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ABSTRACT. We study the analytic solutions of the generalized Heun equation, (ao +air+asr?+
azr?) y" + (Bo + Bir + P2r?)y + (0o +e17)y = 0, where |ag| + 82| # 0, and {a;}P_, {Bi}i_o,
{ei}}_, are real parameters. The existence conditions for the polynomial solutions are given. A simple
procedure based on a recurrence relation is introduced to evaluate these polynomial solutions explicitly.
For ag = 0, a1 # 0, we prove that the polynomial solutions of the corresponding differential equation
are sources of finite sequences of orthogonal polynomials. Several mathematical properties, such as the
recurrence relation, Christoffel-Darboux formulas and the norms of these polynomials, are discussed.
We shall also show that they exhibit a factorization property that permits the construction of other
infinite sequences of orthogonal polynomials.

KEYWORDS: Heun equation, confluent forms of Heun’s equation, polynomial solutions, sequences of
orthogonal polynomials.

1. INTRODUCTION

It seems as a simple question to ask: Under what conditions does the differential equation
m3(r)y” + m2(r)y + mi(r)y = (A + pamo(r)) v,

where A\, and w, are constants and m;(r),j = 0,1,2,3 are polynomials of unknown degree to be found, has
n-degree monic polynomial solutions y, = > ._q Ck r*, e #0, ¢ =17

A simple approach to deduce the possible degrees of m;,j = 0,1,2,3, is to examine the degrees for the
(possible) polynomial solutions y,,:

For n =0, yo(r) = 1, we must have m1(r) = Ag + po7mo(r) and the degree of the polynomial 71 (r) must have
the same degree as that of 7y(r), so we may combine the same degree polynomial coefficients of y and write the
equation as

m3(r)y” + ma(r)y’ + m(r)y = 0.

Next, for a polynomial solution of degree one, say y;(r) = r + «, the differential equation reduces to
ma(r) + m(r)(r+a) =0
and the degree of o should be the degree of 7 (r) plus one.
Similarly, for a second-order polynomial solution, say y(r) = r? + ar + 3, it follows by substitution that
73(r) + mo(r)(2r + @) + m(r)(r* + ar + ) =0

which indicates that the degree of 73(r) should be the degree of w5 plus one, which, in turn, is a polynomial of
w1 degree plus one.

This simple argument shows that for the polynomial solutions of the linear second-order differential equation
with polynomial coefficients, the degree of the polynomial coefficients 7,(r), 7 = 3,2, 1 must be of degree n, n —1
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and n — 2, respectively. So, without the loss of generality, we may direct out attention to the following: Under
what conditions on the equation parameters oy, B, and €k, for k=0, 1, ..., n, does the differential equation

n n—1 n—2
(Z o k) y'(r) + (Z B rk> y(r) + (Zsk M) y(r)=0,n>2 (1)
k=0 k=0 k=0

has polynomial solutions y =Y -, C;r’ ¢

A logical approach is to examine the differential equation using the series solution

oo .
y=2Crl,
§=0
&)
y=icrh
j=0
oo}
y' =30 —1Cr?
i=0

in and enforce the coefficients C; = 0 for all j > m+1, m=0,1,2,--- to find the condition so that C,, # 0.
This approach leads to a conclusion that for equation to have m degree polynomial solution, it is necessary
that

ena=-—m(m—1)a, —mfB_1, n=2,3,---. (2)

Did this answer the question? Indeed, no. Consider, for example, this simple equation
3y + 2%y + (—=2r + 5)y = 0.

Clearly, the necessary condition is satisfied for m = 1 and one expects the existence of a first degree
polynomial solution, say y = 7 + b, for an arbitrary value of b € R, however, 272 + (—2r + 5)(r + b) # 0 for any
real value of b.

Therefore, for n > 3, the condition is necessary but not sufficient for the existence of polynomial solutions
of the differential equation .

Note, for n = 2, equation is the classical hypergeometric-type differential equation [IH4]
(a21® +arr+ao)y” + (Bir+ o)y +e0y =0 (3)
with the necessary and sufficient condition [2] for the polynomial solutions
co=-m(m—1)ay—mp;, m=0,1,2,---.
For n = 3, the differential equation assumes the form

p3(r)y" +pa(r)y +p1(r)y =0,

3 .
p3(r) = X ayr?,
=0
2
pa(r) = X Bjr?, (4)
7=0
1 .
p1(r) = ;}ajrj, o ,B5,65 € R,
i=

which includes as a special case or with elementary substitutions, the classical Heun differential equation [5] 6]

7 v 4 € / afBr—q .
y+<7’+r1+Ta)y+r(r1)(ra)y_0’ (5)

subject to the regularity (at infinity) condition

a+B8+1=v+0+c¢,
and its four confluent forms (Confluent, Doubly-Confluent, Biconfluent and Triconfluent Heun Equations).
These equations are indispensable from the point of view of a mathematical analysis [5HI1] and for its valuable
applications in many areas of theoretical physics [5] 6] [12H20].

In the present work
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e From equation , we will extract the possible differential equations that can be solved using two-term
recurrence formulas.

e From equation , we will extract all the differential equations whose series solutions can be evaluated with
a three-term recurrence formula.

e For ag # 0, we shall devise a procedure based on the Asymptotic Iteration Method [21] to find the series and
polynomial solutions of the differential equation .

e In the neighbordhoud of a singular point r = 0, i.e., with ay = 0, we will prove that the series solution can
be written as

ad P -s(e’:‘o)
(r)=) (-D* £ s,
Y kZ:o ak (g—(l’—i—s)k(l—i—s)k

where s is a root of the indicial equation. Also, we show that {P.s(e0)}32, is an infinite sequence of
orthogonal polynomials with several interesting properties.

e By imposing the termination conditions, we study the mathematical properties of the finite sequences
of the orthogonal polynomials {Py;s(c0)}}_, and explore the factorization property associated with these
polynomials.

2. ELEMENTARY OBSERVATIONS

The classical approach to study the analytical solutions of equation relies on the nature of the singular points
of the leading polynomial coefficients

25a0+a1r+a2r2—|—a3r3

in addition to the point 7 = oo in the extended plane. For real coefficients and oy # 0, the odd-degree polynomial
£ is factored into either a product of a linear polynomial and an irreducible quadratic polynomial or a product
of three linear factors.

In the first case, the polynomial £ can be written as
L=a3(r—&(*+br+c)

where 12 4 br + ¢ is an irreducible polynomial. In this case, ¢ is regular, real, singular point and oo is irregular
for otherwise, the differential equation can be solved in terms of elementary functions according to the classical
theory of ordinary differential equations. In this case, the differential equation can be written as

d*y (Hl n M2 )dy €17 +¢o

dr? r—§& r24+br+c %+a3(r—§)(r2+br+c)yzo' (6)

The second case, the polynomial £ can be written as
£=a3(r—E&)(r—E&)(r—E&)
where £;,7 = 1,2,3 and oo are all regular singular points, i.e., the differential equation of Fushsian type,
3

d*y my | dy €17 + €0 _
Il DDl I e ooy T Ty LAl @)

Jj=1

where p; are constants depending on the differential equation parameters. One can then study the series
solutions of equations (6)) and (7)) using the classical Frobenius method.

