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Abstract. The Vehicle Routing Problem (VRP) is a highly researched discrete optimization task.
The first article dealing with this problem was published by Dantzig and Ramster in 1959 under the
name Truck Dispatching Problem. Since then, several versions of VRP have been developed. The task
is NP difficult, it can be solved only in the foreseeable future, relying on different heuristic algorithms.
The geometrical property of the state space influences the efficiency of the optimization method. In
this paper, we present an analysis of the following state space methods: adaptive, reverse adaptive and
uphill-downhill walk. In our paper, the efficiency of four operators are analysed on a complex Vehicle
Routing Problem. These operators are the 2-opt, Partially Matched Crossover, Cycle Crossover and
Order Crossover. Based on the test results, the 2-opt and Partially Matched Crossover are superior to
the other two methods.
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1. Introduction
The Vehicle Routing Problem (VRP) is one of the best
known discrete optimization tasks. During the basic
VRP, the positions and demands of the customers
are given in advance, and the number of vehicles and
capacity limit are also known in advance. Starting
from the depot, vehicles visit customers and then
return to the depot. The objective of the optimization
is the minimization of the distance travelled by the
vehicles. Figure 1 illustrates the layout of a basic
Vehicle Routing Problem.

The VRP was first introduced by Dantzig and
Ramster [1] as Truck Dispatching Problem. Since
then, many types and constraints of the problem have
emerged as the complexity of transportation tasks has
begun to increase. Below, we will introduce some types
of problems. Table 1 contains the most researched
type of Vehicle Routing Problem types.

In the fitness state space analysis, the key elements
are the representation form of the state and the ap-
plied neighbourhood operator. The analysis can be
used to show the efficiency of the selected operators of
the optimisation algorithm. Below, we present several
papers that investigate fitness state space analysis
techniques.

Fitness state space analysis was first published by
Sewall Wright [14]. He described the search space
mathematically as a pair containing a set of solutions
and fitness functions.

Since then, fitness state space analysis techniques
have been applied to many problems, for exam-
ple, Knapsack Problem [15], Timetabling Prob-

Figure 1. Example of a basic Vehicle Routing Prob-
lem (VRP)

lem [16], Traveling Salesman Problem [17, 18], Flow-
shop Scheduling Problem [19], Quadratic Assignment
Problem [20], Maximal Constraint Satisfaction Prob-
lem [21], Vehicle Routing Problem [22].

The work [15] presents the analysis of several rep-
resentation methods, such as Weight-Coding Rep-
resentation, Random-Key Representation, Ordinal
Representation, Binary Representation, Permutation
Representation. The analysis includes the following
metrics: fitness distance correlation, autocorrelation
function, correlation length.

In [23], the fitness state space of the Optimum
Multiuser Detection Problem is also analysed using the
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Vehicle Routing Problem Type Explanation
Time Window [2] Customers must be visited during a specific time interval.
Multiple Time Window [3] Customers have one or more time windows.

Soft Time Window [4] Customers can be visited outside of the time interval
(but the solution gets a penalty point).

Single Depot [5] The system contains a single depot.

Multiple Depot [6] The system contains multiple depots,
the vehicles must start their route from one of the depots

Open Route [7] Vehicles do not have to arrive to the depot
Inter-Depot Routes [8] Vehicles can arrive to any of the depots

Two-Echelon [9]
The system contains intermediate locations (called satellites).
The products will be shipped in the following route:
depot-satellite-customer

Homogeneous Fleet [10] The system contains one type of vehicles
Heterogeneous Fleet [10] The system contains multiple types of vehicles

Pickup and Delivery [11] Delivering products from the depot to the customers and
collecting products from the customers to the depots.

Multiple Product [12] The system contains multiple products
Periodic Problem [13] Periodic visits to customers

Table 1. VRP types

following fitness state space methods: Fitness Distance
Correlation, Random Walk Correlation Function.

