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Abstract. Conical-shape magnetic bearings are currently a potential candidate for various magnetic
force-supported applications due to their unique geometric nature reducing the number of required
active magnets. However, the bearing structure places control-engineering related problems in view
of underactuated and coupling phenomena. The paper proposes an Adaptive Disturbance Rejection
Control (ADRC) for solving the above-mentioned problem in the conical magnetic bearing. At first,
virtual current controls are identified to decouple the electrical sub-system, then the active disturbance
rejection control is employed to eliminate coupling effects owing to rotational motions. Comprehensive
simulations are provided to illustrate the control ability.
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1. Introduction
Recently, active magnetic bearing (AMB) has been
of increasing interest to the manufacturing industry
due to its contactless, lubrication-free, no mechan-
ical wear, and high-speed capability [1–3]. These
characteristics enable them to be employed in a va-
riety of applications, including artificial hearts [4],
vacuum pumps [5], and flywheel energy storage sys-
tems [6] and [7], etc. The motion resolution of the
suspended object in translation or high-speed rotation
is restricted solely by the actuators, sensors, and the
servo system utilised due to the non-contact nature of
a magnetic suspension. As a result, magnetic bearings
can be utilised in almost any environment as long as
the electromagnetic parts are suitably shielded, for
example, in open air at temperatures ranging from
235 °C to 450 °C [8]. Many researchers, in particular,
have endeavored to design a range of AMBs that are
compact and simple-structured while still performing
well. Because of the advantages of a cone-shaped
active magnetic bearing (AMB) system, such as its
simple structure, low heating, and high dependability,
there is an increasing number of studies on it [9, 10].
The structure of a conical magnetic bearing is iden-
tical to that of a regular radial magnetic bearing,
with the exception that both the stator and rotor
working surfaces are conical, allowing force to be ap-
plied in both axial and radial directions [11, 12]. The
conical form saves axial space, which can be used
to install gears and other components for an added
mechanical benefit. It also conserves energy for an op-

timal load support. Conical electromagnetic bearings
feature two coupled properties as compared to ordi-
nary radial electromagnetic bearings: current-coupled
and geometry-coupled effects, making dynamic mod-
elling and control of these systems particularly diffi-
cult. The current-coupled effect exists because the
axial and radial control currents flow in the bearing
coils simultaneously. Furthermore, the inclined angle
of the magnet core causes a geometry-coupled effect.
Coupled dynamic characteristics of the rotor conical
magnetic bearing system became known due to the
existence of the two coupled effects. So far, several
researchers have discussed the modelling and control
of cone-shaped AMBs [2, 13, 14]. Lee CW and Jeong
HS presented a control method for conical magnetic
bearings in [12], which allows the rotor to float in the
air stably. They proposed a completely connected
linearised dynamic model for the cone-shaped magnet
coil that covers the relationships between the input
voltage and output current. The connected controller
uses a linear quadratic regulator with integral action
to stabilise the AMB system, while the decoupled
controller is used to stabilise the five single DOF sys-
tems. Abdelfatah M. Mohamed et al. [11] proposed
the Q-parameterization method for designing system
stabilisation in terms of two free parameters. The
proposed technique is validated using a digital simula-
tion. As a result, plant parameters such as transient
and forced response are good, and stiffness character-
istics are obtained with small oscillation. Recently,
in [15], E. E. Ovsyannikova and A. M. Gus’kov cre-
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ated a mathematical model of a rigid rotor suspended
in a blood flow and supported by conical active mag-
netic bearings. They used the proportional-integral
differential (PID) control, which takes into account
the influence of hydrodynamic moments, which affect
the rotor from the side of the blood flow, as well as
external influences on the person. The experimental
findings are reported, with a rotor speed range of
5000 to 12000 rpm and a placement error of less than
0.2 mm. Nguyen et al. introduced a control approach
considering input and output constraints in the mag-
netic bearing system in [16] and [17]. The control
restricts the rotor displacement in a certain range
according to the system structure. In [18], modelling
of a conical AMB structure for a complete support
of 5-dof rotor system was reported by A. Katyayn
and P. K. Agarwal, who improved the system’s per-
formance by creating the Interval type-2 fuzzy logic
controller (IT2FLC) with an uncertain bound algo-
rithm. This controller reduces the need for a precise
system modeling while also allowing for the handling
of parameter uncertainty. The simulation results show
that the proposed controller outperforms the type-1
fuzzy logic controller in terms of transient responses.