Another approach, recently adopted, to study , depends on the possible combination of the parameters
aj,7 =0,1,2,3 such that the polynomial £ does not vanish identically. There are fifteen possible combinations
in total. These fifteen combinations can be classified into two main classes: the first class is characterized by
g # 0, which has eight equations in total, the second class characterized by ag = 0 includes the remaining seven
equations. Each of these two classes will be studied in the next sections. First, we consider some elementary
observations regarding the differential equation .
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We assume no common factor among the polynomial coefficients p;(r), j = 1,2,3, we start our study
of equation by asking the following simple question: Under what conditions the series solutions of the
differential equation can be evaluated using a two-term recurrence relation [22]? For, in this case, the two
linearly independent series solutions can be found explicitly.

Theorem 2.1. The necessary and sufficient conditions for the linear differential equation
p2(r)u’(r) + pr(r) /' (r) + po(r) u(r) = 0, (8)

to have a two-term recurrence relationship that relates the successive coefficients in its series solution is that in
the neighbourhood of the singular regular point ro (where pa(rg) = 0), the equation (§) can be written as:

92,0 + go.n (r = 70)"] (r = 70)> 7™ 0" (r) + [q1,0 + qun (r = 70)"] #1770 (r)

q2(7) q1(r)

+ [g0,0 + go,n (1 —70)"] (r = r0) " u(r) = 0, (9)
qo(r)
where, form €Z ,he€Z", j=0,1,2,
g;(r) =Y ajk(r—r0)* = p;(r) (r —ro)™ 7, (10)
k=0

when at least one of g;0,j = 0,1,2 and ¢;,5 = 0,1,2, is different from zero. In this case, the two-term
recurrence formula is given by

Ck (k+AX=h)grk+X—h—1)+q.nr]l+qon

= — , 11
Ch—h (k+N[g2ok+X=1)+q10] + q0,0 (11)

where cg # 0, and A = A1, Ay are the roots of the indicial equation
20 A =1)+q10A+qo0=0. (12)

The closed form of the series solution generated by can be written in terms of the generalized hypergeometric
function as

o0
) /\§ : hk _ .\ 22—1 avn  V/(41,n—42,)>=440,n 2,1
’LL(T‘,)\) =z CheT" =173k (]" 2h + 2hgan 2hq2,n ’
k=0
2 R \/(ql,h—qz,h)2—4qo,hqz,h_1+2>\—1+ g0 V/(g1,0—42,n)%—440,042.0
2h 2hq2n 2hqan ’ 2h 2hqz0 2hqz0 ’
22—1 q1,0 V(a1,0-92,0)2—4490,092,0 . az,n .k
1+ o T 2hqz,0 + 2hqgz,0 T ) (13)

Applying this theorem, equation generates the following solvable equations:

¢ Differential equation:

r? (ag +agr)u”(r) +7 (B + Bar)u'(r) + (eo +er1m)ul(r) =0, e #0, (14)
Recurrence relation: For k =1,2,--- , and ¢y = 1,
Ck :7(k+/\—1)[a3(k+)\72)+52]+51 (15)
Cr—1 (k+>\)[a2(k+>\—1)+61]+80 ’

where A = A, A_ are the roots of the indical equation
ag)\(>\— 1)+51)\+€0 :07

namely

s — B £ /(a2 — B1)? — daseg
2&2 '

Ay =
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The two linearly independent solutions generated by , in terms of the Gauss hypergeometric functions,
are:

U+ =r

22=Mi (azﬂ;ﬂwLm?EO o F, (52 _ B4 V0az=p1)2—dazeq  /(az—P2)>—dager

2ag3 202 200 2a3 ’

203 2as 2 2as T e

B B4 V/(az—B1)2—4azeq 4 \/(a37ﬁ2)274a301; azty/ (az;[231)274a260. a3 7’) ) (16)

¢ Differential equation:

(a1 4+ azr3)u’(r) 4+ (Bo + far?)u/(r) + ey ru(r) =0, (Bo # 0), (17)
Recurrence relation:

a _ (k+A=2)ag(k+A=3)+ B +e . B
Choz TNt A=)t 5 (oaFl k=23 (18)

where A = A, A_ are the roots of the indicial equation
041)\<)\—1)+60)\:0,

i.e )\+ == 0,)\, =1- ﬂo/al.
The two linearly independent series solutions generated by are:

2 1 V(s — B2)? — dase
40[3 4 4(13 ’

Zﬁ_i_i_\/(a?»—iz):—‘laaﬁl;; 2/5;?1;_3?42)7 (19)
and
w(r) :Tk% o F, (4114_4%3 B % _ \/(as—iza)j —4a3£1’
1+62—ﬂo+\/(a3_62)2_4a351;3—60;—037“2) (20)
4 4oz 20 4o 2 201 a1
o Differential equation
(o + azr®)u" (1) + Bar? ' (r) + erru(r) =0, ag #0, (21)
Recurrence relation:
c:: T e a:)(gj‘i(i)JgkA+)\4)_J;)ﬂz] o ) (co #0), (22)

where A = A1, Ao are the roots of the indicial equation ag A (A — 1) = 0, namely, A\; =0, Ay = 1.
The two linearly independent series solutions are:

60&3 ’ 6043 ’ 37 (7))

() = oF, (_ag — Bo+ /(a3 — B2)? —dazer  —az + Pa + /(o3 — P2)? — dazer 2 as r3> ., (23)

and

a3+ B2 — /(a3 — B2)? —dager az+ B2+ /(o3 — B2)? —dazer 4 oz 3 (24)
60&3 ’ 6053 ’ 3’ (7)) ’

'LLQ(T‘) =T 2F1 <

Out of the three generic equations (14)), and (21)), five exactly solvable differential equations (Cases 1, 4, 5,
8, and 10) of the type follows and other five (Cases 2, 3, 6, 7, 9) that can be derived directly from them by
taking the limits of the equation parameters. For direct use, the ten equations are listed in Table
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DEs and their linearly independent solutions

1 agr?u" + (Bir + Bar?)u’ + (g9 +e17)u =0

1 3.2
1 +52—1/(a2—B1)2—4dazeq 1 \/ (a2 —p1)? 404260 (a2 —p1)2—4azeo Ba
_ 34t 1 . P2
u=r 2 2 1F1 5 20&2 + 200 s ’ Oéz/r ’
u =
r*%Jrﬁfﬁ (a2—p1)%—4dazeo (Ll _ 5 el V/(@2—=B1)2—dazeo 11— V(@2=p1)%~daseo _ B2,
151V 2 7 24, B2 202 2 b s ’

2 agr?u” + Biru’ + (g9 +e17)u =0
u:r%_m"_?az\/m £ <_;1+ (042—/81)2_4(1260__51,r,>’

