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Fuzzy Dynamic Analysis of a 2D Frame

P. Stemberk, J. Kruis

This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The
uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data
(modulus of elasticity and density) on output data is studied. Fuzzy numbers are represented by a-cuts. In order to reduce the volume of
computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes
described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the

response spectrum.
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1 Introduction

Concrete, as a convenient building material, inherently
involves uncertainty about its composition, which is difficult
to eliminate completely. However, this uncertainty can be as-
sessed by statistical, fuzzy, or other suitable tools. In the case of
concrete structures, such as frames made of reinforced con-
crete, it is costly to obtain a sufficient experimental data set
which would yield the desired statistical characteristics of the
material parameters. Instead, the knowledge gained by prac-
ticing engineers can be included as fuzzy numbers in the
material modeling.

For design purposes, traditionally, we may wish to conduct
a statistical analysis, using the statistical characteristics of sev-
eral measured events. In the case of an earthquake, however,
the measured data for each site of interest is not particularly
dense, leaving the statistical characteristics with little rele-
vance. On the other hand, the expected seismic load at a site
can alternatively be expressed by fuzzy sets [1], which take into
account the scarcity of seismic stations and information about
local sub-soil composition.

In this paper, an approach to dynamic analysis based on
fuzzy set theory is presented as a germane alternative to classi-
cal stochastic dynamic analysis. The material parameters of
reinforced concrete are considered to be fuzzy quantities with
a given distribution, i.e., fuzzy numbers with a desired shape
of the membership function [2]. The dynamic analysis is,
then, performed with the help of fuzzy arithmetic on either
a-cuts or computation-efficient (L, R) numbers [3]. The result
of such an analysis is in the form of fuzzy numbers, which is
less expensive than the stochastic approach in terms of com-
putation time, but still provides an idea of the distribution of
the sought quantity. In order to further improve the computa-
tional efficiency, inspired by [4], the concept of a surface
response function is utilized, [5, 6]. This approach is demon-
strated in an illustrative example of a 2D frame, where the
effect of uncertain material parameters transpires in the cor-
responding distributions of the natural modal shapes and
natural frequencies of the analyzed two-dimensional frame. A
methodology for a possible application to seismic design is
also explained.

It is believed that this approach enables practicing engi-
neers and other people with knowledge to contribute actively
to analyses of seismic-sensitive structures.
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2 Dynamic finite element analysis

The finite element method applied to dynamical prob-
lems of structures results in the form

d? r(t) dr(t)
d?

where M denotes the mass matrix, C stands for the damping
matrix, K denotes the stiffness matrix, f{¢) expresses the load
vector and r(¢) is the vector of the nodal displacements which
are computed, ¢ stands for time. Eq. (1) represents a semidi-
screte problem where the spatial coordinates are discretized
while the time is still assumed to be continuous [7].

M +C

+Kr(t) = f(1), (1

The analysis of the natural frequencies (eigenvalues) and
natural mode shapes (eigenvectors) of an undamped struc-
ture is based on the simplified relation Eq. (1), which has the
form

(K —w?M)v =0. 2)

The nonzero vector v is the eigenvector containing the
natural mode shapes and w, stands for the natural frequency.
Eq. (2) represents a generalized problem of eigenvalues. The
most common method for solving of such problems is sub-
space iteration [8].

3 Fuzzification of dynamic finite
element analysis

The uncertainty, that is present in the input parameters
can be tackled with the help of fuzzy set theory [1]. In this
theory, uncertain quantities are defined in terms of fuzzy
sets. Unlike in the classical set theory, here membership of an
element in a fuzzy set also assumes values between 0 and 1,
where 0 means “does not belong” and 1 means “definitely
belongs” to a fuzzy set. Usually, fuzzy sets represent a vague
verbal evaluation. In cases when a fuzzy set represents a
numeral, it is called a fuzzy number.