In this paper, we examine the concept of conical
magnetic bearings for both the radial and axial dis-
placement control. The governing equations charac-
terising the relationship between magnetic forces, air
gaps, gyroscopic force, and control currents are used
to build the nonlinear model of the conical magnetic
bearing. The main contribution of the paper is that
rotational motions are treated as disturbances and are
handled by the Active Disturbance Rejection Control
(ADRC) [19, 20] to stabilise the cone-shaped AMB
system. ADRC was developed as an option that com-
bines the easy applicability of conventional PID-type
control methods with the strength of modern model-
based approaches. The core of ADRC is an extended
observer that treats actual disturbances and modelling
uncertainty together, using only a very coarse process
model to create a control loop. Because of the ex-
cellent abilities of ADRC, the paper also tackles the
unwanted dynamics due to rotational motions, which
are normally neglected in other related works. The
ignorance might lead to system degradation due to
a high operating speed resulting in strong coupling
effects. The effectiveness of the proposed control struc-
ture for stabilising the rotor position and rejecting
coupling-phenomenon-induced disturbance is numeri-
cally evaluated through comprehensive scenarios.

2. Dynamic modelling of conical
magnetic bearings

Consider the simplified model of a conical magnetic
bearing system as shown in Fig. 1. It is assumed that
the rotor is rigid and its centre of mass and geometric
centre are coincide. Furthermore, the assumptions
of non-saturated circuit and negligible flux linkage
between magnetic coils are made. Rm and β are the

Figure 1. Model of a cone-shaped active magnetic
bearing system.

effective radius and inclined angle of the magnetic
core, b1 and b2 are the distances between the two rad-
ical magnetic bearing and the centre of gravity of the
rotor; Fj (j =1 to 8) are the magnetic forces produced
by the stator and exerted on the rotor; (x, y, z) and
(θx, θy, θz) are the displacement and angular coordi-
nates defined with respect to the centre of mass. The
cone-shaped active magnetic bearing system can be
modelled as follows:

mẍ = (F1 + F2 + F5 + F6) sin β

− (F3 + F4 + F7 + F8) sin β − mg.

mÿ = (F1 − F2 + F3 − F4)cosβ.

mz̈ = (F5 − F6 + F7 − F8)cosβ.

Jdθ̈y = [(F6 − F5)b1 + (F7 − F8)b2]cosβ
+ (F5 − F6 + F8 − F7)Rm sin β + Jθ̇xθ̇z.

Jdθ̈z = [(F1 − F2)b1 + (F4 − F3)b2]cosβ
+ (F2 − F1 + F3 − F4)Rm sin β + Jθ̇xθ̇y

(1)

where J is the moment of inertia of the rotor about the
axis of rotation. The mass and moment of inertia of
the rotor are m and Jd, respectively. We also consider
the effect of the x-axis rotation on the other two axes.

Here, the first three equations in Eq. (1) are the
kinematics of the rotor’s transverse motion, while the
last two equations represent the rotor’s rotational dy-
namics. In addition, in the two rotational kinematics
equations, there is an additional component of the
feedback force. Suppose that when the rotor rotates
rapidly if a force is applied to the y-axis (z-axis) that
is sufficiently large to deflect the rotor from the axis
of motion by a small angle, the rotor itself will also
react back to a torque of the corresponding magnitude
equal to Jθ̇xθ̇z. Similarly, the component of gyro force
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Figure 2. Simplified model of the cone-shaped AMB
system.

along the z-axis is computed. In order to linearise,
the dynamic equation (1), small motions of the rotor
are considered. Fig. 2 shows the change of the air gap
of the cone-shaped magnet, which is written as:

gy1,2 = go − x sin β ± (y + b1θz) cos β

gy3,4 = go + x sin β ± (y − b2θz) cos β

gz1,2 = go − x sin β ± (z + b1θy) cos β

gz3,4 = go + x sin β ± (z + b2θy) cos β

(2)

where go is the steady-state nominal air gap. The
magnetic force can be written regrading to he actual
air gap and the current as:

F1,2 =
µoApN2(Io1 + iy1,2)2

4gy1,2
2

F3,4 =
µoApN2(Io2 + iy3,4)2

4gy3,4
2

F5,6 =
µoApN2(Io1 + iz1,2)2

4gz1,2
2

F7,8 =
µoApN2(Io2 + iz3,4)2

4gz3,4
2

(3)

where µo(= 4π×10−7H/m) is the permeability of free
space; Ap = A/cosβ, A is the cross-sectional area, N
is the number of coil turns; iqj (j = 1, 4&q = y, z) is
the control current of each magnet; Io1 and Io2 are the
bias currents in the upper and lower bearing. Assume
that the current change and the displacement of the
rotor are small relative to the bias current Io and
the nominal air gap. Apply Eq. (2) to Eq. (3) and use
the Taylor expansion series to obtain the magnetic

force, which is linearised as:

F1,2 = Fo1 + Ki1iy1,2 + Kq1x sin β

± Kq1(y + b1θz) cos β

F3,4 = Fo2 + Ki2iy3,4 + Kq2x sin β

± Kq2(y − b2θz) cos β

F5,6 = Fo1 + Ki1iz1,2 + Kq1x sin β

± Kq1(z − b1θy) cos β

F7,8 = Fo2 + Ki2iz3,4 + Kq2x sin β

± Kq2(z + b2θy) cos β

(4)

where Foj = µoApN2Ioj
2

4go
2 , j = 1, 2 are the steady-state

magnetic forces and kqj = 2Foj

go
, kij = 2Foj

Ioj
, j = 1, 2

are the position and current stiffnesses, respectively.

From the combination of Eqs. (1) and (4), the linear
differential equation showing the kinematics of the
5 degrees of freedom conical-AMB drive system can
be rewritten as:

Mbq̈b + Kbqb = Kibmim + Gq̇b (5)

where

qb = { x, y, z, θy, θz} T

im = { iy1 , iy2 , iy3 , iy4 , iz1 , iz2 , iz3 , iz4 } T

Kb=


−Kxx 0 0 0 0

0 −Kyy 0 0 −Kyθz

0 0 −Kzz −Kzθy 0
0 0 −Kθyz −Kθyθy 0
0 −Kθzy 0 −Kθzθz 0



G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 J

.

θx

0 0 0 J
.

θx 0



Kibm=



Ki1 Sβ Ki1 Cβ 0 0 Ki1 σ
Ki1 Sβ −Ki1 Cβ 0 0 −Ki1 σ

−Ki2 Sβ Ki2 Cβ 0 0 Ki2 γ
−Ki2 Sβ −Ki2 Cβ 0 0 −Ki2 γ
Ki1 Sβ 0 Ki1 Cβ Ki1 α 0
Ki1 Sβ 0 −Ki1 Cβ −Ki1 α 0

−Ki2 Sβ 0 Ki2 Cβ Ki2 γ 0
−Ki2 Sβ 0 −Ki2 Cβ −Ki2 γ 0



Mb =


m 0 0 0 0
0 m 0 0 0
0 0 m 0 0
0 0 0 Jd 0
0 0 0 0 Jd


Kxx = 4 (Kq1 + Kq2 ) S2β

Kyy = Kzz = 2C2β (Kq1 + Kq2 )
Kyθz = Kzθy = 2C2β (Kq1 b1 + Kq2 b2)
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Kθyz = 2C2β (Kq1b1 + Kq2b2)
+ S(2β)Rm (Kq1 − Kq2)

Kθzy = 2C2β (Kq1b1 − Kq2b2)
− S(2β)Rm (Kq1 − Kq2)

Kθyθy = 2C2β
(
Kq1b1

2 − Kq2b2
2)

+ S(2β)Rm (Kq1b1 + Kq2b2)
Kθzθz

= 2C2β
(
Kq1b1

2 + Kq2b2
2)