[e') ) (6]
_1,.P 1 2 — —B3.)2—4
w = 2T %z " Fag V(@2 f1)? —dazeo oFy ( (a2—p1) 0‘250;_& 7«) .
(e %) a2
3 ao r2u + Bor?u’ + (50 +er)u=0
Jog—ie
u:réi%zo F S T 042—460.1_ \/02—460._@7,.
141 ﬁz PNGTEE [as ! Qs ’
Vos—4
u = T%Jr% \F + 81 + Vaz—4eg. 1+ as—deq. _ B2
1 2\/042 £/ 2 ) a2 :

4 (a2r? +azr3)u” + Briru + (go +e1r)u=0

)
u = ri s e V(=B s (1 as—de; _ By V(ee=fi)dass
- 2

a3 2042 20(2 ’
1 [az—4e; \/ (a2 —p1)? 404260 (a2—p1)?—daseo | a5 r
2 as 2a2 20 Qg ) (e}
L_B1 1 fay—p1)2— (a—B1)2—daze
— p2 Za; Za 2=F1)%—dazeo 1 fag—de; B V(e2=hi) —dazen
u=r 2 2 2F1 2 as 20 20 ’
_l az—4eq o 61 \/((12—[3’1 40260 (a2—51)2—4a250. —%’]"
2 a3 200 2ain asz 7 o :

5 (a2 7? + azr3)u’ + Bar?u’ + (g9 + e17)u =0
w— T%—z\/l@\/az—4eo2FI (52 1 faa—deg | V(a3 —B2)%— 404361

2as 2 a2 203
B2 1 [as—deq _ V(as=B2)?—dase; 1 Yaz—deo. a3,
2a3 2 Qo 2a3 ’ Va2 ) D) ’
1 1 2
u=r2taves \/&274502F + az 450 v (az—B2) 4(1381
20&3 2 2&3

B2 1 [as—4eq \/ (a3 —PB2) 2—4aze; Vag— 46(] _ag
%05 T 2 + ; 1+ r

Qg 2a3 Vo ? a2
6 (aar? +azr®)u” + (g +e17)u=0
u = T%—ﬁvuz—‘lfo F 1 ag—4eq _ Noaz—4er 1 ag—4eq _ Naz—4er, 1— \/0427450, _ a3 r
- 21 2 (e 2az 7 2 Qo 2. /a3 ! /o ' an 5
1 1
stz =—=Vaz—4eo 1 [as—4e Vas—4e: 1 [ag—4e Vasz—4e Vaz—4e a
— »2T3/a5 1 2 0 _ 3 11 2 0 3—4e1 2 0.__ a3
U r 2 2F1 2 s 2 /a5 02 s + 2 /as ].“F Va0 a2r .
7T ar?u’+ (s terr)u=0

4. 4
u:r%‘*‘%\/l—% Fy(i14 /14 20, =1y u:r%_% =32 Fi(:1=./1—4%0._ 21,
04’1\ e o 04’1 \» s ) s

8 arru” + (Bo+ far?)u' +e1ru =0,

Bo
. B2 2 B 1 3 _ Bo._ B2 ,2
“_1F1(25272+2a17 2ar " u=r k|3 2a1+2ﬂ2’2 2a1°  2a1 ! )"
9 alru”+ﬁou’+51ru:0,
Bo
_ ._81 2 I e .3 _ Bo._ &1 ,2
o (ke ). e on (- )

10 apu”’ + for?u’ +e1ru=0,
= 1F1(3%;§5_:5T20T3) u:r1F1< +352;37_?§720T3)'

TABLE 1. Ten solvable equations of the type that follows from the generic equations , , and .
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3. THE SOLUTIONS IN THE NEIGHBOURHOOD OF AN ORDINARY POINT

3.1. SERIES SOLUTIONS

In the case of ag # 0, r = 0, there is an ordinary point for the differential equations . The classical
theory of differential equation ensure that the has two linearly independent power series solutions in the
neighbourhood of r = 0 and valid to the nearest real singular point of the leading polynomial coefficient
L=ag+arr+axr?+azr® = 0. Indeed, the polynomial £ = 0 has the discriminate [23]:

A=18azasayap —4asag+aial —4azal — 2702 al. (25)

The nature of the £ roots as given by along with the corresponding eight differential equations are
summarized in Table 2l

For these differential equations, the following theorem, that can be easily proved using Frobenius method,
holds.

Theorem 3.1. (Formal series solutions) In the neighbourhood of the ordinary point r = 0, the coefficients of
the series solution y(r) = Y p—, Cir* to the differential equation @ satisfy the four-term recurrence relation

((k=1)((k —2)as + B2) + £1) Cp—1 + (k((k — 1) az + B1) + £0) Ci
+ (k + 1) (ka1 + Bo) Ck+1 + (k +2) (k + 1) g Cp2 = 0, (26)

where k =0,1,2,---, with C_y = 0 and arbitrary nonzero constants Cy and C;. The radius of convergence of
these series solutions is extended from r = 0 to the nearest singular point of the leading polynomial coefficient
£=0.

The first few terms of the series solution are given explicitly by
— B
Co = —52Co— 34 C1,

Cy = (a1+Bo) eo—ap €1 Co + ﬁo(al+ﬁog;§o(ﬁ1+so) C,

2
6ag

For agy # 0, using , we can extract the following differential equations with series solution from using
a three-term recurrence relation:

¢ Differential equation:

(a0 +arr+agr®)u”(r) + (Bo + Bor?) W/ (r) + 1 ru(r) = 0. (27)
Recurrence formula:
Chia = — (k+1)(k a1+ Bo) o — (k—1)((k—2)az + B2) + &1 Crv. (28)
(k+1) (k+2) oo (k+1) (k+2) oo
¢ Differential equation:
(a0 + aar? + agr®) u’(r) + (By 7 + Ba r2)u/ (7) + &1 ru(r) = 0. (29)

Recurrence formula:

k(k‘—l)ag—f—k‘ﬁl (k‘—l)(k‘—Q)Oég—i-(k—l)BQ‘i‘&l

Chyo = — - Cr—1. 30
PTG D) (k+2) g (k+1)(k+2) ao k-l (30)
e Differential equation:
(a0 + aar?) W'(r) + (Bir + Bor?) /(1) + e1ru(r) = 0. (31)
Recurrence formula:
k(k—l)()@-ﬁ-k‘ﬁl (/{5—1)62+61
Clyo = — Cy — Cr—1. 32
T Tkt 2 a0 " (k) (k+2)ag (52)
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DE az3 ay a1 Qg Discriminant Roots of £ Domain definition
Az >0 S #&#E 7| < minj—1 23§
a3 az ar Qg Az =0 §1=8=8=¢ Ir| < ¢
I Az <0 £€ER Irl < ¢
Differential equation: (co+ a17 4+ agr? +azr3)y” + (Bo + Bir + B2r?)y + (o +e17)y =0
Discriminant: As =18 asas aq ag — das® ap + ax’a1? — das aq® — 27 as? ap?
Az >0 §1 # & 7| < ming—12&;
0 Qg Q1 Qg A3=0 GH=E&=¢ ‘7‘|<§
I1 A3 <0 None Ir] < oo
Differential Equation: (o +arr+asr®)y" + (Bo+ Bir+ Bar?)y + (eo+e1m)y=0
Discriminant: Az = a3(—4azap + a1?)
arog >0 r=—ap/a; —c0 <1< —apfa
0 0 (651 (%))
arog < 0 r=—ap/ay —ap/ag <1 < oo
111
Differential Equation: (apg+ar )y + (Bo+ Prr+ Bar®)y + (o +e17m)y =0
Discriminant: A3=0
0 0 0 Qg None None —00 <1 <00
v Differential Equation: aoy" + (Bo+Bir+B2r?)y + (e +e1m)y =0
Discriminant: A3 =0
Az >0 §1#& #E8 7] < ming=y 23§
az 0 a1 ag Az =0 §1=6=E8G=¢ Ir] <&
\'% A3 <0 £EeR Ir| < ¢
Differential Equation: (o +arr+azr®)y" + (Bo+ Bir+P2r?)y + (o +e1r)y =0
Discriminant: Az = —daga® — 27 az? ap?
Az >0 §1#8& #E 7| < min;—y 23§
az az 0 Qo Az =0 §1=86=8=¢ Ir| < ¢
VI A3 <0 £eR Ir| < ¢
Differential Equation: (a0 +azr? +agr?)y” + (Bo+ frr+ Bar?)y' + (e0 +e17)y =0
Discriminant: Az = —4 a3 ag — 27 as? ap?
as 0 0 Qo apag <0orapas >0 &=/ —ap/as Ir| < &
vil Differential Equation: (ag+azr)y” + (Bo+Bir+ Bar?®)y + (o +e1m)y=0
Discriminant: Asg = =27 a3? ap?
—\/—ar<r<
o0y < 0 r=4,/—%
0 ay 0 Qg a2 /_ao
(eD)
VI asag >0 None —00 <1 <00

Differential Equation:

Discriminant:

(o +asr?)y” + (Bo+ fir+Bar?)y + (o +e1r)y=0

Ag =—4 0123 (675}

TABLE 2. Tabulating the eight different types of differential equations, which apply to Theorem
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¢ Differential equation:

(a0 + 3 7“3) u(r) + (Brr+ Bar?)u'(r) + reru(r) = 0. (33)
Recurrence formula:
kB (k=1)(k —2)ag + (k—1)Bs + &1
Crio = — Cy — Cr_1- 34
T T D) (k+2) a0 " (k+ 1) (k +2) ag o (34)
¢ Differential equation:
g (r) 4+ (Brr + Bar?)u/ (r) +e1ru(r) = 0. (35)
Recurrence formula:
_ k 1 (k—1)B2+e1
Cr2 = D k1 2)ag F e+ 1) (k4 2)ag <" (36)
¢ Differential equation:
(a0 + aor® + azr®) u'(r) 4+ Bird/(r) + exru(r) = 0. (37)
Recurrence formula:
k(k—l)ag + kB (k—Q)(k—l)Oé3+€1
Crio = — — Cr_1. 38
2 k+1)(k+2a0 G+ (k+2)ap (38)
¢ Differential equation:
(a0 + agr®)u’(r) + i/ (r) + e ru(r) = 0. (39)
Recurrence formula:
k 31 (k‘—Z)(k—l)O@—‘rEl
Clao = — — Cr_1. 40
2T T+ Dk +2) a0 " k+1D)(k+2)ag " (40)
¢ Differential equation:
(a0 + aor®)u’(r) + i/ (r) + e ru(r) = 0. (41)
Recurrence formula:
]{;(]{— 1)&2 + k By &1
Crao=— — Cr_1. 42
b2 k+D(k+2)a0 " (k+1)(k+2)ag " (42)
¢ Differential equation:
(a0 + aar?) u’(r) + (Br + B2r®)W (1) + e1 7 u(r) = 0. (43)
Recurrence formula:
k(k —1)as + B k) (k—1)B2 + &1
=— — 1. 44
Cr+2 1) (hr2ag F (k+1)(k+2)aock 1 (44)
¢ Differential equation:
' (r)+ Brru(r) +erru(r) =0, (45)
Recurrence formula:
k €
Cry2 = — b - Cr-1- (46)

(k+1)(k+2)0‘“_ (k+1) (k+2)

3.2. POLYNOMIAL SOLUTIONS

The series solution y(r) = >, Ck ¥ terminates to an n"-degree polynomial if C, # 0 and C; = 0 for all

j >n+1. It is not difficult to show by direct substitution that for polynomial solutions of P, (r) = >"}_,Cx rk,
it is necessary that
e1=-n(n—1)asg —npBs, n=0,1,2---. (47)
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Furthermore, the polynomial solution coefficients {Cy}}_, satisfy a four-term recurrence relation, see ,

(k= 1)((k —2)as + B2) + e15n) Com1 + (k((k — L)az + B1) + €0in) C
+(k+1)(ka1+50)Ck+1+(k+1)(k+2)a06k+2:0, k=0,1,...,n4+1, (48)

n—equations

that generates a system of (n + 2) linear equations in {Cp}}_:

(n+2)—equations

The first n equations are

k=0, —€0Co + PoC1 +2apC2 =0
k=1, — €1Co + (B1 4+ €0)C1 +2(0a + Bo)C2 + 6 C3 =0
k=2, — (B2 +e1)C1 + (202 +2B1 +¢e0)Ca +3(2a1 + Bo)Cs +12a0Cs =0

k=3, = (2as+2p24+¢€1)Co+ (62 +381+¢€0)C3+4(3a1 + P0)Ca +2000C5 =0 (49)

k=n-1 — ((n —2) ((n —3)as + 52) + 61;n)cn72 + ((n — 1)((n —2)az + /5'1) + so;n)Cnfl
—|—n((n - Do+ ,BO)Cn =0.

These equations permit the evaluation, using say Cramer’s rule, of the coefficients {Cj }}_; of the polynomial
solution in terms of the non-zero constant Cy.

The (n + 1) equation
(n=1)(n—=2)az+(n—1)Ba+e1)Ch1+ (n(n—1) a2 +n B +e0)C, =0, (50)
gives our sufficient condition that relates g = ¢, to the remaining parameters of the differential equation.
Finally, the (n + 2)*" equation
etpn=—-nmn—1az—nps, n=0,1, -, (51)
re-establishes the necessary condition (1 = €1.,,) for the existence of the n-degree polynomial solution, see .