The Timetabling Problem landscape is determined
by the following techniques: fitness distance correla-
tion, autocorrelation [16].

We can also find some examples of a fitness state
space analysis of the Traveling Salesman Problem,
e. g., [17, 18], where the k-opt operator is analysed
by calculating the Hamming distance. The following
analyses are performed by the authors: distance to
global optimum, number of local optimums, probabil-
ity of visiting an optimum, autocorrelation, time to
local optimum, the distance between the optima. The
effectiveness of Edge Recombination and Maximal
Preservative Crossover (MPX) are compared.

An analysis of the Flowshop Scheduling Problem
(FSP) fitness state space has also been performed,
for example, by [19]. In the article, the following
analytical methods are detailed: evolvability, neutral
degree, neutral neighbour, autocorrelation.

An analysis of the fitness state space of the
Quadratic Assignment Problem has also been inves-
tigated, for example, by the authors of [20]. The
following operators are analysed: pairwise exchange,
partially mapped crossover (PMX), and swap. The
following fitness state space analysis techniques are
performed: autocorrelation function, autocorrelation
length, random walk, the basin of attraction.

In [21], the Maximal Constraint Satisfaction Prob-
lem is investigated with a random-walk and cost-
density analysis. The analysis of the fitness state
space of the Traveling Salesman Problem was also
presented by the authors of [24]. They demonstrated
the efficiencies of 2-opt (edge swap) and city swap

operators. The distance from the global optimum was
examined by the authors as a function of a fitness
value. According to the authors, the 2-opt operator
is more efficient, because in this case, the Fitness
Distance Correlation is strong.

The time to the local optimum, distances from op-
tima, autocorrelation, number of local optima, proba-
bility of getting to the optimum analysis of the Travel-
ing Salesman Problem and the No-Wait Job Schedul-
ing task was also detailed by the authors of [17].

The fitness state space analysis of the Quadratic
Assignment Problem and Traveling Salesman Prob-
lem [25] were performed with the following techniques:
fitness distance correlation, fitness cloud, autocorrela-
tion, correlation length, information content, informa-
tion stability, ruggedness, autocorrelation, correlation
length. The following walk techniques are presented:
random walk, adaptive walk, reverse adaptive walk,
uphill-downhill walk, neutral walk.

We can find an example of an analysis of the Ve-
hicle Routing Problem fitness state space [22], where
the following operators were attempted to be anal-
ysed: Swap, Inversion, Insertion, Partially Matched
Crossover, Uniform Order Crossover, Cycle Crossover,
Displacement. Random walk technique with 2000
steps taken was used. The task was also examined
from an information elemental point of view, with the
following techniques: information content, density-
basin information and partial information content.

In our earlier research, we have already investi-
gated the fitness state space of a Multi-Echelon system
[26, 27]. We performed a fitness cloud and random
walk analyses of the Multi-Echelon Vehicle Routing
Problem. Now, we turn to the extension of the prob-
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lem, namely the investigation of the adaptive, reverse
adaptive and uphill-downhill walk. The remainder
of this paper is organized as follows. Section 2 con-
tains the concept of our fitness state space analysis,
such as the adaptive, reverse adaptive and uphill-
downhill walks, the applied neighbourhood operators
and the applied distance calculations. Section 3 con-
tains the results and discussion. This section presents
our Vehicle Routing Problem, the results of the adap-
tive, reverse adaptive and uphill-downhill walks, and
the summary results. The last section presents con-
clusions and the scope of our future work.

2. Fitness state space analysis
Optimisation metaheuristics operate iteratively to find
the extremum points in the object space. The body
of the iteration contains the following elements [28]:
• The set of possible states.
• Neighbourhood, which is defined by an operator.

From the current state with the application of
a neighbourhood operator, we can get the next
state.

• Objective function.
• Representation: The applicability of each operator

depends on the representation.
• Transition rule: selection of the next state point

from the neighbours.
• Termination criteria of the algorithm.
• Whether the initial state point is generated ran-

domly or with some heuristics.