− S(2β)Rm (Kq1b1 + Kq2b2)
α = b1Cβ + RmSβ; σ = b1Cβ − RmSβ

γ = b2Cβ − RmS β

Here, qb is the displacement vector defined in the
mass centre coordinates; im is the control current vec-
tor and Mb , Kb and Kibm are the mass, position
stiffness, and current stiffness matrices, respectively.
As can be observed, the system’s equation is compli-
cated and coupled because the components outside
the main diagonal of the matrices, Kb , Kibm and G
are non-zero. Due to this characteristic, conventional
linear control rules cannot be applied directly to each
motion direction. As a result, the Active Disturbance
Rejection Control (ADRC) algorithm is employed to
handle the coupling effects by taking these effects as
system disturbances.

3. Control system design
The conical AMB system is naturally unstable,
a closed-loop control is required to stabilise the ro-
tor position. The control current of the system can
be calculated through the control structure “different
driving mode”, which is shown in Fig. 3.

Figure 3. Conceptual control loop of the cone-shaped
active magnetic bearings.

The main principle of the aforementioned structure:
where controlling the position of the rotor according
to the Y − axis and Z − axis, the magnet pairs are in
the poles that are opposite each other. For example,
iy1 and iy2 magnets, as well as, iy3 and iy4 , iz1 and iz2 ,

iz3 and iz4 are similarly controlled by this structure.
Here, the magnet in each pair is controlled by the sum
of the bias current and control current, and the other
with the difference of the bias current and control
current. This means that when the rotor is displaced
from its equilibrium position, the “different driving
mode” controls the pairs of magnets, whereas when
the rotor is in its equilibrium position, only the bias
current is present on each pair of the magnets. When
the rotor deviates from the equilibrium position, the
current through the pairs of magnets is written as in
the following equation:



iy1

iy2

iy3

iy4

iz1

iz2

iz3

iz4


=



Io1

Io1

Io2

Io2

Io1

Io1

Io2

Io2


+



1 0 0 0 −1
−1 0 0 0 −1
0 1 0 0 1
0 −1 0 0 1
0 0 1 0 −1
0 0 0 −1 −1
0 0 0 1 1
0 0 0 −1 1




Iyt

Iyd

Izt

Izd

Ix

 (6)

where Io = [Io1 , Io1 , Io2 , Io2 , Io1 ,Io1 , Io2 , Io2 ]T is the
bias current. At steady-state, consider Io = 0, ir =
[Iyt, Iyd, Izt, Izd, Ix]T is the x, y, and z axes’ virtual
control current. Ix is the virtual control current of
x-axes. The virtual control current in the upper half
of the y and z axes is (Iyt, Izt) , whereas the virtual
control current in the bottom half is (Iyd, Izd).

H =


1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 1 −1

−1 −1 1 1 −1 −1 1 1


T

In this case, Eq. (5) can be rewritten as:

Mbq̈b − Gq̇b + Kbqb = KibmHir (7)

Since the control is performed in the bearing coor-
dinates, rewriting the equations of motion in bear-
ing coordinates utilising the relationship between the
mass-centre coordinates (x, y, z, θy, θz) and the bear-
ing coordinates (x, y1, y2, z1, z2), given by:
qb = { x, y, z, θy, θz} T and qse = { x, y1, y2, z1, z2} T

qse = Tqb with T is the coordinate transfer matrix

T =


1 0 0 0 0
0 1 0 0 b1
0 1 0 0 −b2
0 0 1 −b1 0
0 0 1 b2 0


Eq. (1) shows that the inter-channel effect occurs
at Kb and KibmH because the major non-diagonal
components are not zero. The Kb and KibmH are
invertible. The following control structure is used to
eliminate the interstitial component:

ir = (KibmH)−1(v + KbT−1qse) (8)
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Figure 4. Control loop structure with active distur-
bance rejection control (ADRC).

Eq. (7) can be rewritten as:

Mbq̈b − Gq̇b = v (9)

where v is the new control signal’s vector. The intersti-
tial component has been removed in the control chan-
nels (x, y, z) leaving just the interstitial component in
the control channel (θy, θz) owing to the gyroscope
force.