For a non-zero solution, the n + 1 linear equations generated by the recurrence relation require the
vanishing of the (n + 1) x (n + 1)-determinant (with four main diagonals and all other entries being zeros)

So 11 m
1 S1 T m
72 S2 T3 73

Apir = ;
Yn—2 Sn—2 Tn—l nn—l
Yn—1 Snfl Tn
Yo Sn
where

Sk = €0 + k((k — )az + B1)
Ty, = k((k = Dea + Bo) ,
Ve = e1m + (k= 1)((k — 2)as + fB2)
e = k(k+1)ag,
and for fixed n,
eim=-—nn—1)as—nps. (52)
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A simple relation to evaluate this determinant in terms of lower-degree determinants is given by
App1 =Sk Ak =V T Ap—1 + Ve Ve—1Mk—18%—2, (A2=A_1=0,A0=1,k=0,1,...,n). (53)

Although there is a classical theorem [24] that guarantees the simple distinct real roots of the three diagonal
matrix, to the best of our knowledge, there is no such theorem available for the matrix-type . However, we
shall assume, in the following example, that the matrix entries allow for the distinct real roots of the resulting
polynomial of eq.,.

Illustrative example:

e For the zero-degree polynomial solution Pg (r) =1, i.e., n = 0, the coefficients C; = 0 for all j > 1 and the
recurrence relation for k = 0,1 gives, respectively, the necessary and sufficient conditions

€1;,0 = O, €0;,0 = 0. (54)

e For a first-degree polynomial solution, n = 1, the coefficients C; = 0 for all j > 2 where £ = 0,1, 2 give the
following three equations

€0;1Co + BoC1 = 0,

€1;1Co + (B1 +€0;1)C1 =0, (55)
(B2 +¢€1,1)C1 = 0.
So, for Cy = 1, it is necessary that €1, = —f2 and therefore, C; = —¢¢.1 /80 where €¢.1 are now the roots of

the quadratic equation
Bo B2 + Bieo:1 + 83;1 = 0.

Let 56;1, ¢ =1,2, denote, if any, the two distinct real roots 58;1 #* 5(1);1 of this quadratic equation. Then, for
the two (distinct) differential equations

(a0 +arr+azr? +asr®)Ply (r) + (Bo + B + B212) Py (1)

+ (Eg;l _ﬁ27a) Pl;f (T) :O, ! = 1, 2, (56)
the first-order polynomial solutions are
¢
50;1
P =T, (57)

Bo B2+ Prefy + (€6,1)* =0, £=1,2.

e For a second-degree polynomial solution, n = 2, the coefficients C; = 0 for all j > 3 where k =0, 1, 2, 3 give
the four linear equations

€0;2Co + BoC1 + 209 Cy = 0,

€1;2Co + (B1 + €0;2) C1 + 2(a1 + fo) C2 = 0,
(B2 +€12)C1 + (2 + 281 +e0:2) C2 = 0,
(203 + 2 B2 + €1.2)C2 = 0.

The very last equation of , correspondent to k = 3, gives the necessary condition
€12 = —2a3 — 20, (59)

and for k = 0,1, the coefficients of the polynomial solution y(r) = 1+ Cy 7 + Co r? read

—E&0;2 20[0
2a3+262 201 + 200,
1= )
Bo 20
B1+e02 201 +25
(60)
Bo —£0;2
B1+e02 2a3+206
Coy = .
Bo 2aq

B1+e02 201+ 25
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The equation corresponding to k = 2 and n = 2 establishes the sufficient condition

56;2 50 20{0
—2a3 —2fs Br+efy 201 + 203 =0, (61)
0 Bo—2as—202 20+ 201 +ehy

where ¢ = 1,2, 3 refers to the three distinct simple roots 56;2, ¢ =1,2,3, if any, of the polynomial generated
by the determinant . Hence, for each index ¢ = 1,2, 3, the differential equation

(ao +arr+asr?+as 7“3) Pg;@ (r) + (50 + 61+ B 7"2) Plg;z (r)
+ (efi2 — (203 4+ 2B2) 1) Poy (r) = 0, (62)

has the polynomial solution (for £ =1, 2, 3.)

—€b. 20y Bo —€b.
20(34—252 20{1—}-250 ,81 +E€.2 2()[3+262
Poy(r) =1+ "+ : r?, (63)
Bo 20 Bo 200
B+ 66;2 201 4+ 209 B1+ 66;2 201 + 20

The above constructive approach can be continued to generate higher-order polynomial solutions of an arbitrary
degree.

Theorem 3.2. Suppose the polynomial in 56m generated by the determinant has n + 1 distinct real roots
arranged in ascending order ep,,, < £g.,, < €4, < -*+ < €.,,, then, the eigenvalue problem

d’P,,. dPp,
(a0 + a1+ asr? + azr?) dr2l,€ + (Bo + B+ B21?) 7”@
— n( (n—1)as+ 62) rPpe= —E(e)m P, (64)
has a polynomial solution of the degree n, for { =1, 2, ..., n+ 1.
This theorem is illustrated by Figure[l] for n =0, 1,2, 3,
n=>0 n=1 n=2 n=3
55;0 E(1);1 5%;1 5(1);2 €0:2 €0;2 55;3 6%;3 58;3 53;3

- .

Poa(r)  Pra(r) Pua(r) Poa(r) Paao(r) Pas(r) Paa(r) Pso(r) Psa(r) Paa(r)

FIGURE 1. A graphical representation of Theorem

A,

Open problem: It is an open question to establish the condition(s) on the parameters so that the polynomial
generated by the determinant @ has simple and real distinct roots.

4. THE SOLUTIONS IN THE NEIGHBOURHOOD OF A SINGULAR POINT

4.1. SERIES SOLUTION AND INFINITE SEQUENCE OF ORTHOGONAL POLYNOMIALS {Py(c0)}72,

As mentioned earlier, if ag = 0, there are seven subclasses characterized by the equation

r(on+aor+asr®)y" + (Bo+ Bir+ Bar?)y + (so+err)y=0. (65)
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The classification of these seven equations along with their singularities and the associated domains are
summarized in Table[3] From this Table, it is noted that if a3 # 0, there are four subclasses where the point
r = 0 is a regular singular point, while if a; = 0, the condition Sy = 0 is necessary to ensure that r = 0 is
a regular singular point for two additional subclasses and the last equation is a class where r = 0 is irregular
singular point unless we reduce to Euler’s type (a3 = as = 81 = B9 = g0 = 0).

In the neighbourhood of the regular singular point r = 0, the formal series solution y(r) = r* Zzozo Cpr* is
then valid within the interval (0,¢) where ( is the nearest singular point obtained via the roots of the quadratic
equation a; + a1 + azr? = 0. Here, s are the roots of the indicial equation ay s(s — 1) + Bgs =0, i.e. s =0
and s =1 — ﬁo/oq.