2.1. Adaptive, reverse adaptive and
uphill-downhill walk

Analytical methods can be divided into two categories,
exhaustive search and stochastic, sampling-based tech-
niques [29].

The exhaustive search analysis gives the most com-
plete picture of the search space. But they can only
be applied to smaller problems (not suitable for larger
problems), hence, it is difficult to apply this analysis
in practice. The main advantage of an exhaustive
search is the completeness. The search time (runtime)
of the exhaustive search is high, but the search space
analysis is completely traversed [29].

The most commonly used techniques in the search
space analysis are the stochastic, sampling-based tech-
niques. Their advantage over the exhaustive search
is that their running time is low. However, one of
the disadvantages of these methods is that we cannot
get a complete systematic view of the search space.
It is comparable to metaheuristics in the sense that
metaheuristics search for a “relatively good” solution,
while the stochastic search offers a “relatively good”
mapping [29].

The basic problem of stochastic analysis methods is
the selection of a representative sample. The selection

of the optimal sample is a difficult task as we do
not know the complete set of the solution. So far,
two types of sample generation techniques have been
used [29]:

• The trajectory-based sampling technique creates
the path of optimization methods with continuous
solution candidates.

• Discovery strategies generates scattered samples.

Sampled trajectories create a path in the search
space or, in other words, a sequence of adjacent state
points (solution candidates). This method is also
called walk [29]. There are several walks to analyse the
search space. The walk starts from a random solution
candidate and uses the neighbourhood search to "walk"
to neighbouring solution candidates. Depending on
the type of the neighbourhood search, the following
walking techniques are possible [25]:

• Random walk – a state point is randomly selected
from a set of neighbours.

• Adaptive walk – the better state point (neighbour)
is selected.

• Reverse adaptive walk – always selects the worst
neighbour. This is the reverse of the adaptive walk.

• Uphill-downhill walk – first, an adaptive walk is
performed, then, if a better fitness point (solution)
is not found during the step, a reverse adaptive
walk is performed until a better state point cannot
be found.

• Neutral walk – a neighbour with a fitness value
equal to the parent’s fitness value (with the effort
to increase the distance from the starting solution)
is chosen.

2.2. Neighbourhood operators
The optimization algorithm is greatly influenced by
the applied search operators. In this article, the effi-
ciency of the following operators are presented: 2-opt,
Order Crossover (OX), Cycle Crossover (CX), Par-
tially Matched Crossover (PMX).

In the case of 2-opt [30], two edges are swapped.
This is the reversal of the elements of a section in the
permutation. The two edges are selected randomly.
Figure 2 shows a sequence. The problem is in a permu-
tation space; an element is given with a permutation.

Figure 2. Example of the 2-opt operator

The Order Crossover (OX) [31] operator creates two
children solutions from two parent solutions. When
using the operator, we need to look for a fitting section.
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Figure 3. Example of the Order Crossover (OX) operator

Figure 4. Example of the Cycle Crossover (CX) operator

The fitting section is selected randomly. The children
will initially be the copies of the parents. Then, the
elements of the fitting section of the second parent are
deleted from the first child (letter H) and the elements
of the fitting section of the first parent are deleted
from the second child. Then, the child solutions are
rearranged so that the letters H (empty spaces) are in
the matching phase of the permutations. Then, the
first child receives the fitting section of the second
parent and the second child receives the fitting section
of the first parent. Figure 3 illustrates the operations.

Cycle Crossover (CX) [32] searches for cycles. This
operator also creates two child solutions from two
parent solutions. Initially, the first element of the first
child should be the first element of the first parent,
and the first element of the second child should be the
first element of the second parent. In the example,
this is the pair (1,9), so the first element of the first
child is 1 and the first element of the second child is 9.
Then, in the example, comes the pair (9,6), they are
placed in position 4, the pair (6,4) in position 6, (4,2)
in position 8, (2,7) in position 3, and (7,1) in the last
position. Then, (1,9) would come, but this pair has
already been placed, so the cycle is closed. There are
still gaps in the child solutions, they are filled so that
the first child gets the right items from the second
parent and the second child gets the right items from
the first parent. The operator is shown in Figure 4.