The original model of the magnetic bearing is a com-
plex, multivariable nonlinear system, through the pro-
cess of linearity and decoupling, we have the linear
form of the system shown in Eq. (9) with 5 inputs
and 5 outputs. The full form of Eq. (9) is shown as
follows:



m
..
x = v1

m
..
y = v2

m
..
z = v3

Jd

..

θy +J
.

θx

.

θz = v4

Jd

..

θz +J
.

θx

.

θy = v5

(10)

Remark: It is noted that the first three equations
of Eq. (10) characterise the transnational motions
and can be readily stabilized using v1, v2, and v3.
The last two equation indicate coupling mechanism
related to the rotational motion of the rotor that is
normally ignored. In practice, the magnetic bearing
is normally employed to operate in high speed range,
hence rotational motion effects can not be neglected.

In this section, the ADRC controller will be used
to remove the remaining coupling components as
well as to stabilise the control object. An ADRC
controller is used for each input and output pair
(x, v1), (y, v2), (z, v3), (θy, v4), (θz, v5). In ADRC de-
sign, f(t) is unknown and is considered as a “general-
ized disturbance”, and b0 is the available information
concerning the model. The according structure of
the control loop with ADRC is presented in Fig. 4.
The fundamental idea of ADRC is to implement an
extended state observer (ESO) that provides an esti-
mate, f̂(t) , such that we can compensate the impact
of f(t) on our system. The equation for the extended

state observer is given as: ˙̂x1 (t)
˙̂x2 (t)
˙̂x3 (t)

 =

 0 1 0
0 0 1
0 0 0

  x̂1 (t)
x̂2 (t)
x̂3 (t)


+

 0
b0
0

 u (t) +

 l1
l2
l3

 (y (t) − x̂1 (t))

=

 −l1 1 0
−l2 0 1
−l3 0 0


︸ ︷︷ ︸

A−LC

 x̂1 (t)
x̂2 (t)
x̂3 (t)



+

 0
b0
0


︸ ︷︷ ︸

B

u (t) +

 l1
l2
l3

 y (t)

(11)

where x̂1(t) = ŷ(t); x̂2(t) = ˙̂y(t); x̂3(t) = f̂(t). Re-
moving the unknown components is done through the
following control law:

ÿ(t) = (f(t) − f̂(t)) + u0(t) ≈ u0(t)
≈ KP .((r(t) − y(t)) − KD.ẏ(t))

(12)

where r is the setpoint. In order to work properly,
observer parameters, l1, l2, l3, in Eq. (11) still have
to be determined. According to [20], the ADRC’s
parameters can be chosen to tune the closed-loop to
a critically damped behaviour and a desired 2% set-
tling time Tsettle. The tuning procedure is summarised
as follows:

Kp =
(
sCL

)2
, KD = −2.sCL

l1 = −3.sESO, l2 = 3.
(
sESO

)2
, l3 =

(
sESO

)3 (13)

with sCL = − 6
Tsettle

being the negative-real double
closed-loop pole.

sESO ≈ (3...10).sCL is the observer pole. Using the
ADRC controller to calculate the variable x, y and z
are calculated similarly:

ẍ = ( 1
m

.d(t) + ∆b.u(t))︸ ︷︷ ︸
f(t)

+b01v1

= f(t) + b01.v1(t)

v1(t) = KP 1.((r(t) − x̂(t)) − KD1.
.

x̂(t))

(14)

For equations containing the two variables (θy and
θz), which have an interleaved component between the
two equations. Because the interleaved component
is unknown, the extended observer can be used to
estimate and analyse it, using the ADRC controller
with variable θy, as follows:

θ̈y = ( 1
J

d(t) + ∆b.v4(t) + Jθxθz) + b04v4

= f(t) + b04.v4(t)

b04 = 1
J

v4(t) = KP 4.((r(t) − θ̂y(t)) − KD4.
˙̂
θy(t))

(15)
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Name Symbol
b01 = b02 = b03 1/m

b04 = b05 1/J

Tsettle 0.1 (s)
sCL -60
KP i (i = 1, . . . , 5) 3600
KDi (i = 1, . . . , 5) 120
sESO -420
l1i (i = 1, . . . , 5) 1260
l2i (i = 1, . . . , 5) 529200
l3i (i = 1, . . . , 5) 74088000

Table 1. Controller parameters.