Using Frobenius method, it is straightforward to show that the coefficients {Ci}° , satisfy the three-term
recurrence relation

(k+s+1)(ar(k+5)+ Bo)Chi1 + ((k+5)[az (k+s— 1)+ B1] +e0)Ch

+ ((k+s—1Dfag(k+s—2)+ Ba] +1)Cro1 =0, (66)
where k=1, 2, .... For
C_1=0,
Co=1,
c :_s(a2 (s=1)+pB1)+eo _ Pys(e0)
(s + Bo)(s+1) aq (s+%) (s+1)7

this equation can be written as

Cit2 = Ao(k) Cry1 + so(k) Cy,

where
A (k)—_(O‘Q(k+S)+61) (k+s+1)+eo
o\N) = (ar(k+s+1)+50) (k+s+2)
so(k) = {03kt s —1) + o) (k+5) e

(r1(k+s+1)+ o) (k+s+2)’

From this equation, we note that

Ck+3 _ Al(k) Ck+1 n Sl(k) Ck, )\1(]{/‘) = )\o(k’ + 1) )\o(k‘) + So(k‘ + 1)

81(]6) = )\0(]{1 + 1) So(k),
B . Aa(k) = A (k+ D)Xo(k) +s1(k+1)
Crta = A2(k) Coy1 + s2(k) C, 5o0k) = M (k4 1)30(k).
A3(k) = Ao (k + 1D)Ao(k) + s2(k + 1)

Cias = A3(k) Crq1 + 53(k) Cr,
s3(k) = A2(k + 1)so(k),

and in general

Ck+m = >\m—2(k) Ck+1 + Sm—Q(k') Ck7

and therefore

_ (s+1)(aas+ p1)+eo (S(OQ (s— 1)+/3’1)+€o) _ S(as(s — 1)+ B2) +e1 Ps.s(g0)

TG DA \ @sFae+D ) @G DAY 2t B) rn, O
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DE a3 oy Q1 Condition Roots of LPC Domain definition

1 as  az a1 a2 —4ajaz >0 r=0, & #&- r € (0,minéy) if €L >0
r € (max&4,0) if €&+ <0
r € (0,&4) if
E- <0< &y -] > &
T € (§-,0) if
£ <0<£+,\£ | <&+

a3 —4aiaz =0 r=0, {& =¢6-=¢ € (0,¢)

Differential Equation:

r(&—r)&—1)y" + Bo+Bir+B2r’)y +(co+eir)y=0

Roots: r=0; r=¢&& =(-azt \/M)/(Qag)
Singularity: r =0,&+,00: Regular
Differential Equation: r(E =12y +(Bo+Prir+Pard)y +(co+e1r)y=0

Roots:
Singularity:

r=0; r=£&=—a2/(2a3)

r = 0,&: Regular; r = oco: Irregular

11 0 az Qa1

r=0, r=-a1/a r € (0,—ai/az) if a1/az <0

r € (—a1/az,0) if a1 /az >0

Differential Equation:
Singularity:

rlar+aar)y’ +Bo+Bir+B2r)y +(eo+e1r)y=0

r =0, —ai/as: Regular; r = co: Irregular

IIT a3 O aq

ajasz <0

aras >0

r=0=%
r=20,

—a1/as r € (0,
r € (0,00)

—al/ag)

Differential Equation:
Singularity:

r(aar? + 1)y’ 4+ (Bo+ Pir+ Bar?)y

+(80+81T)y=0, asa; < 0

r=0,%4/—a1/as,00: Regular

Differential Equation:

r(aar? + o)y’ 4+ (Bo+ prr+ Bar?)y

+(eo+eir)y=0, asa1 >0

Singularity: r = 0: Regular; r = co: Irregular
IV (6%} (oD 0 50:0 r =0, —042/0(3 TG(O,—Oéz/Oé3) ifOéz/Oé3<O
r € (—az/as,0) if az/asz >0
Differential Equation: r*(asr +a2)y” +r(Br+ f2r)y +(co+err)y=0
Singularity: r =0, —as/as: Regular; r = co: Irregular
vV 0 0 a r=20 € (0, 00)
Differential Equation: arry’ +(Bo+Bir+ Bar)y 4+ (co+e1m)y=0
Singularity: r = 0: Regular; r = oco: Irregular
VI 0 as 0 Bo=0 r=20 € (0,00)

Differential Equation:
Singularity:

asr?y’ 4 r(Bi+ Bar)y +(co+e1ir)y=0

r = 0 : Regular; r = oco: Irregular

r=0 € (0,00)

Differential Equation:
Singulaity:

sy’ + (Bo + Pir + B2r?)

r = 0, 00: Irregular

Y +(o+err)y=0

TABLE 3. Tabulating the seven different types of differential equations, which apply to Theorem
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initiated with

Py s(e) = ((s + 1)(a2 s+ B1) +€0) Pr;s(c0) — (@18 + Bo)(s + 1)(s(az(s — 1) + B2) +€1)

Continuing with this process, it is straightforward to conclude that the series solution can be written as

oo

P S( O)
—’I’ C 7' = —1)* b Tk+sa 68
Z * ;;) & (11(’804—3) (14 s)g (8

where the k-degree polynomials of the parameter g, namely {P.s(g0)}7,, satisfy the following three-term
recurrence relation:

Pit1;s(e0) = ((k+ ) [(k + s — Dag + fi] + o) Prss(eo) — (k+ ) ((k+ s — Dar + Bo) (k+s— 1)
X [(k+8—2)a3+ﬂg] +€1)Pk71;5(€0), (69)

initiated with P_;.5(g9) = 0 and Pp.s(g9) = 1.

For the classes I-IV in Table [3] including, of course, the classical Heun equation, r = 0 is a regular singular
point with one of the exponents of singularities being s = 0, in which case, the coefficients {Cj,} 32, of the series
solution y(r) = >_p2, Ckr* satisfy the three-term recurrence relation

((k + ].)Uf o1 + ﬁo))ck_H + (k((k - 1)0[2 + ﬂl) + 50)Ck + ((k — 1)((]'{3 — 2)@3 + Bg) + 51)Ck_1 =0, (70)
and we have the following general result concerning the series solutions of the equation :

Theorem 4.1. In the neighbourhood of the regular singular point r = 0, the series solution y(r) = > p_, Cr
of the differential equation @), with a; # 0, is explicitly given by

i ’“77)’“ f0) s (71)

= Ko ([J’o)
a1 /)

where the infinite sequence {Py(g0)}3, Is evaluated using the three-term recurrence relation

Pri1(e0) = (k(k — 1)ag + kB + €0) Pr(eo) — k((k — 1)ou + Bo)
X ((k—1)(k = 2)as + (k — 1)B2 + €1) Pr—1(c0), (72)

where P_1(g9) = 0, and Py(eo) = 1.
Here, (o), refers to the Pochhammer symbol (a), = a(a+1)---(a = n+ 1) = I'(a + n)/I'(«) which is
defined in terms of Gamma functions and satisfies the identity (—n); = 0 for any positive integers k > n + 1.

Equation in Theorem follows directly by substituting the coefficients of in the recurrence relation
and eliminates the common terms.

