the FSW process, this phase undergoes disad-
vantageous evolutions mostly in the recrystallization
zone and thermo-mechanically affected zone [1, 4].
To verify the results from the ultrasound method,

light microscope observations were performed. The
macrostructure of the T81 joint is presented in Fig-
ure 2 with the retreating and advancing side situ-
ated on the right and left side, respectively. The
macrostructure consists of zones typical for the FSW
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Figure 1. Internal structure of FSW samples: (a) imperfection in the middle of the T41 joint (red box) – material
density change, (b) imperfection in the middle of the T81 joint (red box) – voids and material density change, (c)
regular structure of the T82 joint stir zone, (d) regular structure of the T84 joint stir zone.

Figure 2. Macrostructure of T81 joint.

process: the dynamically recrystallized stir zone (SZ),
thermo-mechanically affected zone (TMAZ), heat-
affected zone (HAZ) and base material (BM). The
microstructure analysis of the T81 sample did not re-
veal any imperfections in the joint. At the same time,
in samples T41, T82 and T84, the light microscopy ob-
servations allowed to identify the imperfections, which
are presented in Figure 3.

In the case of the T41 sample, the low value of the
tool rotation speed (400 rpm) caused the formation
of imperfections close to the flash on the advancing
side of the joint as a result of insufficient material
plasticization (Figure 3a). The investigation of the
T82 and T84 samples revealed imperfections in the
form of voids localised in the upper part of the stir
zone (Figure 3c, 3d). The number of voids increases
together with the increasing tool traverse speed value.
As can be observed, the same area in the T81 sample
is characterized by a lack of visible voids (Figure 3d).
Higher values of the tool traverse speed result in a
decrease of the time in which the tool affects the
workpiece by friction, which can cause the presence of
imperfections in the joint. It is a noteworthy fact that
all imperfections identified by microstructure analysis,
are localised on the advancing side of the joints, which

corresponds to a lower heat input than that of the
retreating side. Although insufficient heat input is the
main reason for the low joint quality, the character
of the imperfections differs depending on the welding
parameters.

4. Conclusion
This research presents the results from the performed
microstructural analysis. The results present possibil-
ities to inspect the technology of friction stir welding
with the help of laser-ultrasonic structuroscopy and
diagnose the presence of continuity defects. A method
for determining Young’s modulus and shear modulus
is presented. The study showed that the decrease in
the value of the elastic moduli of the recrystallization
region and thermo-mechanically affected zone was, on
average, 15%.
During the analysis of the microstructure, it was

determined that high values of tool traverse speed
lead to the appearance of defects in the joint. Most
of the specific defects are localised on the advancing
side of the joint.
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(a). (b).

(c). (d).

Figure 3. Microstructure of: (a) imperfection close to the flash in the T41 joint, (b) imperfection-free upper part of
the T81 joint stir zone, (c) voids in the upper part of the T82 joint stir zone, (d) voids in the upper part of the T84
joint stir zone.
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