Figure 5. Example of the Partially Matched
Crossover (PMX) operator

Partially Matched Crossover (PMX) [33] also cre-
ates two-child solutions from a two-parent solutions.
This operator also selects the fitting section randomly.
First, the child solutions will be the copies of the par-
ents. Pairs from the fitting sections of the parents are
then paired. In Figure 5, the pairs are the following:
(9,6), (5,5), (6,4), and (8,3). These items are swapped
in both children.

2.3. Distance calculation

We used three types of distances to describe the simi-
larity between two solutions, these are the fitness [34],
Hamming [35] and basic swap sequence [36]. The fit-
ness distance between the two solutions is illustrated
in Figure 6. In the example, the distance is 500 be-
cause the absolute value of the fitness value of the
two solutions must be taken. The Hamming distance
is 4, because they differ in 4 positions. The basic
swap sequence distance is 1, because with a single
edge swap operation, we get the other solution from
one solution (the basic swap sequence distance is the
minimum of the edge swap numbers).

Figure 6. Distance example
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Figure 7. The investigated Vehicle Routing Problem

3. Results and Discussion
3.1. Our Vehicle Routing System
Our Vehicle Routing Problem (which is also presented
in our previous works [26, 27]) is illustrated in Figure 7.
The test system contains a single depot, satellites and
customers. The x and y position coordinates of the de-
pot are generated in the interval (0–100). For the first
level satellites, the coordinates are generated in the
interval (200–300) and the coordinates of second level
satellites are in the interval (400–500). The system
contains 10 first-level and 10 second-level satellites
and 15 customers. The products are transported from
the depots to the satellites, and then, from the satel-
lites to the customers. The demands for the products
vary by customers, and the system contains a single
type of product. The system contains different types
of vehicles. The vehicles differ in the capacity limit
and fuel consumption The values of the capacity limits
are generated in the interval (10,000–50,000), and the
fuel consumption in the interval (10–100). The travel
time between the customers and the route status are
also important factors. Additionally, the following
costs are also considered: loading and unloading time,
administration time, loading and unloading cost, ad-
ministrative and quality control cost. The values of
these componens are generated in the interval (30–50).

The objective function of the optimization is a com-
pound cost function having the following compo-
nents and objectives: fuel consumption (minimiza-
tion), route time (minimization), unvisited customers
(minimization), and route status (minimization).

Our goal was to select a complex VRP system hav-
ing several layers and several vehicle types with differ-
ent depots for the analysis. This kind of architecture
is very frequent in real life applications.

3.2. Adaptive walk
In this subsection, the results of the adaptive walk are
analysed. According to Figure 8, fitness values range
from 120,000 to 150,000 for 2-opt, and the average
fitness distances taken from solutions range from 4,000
to 21,000. Here, we obtain a parabolic function.

The Figure 9 represents the average of the Hamming
distances for 2-opt. Here, the Hamming distances are
between 20–34. The same can be said for the basic
swap sequence (here the distances are between 13–26).
We also get a parabola-like function for fitness dis-
tances in the case of order crossover (here the fitness
values are between 110,000–140,000, while the aver-
ages of the fitness differences range from 2,000–17,000),
while the Hamming (here the averages of the differ-
ences are between 16–34) and basic swap sequence
distances (where the averages of the distances are be-
tween 12–26) also depend on the fitness value of the
solution. The cycle crossover is similar to 2-opt, here,
the fitness values are between 110,000–130,000, while
the averages of the distances for a fitness distance are
between 2,000–15,000, while the basic swap sequence
distances are in the range of 8–24. For a partially
matched crossover, fitness values are between 110,000–
140,000 and the average fitness differences are between
2,000–21,000. Hamming distances are between 22–36
and also depend on the fitness value. The higher the
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Figure 8. The relationship between fitness values
and average of fitness distances to other solutions in
the case of 2-opt operator

Figure 9. The relationship between fitness values
and average of Hamming distances to other solutions
in the case of 2-opt operator

fitness value, the higher the averages of the Hamming
distances. And we also got this result in the case of
the basic swap sequence, here, the values are between
16–28.