3.1 Fuzzy numbers

The notion of a fuzzy number arises from experience
of everyday life where many phenomena which can be
quantified are not characterized in terms of absolutely precise
numbers.
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Fig. 1: A normal fuzzy number and its a-cuts

Fuzzy numbers are fuzzy sets which are defined on the set
of real numbers. Their membership function assigns the de-
gree of 1 to the central, also called nominal, modal or mean,
value and lower degrees to other numbers which reflect their
proximity to the central value according to the used member-
ship function. The membership function should thus de-
crease from 1 to 0 on both sides of the central value. Such
fuzzy sets are called fuzzy numbers. An example of a fuzzy
number is shown in Fig. 1, where 4 represents the member-
ship function and @ and @y stand for two real numbers on
the real axis. The intervals defined for a specific value of the
membership function, e.g. a=0.7, represent the so-called
a-cuts. A fuzzy number can be equally expressed by either a
nominal value and a membership function on each side of the
nominal value or by a set of a-cuts.

3.2 Fuzzy arithmetic

A fuzzy arithmetic operation depends on the definition of
a fuzzy number. In the cases when fuzzy numbers are defined
by a set of a-cuts, the problem of fuzzy arithmetic is reduced
to the well-known arithmetic operations on intervals, which
are applied to each a-cut. Implicitly, this means a sequence of
binary combinations on each ¢-cut in order to obtain the min-
imum and the maximum value for each a-cut. The finite
element method converts a problem into a system of linear
equations, in this case a system of fuzzy linear equations,
which comprises an extensive number of arithmetic opera-
tions. This fact makes the formulation in the above terms
merely unsolvable due to the number of all necessary binary
operations.

To eliminate the drawback of the a-cut formulation, new
techniques for solving fuzzy linear equation systems have
been developed, e.g. [9]. However, these techniques are not
easily applicable to robust problems, such as fuzzy dynamic
finite element analysis. Therefore, another technique for re-
ducing the large number of binary combinations has been
exploited. This technique was originally developed for other
problems, such as statistical analysis.

3.3 Surface response function

Fuzzy analyses, as well as stochastic analyses, suffer from
non-occurrence of analytical solutions in the case of non-de-
terministic input data. This situation can be remedied by the
following. Let ¥ € X denote the vector of input data from the
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space of input data X and § € ¥ denote the vector of output

data from the space of output data ¥ . Both, stochastic and
fuzzy analyses require knowledge of the response, which can
be written in the form

y =F(x), @)

where F denotes the response of a system (structure) to the
input data collected in vector X. This represents a mapping
from the space X to the space Y. The non-occurrence of an
analytical solution requires the application of a suitable nu-
merical method which discretizes the problem and solves it
numerically. The space X is discretized by an n-dimensional
space, X, and similarly the space Y by an m-dimensional
space, Y. A stochastic analysis based on simulation methods
generates thousands or millions of samples of input data (the
vectors x) and then deterministic computation follows. Fuzzy
analysis based on a-cuts requires computation of all combina-
tions of input data, which also leads to thousands or millions
of samples. Both approaches yield the response of a system
based on a huge amount of output data (thousands or mil-
lions of vectors y) obtained from many executions of stan-
dard (deterministic or crisp) solutions.

In order to reduce the necessary number of computation
runs, the concept of a response surface function has been used
many times. The basic idea of the response function is to ap-
proximate operator F by a suitable function which should be
as simple as possible. The function for the k-th output param-
eter can be written in the form

n n n
CRTE YIRS 3 YN
1=1

=1 j=1

where the superscript identifies an output parameter and n
denotes the dimension of the space of the input data, X. The
unknown coefficients are obtained from the least square
method in the following way. Let the set of input parameters
contain s samples. Each sample is located in the vector ]
where the superscript identifies a sample. The standard com-
putation gives the output data, which are collected in the vec-
tors y[. The coefficients of the response function minimize
the following expression

N 2
FO @), pP), éf‘)) =Z(f<k>(xm) _y%]) . )
=1

In many cases, it is not necessary to use quadratic terms.
Considering only the linear terms simplifies further
computations.

4 Numerical example

As an example, the natural frequency analysis of a two-di-
mensional frame with four floors made of reinforced concrete
is considered. The overall height of the frame is 16 meters
and the width is 5 + 5 meters. The dimensions of the beams
and columns are identical (0.5x0.5 m). It is assumed that the
building was erected in four consecutive lifts. Each lift consists
of placing concrete in three columns and in the beam which
connects the upper ends of the columns.
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E and the density, p. E and p are fuzzy input parameters with
nominal values of 30 GPa and 2500 kg/m”, respectively, which
can change by £10 % and with a linear membership function
(triangular fuzzy numbers).