Corollary 4.2. In the neighbourhood of the regular singular point r = 0, the series solution y(r) = > =, Cir
of the differential equation

(o1 +azr?)y" + (Bo+ Bir+ Bar®)y + (0 +e17)y =0, (73)

is given, explicitly, by

sy =3 (1 Pl (74)

where

PBrr1(e0) = (kB1 + e0) Br(eo) — k ((k — Dax + Bo) x (k — 1)(k — 2)az + (k —1)B2 + 1) Pr—-1(c0),  (75)

initiated with B_1(e9) = 0, Po(eo) = 1.
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Corollary 4.3. In the neighbourhood of the regular singular point r = 0, the series solution y(r) = Z;O:o Cpr*
of the differential equation

r(ar+azr)y” + (Bo+ rr+ Bar®)y + (o +e17)y =0, (76)
is given, explicitly, by

) = So(-1f — e (77)
k=

0 k!o/f <5O>
a1 ) g

ka+1 (80) = (k‘(k — 1)042 + k’ﬁl + EO)Tk(Eo) — k‘((k — 1)0&1 + BO)((k — 1)62 + €1>Tk_1(50), (78)
initiated with P_1(g9) =0, Py(eg) = 1.

where

Corollary 4.4. In the neighbourhood of the regular singular point r = 0, the series solution y(x) = > p—, Cxr"
of the differential equation

arry" 4+ (Bo+ Brr+ Bor?)y + (e0 +e17)y =0, (79)
is given, explicitly, by

y(r) = S (—1yF e (80)
k—

(2
(6751 k

Pri1(c0) = (kB1 + €0)Pr(e0) — k (K — 1) a1 + Bo) ((k — 1)B2 + €1)Pk—1(c0), (81)
initiated with P_1(eq) = 0, Py(go) = 0.

where

Corollary 4.5. In the neighbourhood of the regular singular point = 0, the series solution y(x) = Z;O:O Crat
of the differential equation

arry” + (Bo+ Bar?)y + (o +e17)y =0, (82)
is given, explicitly, by

= Py (c0)
(r) =Y _(-)F —Ek, (83)
O ()
(03] k

Piy1(e0) = eoPr(e0) — k(K — 1)a1 + Bo)((k — 1)B2 4+ €1)Pr—_1(c0), (84)
initiated with P_l(Eo) = O,Pl(é'o) =1.

where

Remark 4.6. If, in addition to ag = 0, we also have a; = 0, then r = 0 is a regular singular point only if
Bo = 0, in which case the differential equation reduces to an equation that resembles Euler’s equation, namely

r? (a2 +azr) Y’ +r(Bi+Bar)y + (co+e1r)y =0. (85)
The exponents of the singularity » = 0 are
sp = (a2 — B1 £ /(a2 — B1)2 — dasgg) /(202).

From the relation , the coefficients of the formal series solution y(r) = r* > 7>, Cx r* satisfy the two-term
recurrence relation (k=1,2,..., Co = 1),

k
k—1+4: k—2+: ag+(k—1+: B2+
(Zk_ ( g:(:)( 9:{:) 3 ( 9:{:) 2 Elck 1,

_ J—1+s4)(—2+st)as+(j—1+s4)Ba+er (86)
(k+s+)(k—1+st)as+(k+s+)B1+eo

= [Ty s - ,
JjH+s+)(—1+s+)aa+(j+s+)B1+e0
j=1

that allows to obtain a closed form of the series solution of in terms of the generalized hypergeometric
function as

(a3—p2)%—4 2 (a3—B2)2—4
y(T),TSiSFZ(LS — iy YlesTh e +%+Tﬁ3_—w?
1 vV (a2—p1)2 —dazeq 1 8 V(ae2—pB1)2—dazeo . Q3
8i+5+%_T7si+§+ﬁ+T’_72r : (87)
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4.2. POLYNOMIAL SOLUTION AND FINITE SEQUENCE OF ORTHOGONAL POLYNOMIALS

Theorem 4.7. The necessary condition for the second-order linear differential equation @ to have an n*"-

degree polynomial solution y,,(r) = > ,_,Ck7*,n =0, 1, 2, ..., in the neighbourhood of the regular singular
point r = 0 with one of the indicial equation exponents s = 0, is

51;71:—”(”—1)0[3_7162, n:Oa1725"'a (88)

along with the sufficient condition, relating the remaining coefficients, given by the vanishing of the tridiagonal
(n+1) x (n+ 1)-determinant A, = 0 given by

So T
o S Ty
Y2 S22 T
Apg1 = ; (89)
Yn—2 Sn—2 Th-1
Yn-1 Sn—1 Tn
Yo Sn
where, for fixedn : €1, = —n(n — 1) az — n PBa,

Sk; = €0;n + k((k - 1)0&2 + ﬁl)’
Ty = —k'((k' - 1)0[1 + /80)3
Y= —€1n — (k= 1) ((k = 2)as + B2),

and all other entries are zeros. In this case, the polynomial solutions are given explicitly by

o) = S (1) PECom) i 90
Yn(r) g( )k!a’f(ﬁo> (90)
a1 )

where the finite orthogonal sequences { P} (co.n)}}_, are evaluated using the three-term recurrence relation
Pity1(€on) = (Sk +0im) Pr (€0in) — WIePi-1(coin) ,
or, more explicitly,
Pitp1(Eom) = (k(k = Doz + kBr + con) P (c0:n) + k(n =k + 1) ((k = Do + Bo)
x (B2 + az(k +n—2))Ppr_i(com) » (91)

where P, (g0.n) = 0, and P§(g0.n) = 1 for the non-negative integer n.

Expanding Aj1 with respect to the last column, it is clear that the determinant satisfies a three-term
recurrence relation

{Ak+1 = (Sk +€on) A — v T Ag—1, (92)

AOZL A_le, ]{,’:0,1,...771,

that allow to compute the determinant Ay recursively in terms of lower-order determinants. We now show, by
induction on k, that

A1 = Pryi(con)- (93)

For k = 0, we find by that Ay = (So + €0;n) where the right hand side equals to P{*(go,,) using (91). Next,
suppose that A; = Pj(eo;n), for j =0,1,2,--- , k, then from

Pitri(eom) = (S + o) P (€0in) — Yk T Pi—i (f0:n) = (Sk + €0m) Ak — 1 T A1 = Agpa

and the induction step is reached. These results can be represented by the graphical representation (Figure [2]).

Some of the mathematical properties of the finite sequence of polynomials {P}!(co;n)}1_, Will be explored in
later sections.
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Pt Py Py PR

So | Tw | 0 : 0
Mmoo S| Te 0
A = det
Rl ¢ 0 Y2 SQ 0
0 0 0 e Sn

FIGURE 2. A demonstration of how the polynomials {P} (g0;n)}r—o may be obtained from the (k + 1)-determinant
Aggq for k=0,1,2, ..., n.

Remark 4.8. For ag + as + a1 = 0, the canonical form of Heun’s equation can be deduced from by means
of the following substitutions:

Bo+B1+8s Bo o3 BotarasBi+aips

ajoaz(a; —o %T + 270
Y | S g Ty () 8y (r) = 0. (94)
- r (r—3a3) r(r—l)(r—ﬂ)
as
or, simply in the standard form as
" b 4 € ’ afBr—q B
yi(r) + (T * r—1 * rb)y(r)+ r(r—l)(rfb)y(T) =9 (95)
where
y 1) € «@ B8 q b
\’ \ J \ b
Bo BatBi+Bo Paci+ fraraz + Foai o+ (n—1)ag L, & @
a az — azaq (a1 — as) as as  az
i) i) i) i) L)
5 € B @ q b

where, in either case, it follows
Yy+o+e=a+p+1

that ensures the regularity of the singular point co. With these parameters, the Sturm-Liouville form of the
differential equation is

,d% (7’7 (r—1)° (r — b)* Zi) +aBr (r=1)"" =)y =g (r = 1) (r = by (96)

where, for b>1,v>0, 6 > 1,7 € (0,1) .