In the case of the distance from the best solution
for an adaptive walk the higher the fitness value, the
greater the distances from the best solution for all
operators.

The fitness distance from the best solution and the
average of the fitness distances of the other solutions
(Figure 10) describe a parabolic function. If the dis-
tance from the best solution is small or large, then

Figure 10. The relationship between the fitness dis-
tances of the best solution and the average of fitness
distances to other solutions in the case of 2-opt opera-
tor

Figure 11. The relationship between the Hamming
distances of the best solution and the average of Ham-
ming distances to other solutions in the case of 2-opt
operator

the average distance from the other solutions is large
when using a 2-opt operator.

There are no similarities between the Hamming
and basic swap sequence distances (Figure 11), the
distance of the best solution does not affect the average
of the distances taken from the other solutions. In
the case of the order crossover, if the fitness distances
from the best solution are too large, the averages
of the distances will also be very large, and this is
also true for the Hamming and basic swap sequence
distances. In the case of a cycle crossover, the averages
of fitness distances are also high when the fitness
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Figure 12. Cost of density in the case of 2-opt oper-
ator

distance taken from the best solution is high. The
same is true for the Hamming and basic swap sequence
distances. In the case of a partially matched crossover,
both fitness and Hamming and basic swap sequence
distances taken from the best solution also greatly
affects the average distances.

In the case of 2-opt, each solution has a different
fitness value, but in the case of order crossover and
cycle crossover (Figure 12), some solutions have the
same fitness value. In the case of a partially matched
crossover, almost every solution has a unique fitness
value. The summary of the adaptive walk for each
operator is illustrated in the Table 2.

3.3. Reverse adaptive walk
In the following, the reverse adaptive walk solutions
are analysed. The averages of fitness distances de-
scribe a parabolic function, Hamming and basic swap
sequence averages decrease with increasing fitness
value. Order crossover fitness distances also describe
a parabolic function while Hamming and basic swap
sequence distances do not depend on fitness values.
The situation is similar in the case of the cycle and
partially matched crossover, the averages of the differ-
ence in fitness values can be described by a parabolic
function, and the distances between Hamming and
basic swap sequences do not depend on the fitness
value, they are located close to each other. The fit-
ness distance from the best solution in the case of
2-opt, order crossover, cycle crossover and partially
matched crossover also describes a linear function.
Hamming and basic swap sequence distances occur in
a large interval, from a small distance of 1–2 distances
to a very large distance of 30–40 between solutions.
The function of the distance from the best solution
and the averages of the distances from the other so-
lutions is as follows: the fitness distance for 2-opt is

a parabolic function, but shows a prolonged, long-
decreasing trend and then starts to increase slightly
by the end of the scale. The Hamming and basic swap
sequence distances show wider average distances for
larger distances. In the case of the order crossover,
the fitness distances also describe a parabolic function,
only in this case, a larger increase can be observed
after a small decrease. For Hamming and basic swap
sequence distances, the scale of the average distances
increases as the distances from the best solution in-
crease. In the case of the cycle and partially matched
crossover, we also get a parabolic function for the
fitness distance, and the Hamming and basic swap se-
quence distances increase with increasing the distance
from the best solution, and the scale of the averages
of the distances also increases. The cost of density val-
ues is low, which means that the fitness values of the
solutions are different during the steps. 1–2 is the cost
of density for 2-opt, 1–4 for order crossover. The cycle
crossover, however, provided several solutions with the
same fitness value, here 1–5 is the number of identical
fitness values. For the partially matched crossover,
this value is 1–3, but in this case, almost all solutions
have different fitness values. The Table 3 illustrates
the results for a reverse adaptive walk.