4. NUMERICAL SIMULATIONS
In this section, we consider two scenarios to evalu-
ate the effectiveness of using the ADRC controller
in the case of variable speed rotation and rotor load
disturbance.

Bearing design parameters Value
Radial air gap g0 0.5 mm
Cross-sectional area A 18*10 mm
Inclined angle β 10o

Magnetic coils N 300 turns
Resistance R 2 Ω
Inductance of wire L0 20 mH
Rotor mass M 1.86 Kg
Moment of inertia Jd 0.00647 kgm2

Moment of inertia Jp 0.00121 kgm2

Bias current I01, I02 1.6 A,1 A
Bearing span b1, b2 81.7 mm,71.6 mm

Table 2. System parameters.

4.1. Simulation scenario 1:
We design an ADRC controller with a rotor rotation
speed of 3000 rpm. The initial values of the rotor’s
centre of mass position are: x0 = 0.25.10−3; y0 =
0.2.10−3; z0 = 0.125.10−3; θy = 0.1.10−3; θz =
0.2.10−3. Select the coefficients of the ADRC as fol-
lows sCL = − 6

0.1 , sESO = 7sCL, KP = (sCL)2, KD =
−2sCL, l1 = −3sESO; l2 = 3

(
sESO

)2
, l3 =

−(sESO)3.
The position of the centre of mass and the deflection

angle of the rotor return to the equilibrium position
after a time interval of 0.1 seconds and there is no
overshoot in Fig. 5 and Fig. 6. From Fig. 7, initially,
when the rotor position deviates from the equilibrium
position, a control current is generated to bring the
rotor back to the equilibrium position. After the rotor
is in the equilibrium position, the control current is
zero so that the bias currents I01 and I02 keep the
rotor in this equilibrium state. The impact force of the
magnet is shown in Fig. 8 as having a significant value

Figure 5. Response to the position of the x, y, z axes.

Figure 6. The position of the axis angle θy, θz.

Figure 7. Control current response.

at first to bring the rotor to equilibrium, but once the
rotor returns to equilibrium, the force is kept stable
at the values F01 and F02. From the above results, it
can be concluded that the controller is designed to
completely satisfy the requirements.
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Figure 8. Impact force of electromagnets.

Figure 9. Velocity deviation of x, y, z axes according
to observer.

Figure 10. Velocity deviation of θy, θz axes according
to observer.

Based on Fig. 9 and Fig. 10, the observer satisfied
the requirements, and the estimated velocity values
were near to the real velocity value after 0.1 s.

4.2. Simulation scenario 2:
The rotor speed will be changed to 12000 rpm to eval-
uate the controllability of the controller when the
rotor is in the high-speed region, the initial value of
the rotor’s centre of mass is: x0 = 0.25.10−3; y0 =
0.2.10−3; z0 = 0.125.10−3; θy = 0.1.10−3; θz =
0.2.10−3.

The simulation results on the x, y, and z axes are
identical to the first simulation scenario, as shown
in Fig. 12, where the angular position responses of
the axes θy, θz have an undershoot and the response
time has been increased to 0.2 seconds. Only the θy

and θz axes are impacted when the rotor rotates at
high speeds, but it soon returns to equilibrium. The
suggested controller takes into account the rotor speed
factor and demonstrates its capacity to function well
in the high-speed region.

Figure 11. Response to the position of the x, y, z axes.

Figure 12. The position of the axis angle θy, θz.
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Figure 13. Control current response.

Figure 14. Impact force of electromagnets.

5. Conclusions
In the paper, we consider the cone-shaped magnetic
bearing, which is characterised as a class of under-
actuated and strongly coupled systems. Based on
control current distribution, the coupling mechanism
in electrical sub-system is solved. Subsequently, an
active disturbance control is adopted to tackle the
rotational-motion-induced disturbance acting on the
system. The simulations are carried out proving that
the proposed control can effectively bring the the rotor
to equilibrium. The results also indicate that the cou-
pling effects from low to high rotational speeds do not
have a noticeable impact on the transnational motions
of the rotor. In the future, experimental study will
be carried out.
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