J

Fig. 2: Mode shape

Therefore, it is further assumed that there are only four
types of concrete whose composition can possibly differ. The ,
. . . . Fig. 5: Mode shape 3
influencing material parameters are the modulus of elasticity,

Fig. 3: Enlarged section of mode shape 1 Fig. 6: Mode shape 4

Fig. 4: Mode shape 2 Fig. 7: Mode shape 5
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For illustrative purposes, we need 125 response surface
functions to describe the first five natural vibration modes, i.e.
a response surface function to express each natural frequency
and the horizontal and vertical displacements in each joint
(three joints on each of the four floors) for each natural mode
shape. In order to obtain sufficient input and output data for
calculation of the coefficients of the response surface func-
tions it was decided to take three values (minimum, modal
value, maximum) for each material parameter; £ and p, i.e.,
(=6561) independent runs of the dynamic finite element
analysis. The specific form of Eq. (4) in this example was
SO = 8PE + 8P Ey + bV Eg + bV E, + ©)
+b§)k)p1 + b(6k)p2 + b;k)pg + bgk)p4 + b,gk).

The first five mode shapes are shown in Figs. 2 to 7, where
the dotted lines represent all possible envelopes of response,
in other words, the minimum and maximum values, which
correspond to the values obtained for a-cuts (¢=0). The
finite element model of this frame discretized each frame sec-
tion (beam and column) by five beam elements, however, only
the joint displacements are shown. This is why no significant
difference is distinguishable in Figs. 6 and 7. In Fig. 3, a
section of the frame is enlarged and the vertical displace-
ments are 1000 times increased compared to the horizontal
displacements so that we can see the distribution of possible
displacements of the frame. The distribution of the first five
natural frequencies is shown in Fig. 8. It was observed that the
response function gives very good results for the dominant
displacements (at point A, which is the top left joint) in the
lower natural mode shapes, which are important for seismic
design. For vertical displacements, which do not play an
important role in seismic design (at point B, which is the
intermediate joint of the first floor), the response function
could not fit the proper shape of the membership function,
which is evidenced in Figs. 9 and 10.

5 Possible applications

In the design of earthquake resistant structures, it is essen-
tial not to neglect any uncertainty as it may lead to an errone-
ous conclusion due to the dynamic simulation which may
amplify such uncertainty beyond all limits. For these reasons,
it seems reasonable to express uncertain numerical data in
terms of fuzzy numbers and to use them as such in analyses to
cover all possible solutions.

In the previous section, an approach to natural vibration
analysis was shown which provides input data for further anal-
yses considering, e.g. earthquake induced vibrations. Spec-
tral-analysis based methods require only the maximum values
obtained for each natural mode in order to evaluate the
excited vibration. Therefore, it is desirable to verify whether
these values can be satisfactorily expressed by surface re-
sponse functions which were obtained only by binary combi-
nations of material parameters with three values (minimum,
modal value, maximum). The resulting surface response
function was also obtained for five values, corresponding to
the a-cut values with a equal to 0, 0.5 and 1. However, this
meant 52** (=390625) independent runs of the dynamic
finite element analysis. The improvement was negligible, and
compared with the computational effort it proved truly
unnecessary.
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6 Conclusions

The tuzzy approach has been applied to dynamic analysis
of a 2D concrete frame with uncertainties. The natural fre-
quencies and the natural mode shapes have been computed
and described by fuzzy numbers. The response surface func-
tion has been applied in order to reduce the number of re-
quired computations. The results have been compared with a
tull analysis based on an evaluation of all combinations (in the
order of thousands) and very good accordance has been ob-
tained. The first lower natural mode shapes are naturally de-
scribed more precisely than the higher ones. The errors of the
obtained results for lower natural mode shapes are less than
5%. There are some quantities belonging to higher modes
where the response surface function gives results unaccept-
able from the point of the fuzzy set theory. These difficulties
should be studied in future.
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