3.4. Uphill-Downhill Walk
During the uphill-downhill walk, the fitness values
range from 130,000 to 150,000, while the average fit-
ness distances are between 2,500 and 9,000 in the
case of 2-opt operator. This function is parabolic
because small and large fitness values have a large
average fitness distance, while medium fitness values
have a small average distance. The averages of Ham-
ming distances do not depend on the fitness values.
They move in a relatively small interval, and the same
can be said for the basic swap sequence distance. In
the case of an order crossover, the fitness values of the
solutions range from 120,000 to 140,000. The aver-
ages of the fitness distances taken from the solutions
are large for small and large fitness values, while they
are small for average fitness values, so their function is
parabolic. The Hamming and basic swap sequence dis-
tances are condensed into a single point; the averages
of the distances do not depend on the fitness values.
Cycle crossover values are also similar to 2-opt and
order crossover values, here, fitness values range from
120,000 to 140,000, fitness distances average between
2,000 and 8,500, Hamming distances range from 28
to 34, and basic swap sequence distances range from
23 to 26. Partially matched crossover results are also
similar to those of the other three operators.

The distances are taken from the best solution
for a 2-opt operator increase, as a function of fitness
distance, while Hamming and basic swap sequence dis-
tances, however, show no correlation with fitness val-
ues, these distances differ greatly. For order crossover,
fitness distances also increase linearly as a function of
fitness value, and Hamming and basic swap sequence
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Type Distance Lower bound Upper bound
2-opt

Fitness values Fitness 120,000 150,000
Average of fitness distances Fitness 4,000 21.000
Average of hamming distances Hamming 20 34
Average of basic swap sequence distances Basic swap sequence 13 26
Fitness distances of best solution Fitness 0 28,000
Hamming distances of best solution Hamming 2 39
Basic swap sequence distances of best solution Basic swap sequence 1 30
Cost of density – 1 3

Order Crossover
Fitness values Fitness 110,000 140,000
Average of fitness distances Fitness 2,000 17,000
Average of hamming distances Hamming 16 34
Average of basic swap sequence distances Basic swap sequence 12 26
Fitness distances of best solution Fitness 1,000 21,000
Hamming distances of best solution Hamming 2 32
Basic swap sequence distances of best solution Basic swap sequence 1 28
Cost of density – 1 7

Cycle Crossover
Fitness values Fitness 110,000 130,000
Average of fitness distances Fitness 2,000 15,000
Average of hamming distances Hamming 12 30
Average of basic swap sequence distances Basic swap sequence 8 24
Fitness distances of best solution Fitness 0 18,000
Hamming distances of best solution Hamming 2 36
Basic swap sequence distances of best solution Basic swap sequence 1 28
Cost of density – 1 14

Partially Matched Crossover
Fitness values Fitness 110,000 140,000
Average of fitness distances Fitness 2,000 21,000
Average of hamming distances Hamming 22 36
Average of basic swap sequence distances Basic swap sequence 16 28
Fitness distances of best solution Fitness 0 24.000
Hamming distances of best solution Hamming 4 40
Basic swap sequence distances of best solution Basic swap sequence 2 34
Cost of density – 1 9

Table 2. Adaptive walk results

distances do not correlate with fitness values, and
these distances are also in a large interval here. The
results of the cycle crossover are similar to the results
of 2-opt and order crossover, the fitness distances here
are between 500–16,000, the Hamming distances are
between 2–42 and basic swap sequence distances range
from 1–34. The situation is similar in the case of a par-
tially matched crossover, here, the fitness distances
are between 0–14,000, the Hamming distances are
between 6–40, and the basic swap sequence distances
are between 4–32.

The cost density values move at a small interval
during each operator, which means that the fitness
values are different for each solution. The cost density
value for 2-opt is 1–2, 1–3 for order crossover, 1–3 for
cycle crossover, and in the case of partially matched

crossover, 1–3. Table 4 illustrates the results for the
uphill-downhill walk.

3.5. Summary Analysis
Based on the test results, we can summarize our exper-
iments based on the following. For the walk techniques
presented above, the fitness values are good in the fol-
lowing case: the difference between the lower and the
upper boundaries is great. The lower limit should be
small because the objective is to minimize the fitness
value. The average of fitness, Hamming and basic
swap sequence distances is good in the following case:
the greater the distances, the better the algorithm
maps the search space. The evaluation of the fitness,
Hamming and basic swap sequence distances of the
best solution is as follows: when the lower bound is
small and the upper bound is large, then the operator
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Type Distance Lower bound Upper bound
2-opt

Fitness values Fitness 120,000 150,000
Average of fitness distances Fitness 3,000 16,000
Average of hamming distances Hamming 24 34
Average of basic swap sequence distances Basic swap sequence 17 25
Fitness distances of best solution Fitness 500 21,000
Hamming distances of best solution Hamming 2 40
Basic swap sequence distances of best solution Basic swap sequence 1 30
Cost of density – 1 2

Order Crossover
Fitness values Fitness 130,000 140,000
Average of fitness distances Fitness 800 4,000
Average of hamming distances Hamming 28 34
Average of basic swap sequence distances Basic swap sequence 22 28
Fitness distances of best solution Fitness 500 6,000
Hamming distances of best solution Hamming 6 40
Basic swap sequence distances of best solution Basic swap sequence 6 34
Cost of density – 1 4

Cycle Crossover
Fitness values Fitness 130,000 140,000
Average of fitness distances Fitness 1,200 3,800
Average of hamming distances Hamming 28 34
Average of basic swap sequence distances Basic swap sequence 22 27
Fitness distances of best solution Fitness 0 7,000
Hamming distances of best solution Hamming 6 40
Basic swap sequence distances of best solution Basic swap sequence 5 32
Cost of density – 1 5

Partially Matched Crossover
Fitness values Fitness 130,000 150,000
Average of fitness distances Fitness 1,500 7,000
Average of hamming distances Hamming 29 35
Average of basic swap sequence distances Basic swap sequence 22 28
Fitness distances of best solution Fitness 3,000 11,000
Hamming distances of best solution Hamming 4 40
Basic swap sequence distances of best solution Basic swap sequence 2 34
Cost of density – 1 3

Table 3. The results for reverse adaptive walk

explores the space well (large upper bound), but it
also found a very good solution because of the small
lower bound. The evaluation of the cost density is as
follows: for many small values, the operator maps the
space well. The objective is to create many different
fitness value solutions.

Table 5 shows that the 2-opt operator is efficient,
and Cycle Crossover has a weak performance.

In the case of an adaptive walk and in the case
of a cycle crossover, we find the smallest average
fitness distance. The average Hamming and basic
swap sequence distances are also the smallest here.
The cost of density value became the highest in the
case of the cycle crossover, which means that we got
several solutions with the same fitness value during the
walk. According to the order crossover cost of density
diagram, several solutions also have the same fitness

value. The cost of density values is the lowest for
2-opt, so this operator produced the highest number
of different solutions. Since the objective is to map
the search space as well as possible, the 2-opt operator
proved to be the best in this measurement experiment.

In the reverse adaptive walk analysis, we find the
greatest distance between the solutions of the 2-opt
operator. The Hamming and basic swap sequence dis-
tances are approximately the same for each operator.
The cost of density values are low for all operators, but
the lowest for 2-opt. In the case of a cycle crossover,
several solutions also have the same fitness value.

The results of the uphill-downhill walk are nearly
identical for each operator. The cost density values
are small for all operators. During the neutral walk,
we got the highest value of the average distances of
the fitness values in the case of the partially matched
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Type Distance Lower bound Upper bound
2-opt

Fitness values Fitness 130,000 150,000
Average of fitness distances Fitness 2,500 9,000
Average of hamming distances Hamming 26 34
Average of basic swap sequence distances Basic swap sequence 19 26
Fitness distances of the best solution Fitness 1,500 15,000
Hamming distances of the best solution Hamming 4 36
Basic swap sequence distances of the best solution Basic swap sequence 2 30
Cost density – 1 2

Order Crossover
Fitness values Fitness 120,000 140,000
Average of fitness distances Fitness 3,000 9,500
Average of hamming distances Hamming 30 36
Average of basic swap sequence distances Basic swap sequence 23 28
Fitness distances of the best solution Fitness 1,000 18,000
Hamming distances of the best solution Hamming 2 38
Basic swap sequence distances of the best solution Basic swap sequence 4 32
Cost density – 1 3

Cycle Crossover
Fitness values Fitness 120,000 140,000
Average of fitness distances Fitness 2,000 8,500
Average of hamming distances Hamming 28 34
Average of basic swap sequence distances Basic swap sequence 23 26
Fitness distances of the best solution Fitness 500 16,000
Hamming distances of the best solution Hamming 2 42
Basic swap sequence distances of the best solution Basic swap sequence 1 34
Cost density – 1 3

Partially Matched Crossover
Fitness values Fitness 120,000 130,000
Average of fitness distances Fitness 2,000 8,000
Average of hamming distances Hamming 32 36
Average of basic swap sequence distances Basic swap sequence 24 28
Fitness distances of the best solution Fitness 0 14,000
Hamming distances of the best solution Hamming 6 40
Basic swap sequence distances of the best solution Basic swap sequence 4 32
Cost density – 1 3

Table 4. Uphill-downhill walk

Effective Weak
Adaptive walk 2-opt CX, OX
Reverse adaptive walk 2-opt CX
Uphill-downhill walk

Table 5. Summary

crossover. Average Hamming and basic swap sequence
distances were the greatest for the partially matched
crossover operator. This means that this operator has
created the highest number of different solutions. Or-
der crossover distance values are also high but the cy-
cle crossover and 2-opt fitness distances are low. Based
on the cost density diagrams, the cycle crossover solu-
tions are the most unchanged, but the order crossover
solutions also do not change much. The 2-opt and par-

tially matched crossover solutions vary greatly, with
almost every solution having a unique fitness value.

The practical significance of the presented fitness
state space lies in the selection of the appropriate op-
timization operators. We can assume that the search
space topology of transportation problems of a similar
architecture is also similar. Based on that assumption,
our findings on optimal search space operators can be
generalized for VRP problems of the same type.

4. Conclusions and future work
In this paper, we have presented the fitness state space
analysis of a complex Vehicle Routing Problem. In our
fitness state space analysis, we examined the efficien-
cies of four operators: 2-opt, Cycle Crossover, Order
Crossover, Partially Matched Crossover. The adap-
tive walk, reverse adaptive walk and uphill-downhill
walk techniques were used as the analytical method.
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The adaptive walk receives a neighbour that is closest
to the previous solution during each iteration. The
reverse adaptive walk is just the opposite. During
the uphill-downhill walk, the adaptive and reverse
adaptive steps alternate. The walk results were anal-
ysed using fitness values, average of fitness distances,
average of Hamming distances, average of basic swap
sequence distances, fitness distances of the best solu-
tion, Hamming distances of the best solution, basic
swap sequence distances of the best solution and cost
density. Based on the test results, the 2-opt operator
proved to be much more efficient than the other op-
erators. Our further research is the investigation of
other operators, such as ER, Edge-2, Edge-3, MPX,
RAR, GNX operators. In addition, we plan to analyse
the search space of a discrete optimization problem,
which is permutation-based, such as scheduling tasks
(Parallel Machines Scheduling, Job Shop, Flow Shop,
etc.).
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