Corollary 4.9. The second-order linear differential equation
r2(asr 4+ o)y (1) + 7 (Bar + 1) ¥ + (—(n(n —1) az +n Bo)r + ) y =0, (97)

where r € (—az/as,0) if agasz > 0 or r € (0,az/a3) if asas < 0, has a polynomial solution of degree n subject
to

ﬁ (o +k((k—1az+51)=0

’“;(L (98)

co=-nn—1as—np, n=0,1,2---.
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In particular, the differential equation
r?(agr +az) Y (r) + (B + 1) y' (r) — ((n (n=1) az+nfa)r+n(n—1) az+n ﬁl) y(r)=0, (99)

has the polynomial solutions
yn(r)=r", n=0,1,2,.... (100)

Proof. Follows immediately from Theorem [.7] with a; = 3y = 0.

5. MATHEMATICAL PROPERTIES OF THE ORTHOGONAL POLYNOMIALS {Pk(c0)}3,

As pointed out by Theorem [£.1] in the neighbourhood of the singular point r = 0 with an indicial exponent root
zero, the series solution of the differential equation with four singular points, see ,

r(on+aor+asr?)y" + (Bo+ Brr+ Ber®)y' + (co+e17)y=0.

can be written as

o ) iy Pr(e0) T‘k, 101
a1 )

where the infinite sequence of polynomials {P(0)}72, in the real variable ¢( satisfies the three-term recurrence
relation

Pr+1(e0) = (g0 — Ak)Pr(€0) — BxPr-1(c0), (102)

initiated with
P—l(g()):(), ’PO(gﬂ):L k:172733"' .

where

4, = —k(k — 1V)ag — kB,
B, = k((kj — 1)041 + ﬁo) ((k‘ — 1)((k‘ —2)ag + B2) —|—€1).

For 4, B, € R and if B, > 0, then according to Favard Theorem [25], see also [26, Theorem 2.14], there exists
a positive Borel measure p such that {Py}72, is orthogonal with respect to the inner product

(P Py) = / Pr(20) Py (20) (103)

such that
/ Pr(e0)Prr (g0)dpn = prpr Ok / dp =1, (104)
R R

where Jy is the Kronecker symbol. In particular,
/ ek Pu(e0)du =0 forall0<k <Kk. (105)
R

The norm pj can be found using the recurrence relations 1D by multiplying with 5’5 -1

over g with respect to p that yields

and taking the integral

k
/5]57%(50)61# = By, / et Pri(e0)dp = ByBr_1 / €6 Pr_a(eo)du =+ = H B; /dﬂ (106)
R R R =3 R
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and

/ Pr(e0)Pr (€0) dp = k! (a1 az)” <50> « <a3 + 82— \/(043 — f2)? — 40‘351>
R k k

Boe1 g 203

y (—ozg + B2+ +/(az — B2)? — 40‘351> S (107)
k

20&3

Using the recurrence relation (102), it also follows that

/ eo[Pr(0)*dp = Mk = Das + Sk (o a5)* (50) <_O‘3 + B2 — /(a3 — B2)? — 4043&)
R . )

Boe1 aq 903
_ —
« ( az + B2 + \/(043 B2) 4a351> . o
2043
k
Further, for £k =0,1,2,-- -,
E+ D! (o ag)Ftt
/Eopkﬂ(%)??k(so)du = ( )! (o as)
* Boe1
g <50> <a3 + 5 - \/(a?’ — B2)* — 40‘3&) (ag + 52 + \/(013 — f2)? — 4a3€1> (109)
e s k1 20 k1

Other integrals can be evaluated similarly, for example [ [e0Px(£0)]?dp can be evaluated by multiplying (102
by e0Px (o) and integrate with respect to the measure p using (107)), (108)), and (109) and we continue similarly
for

[ b Pecolan  m=01.2.
R
The recurrence relations (102)) for z = ¢¢ and y = ¢, read

Prii(z) = (z — 4x) P (x) — B (2),
Pri1(y) = (v — ) Pi(y) — BePp_1(y),

respectively. By multiplying the first by P (y) and the second by Pk (x) and subtracting, the resulting equation
becomes

(# = y)Pe(y)Pr(2) = Qu1(z,y) — B Qu(,y) (110)

where Qpy1(2,y) = Pry1(2)Pr(y) — Pe(2)Pry1(y). Thus, recursively over k, we have

(= y)Pr(2)Pr(y) = Qrr1(w,y) — B Qr(w,y)
(x = y)Pr—1(2)Pr-1(y) = Qr(x,y) — Br—1 Qr—1(z,y)

(z —y)Py (z)Py (y) = Q1(x,y),
from which it is straightforward to obtain
(x—y) [Pk(iﬁ)Pk(y) + B Pr—1(2)Pr—1(y) + BrBi—1Pr—2(x)Pr—2(y)
+ BeBr—1Br—2Pr—3(2)Pr—3(y) + - + Aep1 A1 k—2. .. XaPo(2)Po(y) | = Qrt1(g0,¥) -

Dividing both sides by (z — y)BkBrk—1Bk—2 - . . B2 and summing over k results in

i PA@PsO) o g a1 Pet@P) = PP ()

gjﬂgj_lgj_g...gg r—1Y

=0
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(101)) then follows using

BB 1B n... By = ][ B

ko ag)k <50> y (—a3+62—\/(a3—,82)2—4a351> y (—a3+62+\/(a3—ﬁ2)2—4a351>
k k k

Boe1 Q1 203 2a3

and finally, we have, for k > 0, Christoffel-Darboux identities:

i Py (@)Ps(y) __ Pen@Puly) = Pel@)Prsa (y) a1
=it 0s)i (52) (€0);(6);  Klaras) (3) (€4 (E ) —y)
where
£y = —a3 + B2+ /(as — B2)? — dase;
=7 20&3
and by evaluating the limit of both sides as y — x, its confluent form
k
[Pj(=)]? Prg1(@)Pr(x) = Pp(2) Py (2)
= (112)
g gHeraa) (€64); () i (arag)t (22) (64), (62,

follows. Here, the prime refers to the derivative with respect to the variable z. As a direct consequence of the
Christoffel-Darboux formula ((112)), all the zeros of the n-degree polynomial P, (e) are simple. To prove that
they are also real, we note that the recurrence relation ((102]) can be written in a matrix form as

Po(x) 24 1 0 -+ 0 0 Po(x) 0
Pl (l‘) Bl /‘711 1 e 0 0 7)1 (I’) 0

xT PQ(ZL') = 0 By Ay - 0 0 PQ(SE) + Pk(x) 0 (113)
Pr—1(x) 0 0 0 - Bp_1 A Pr—1(x) 1

Thus, if x; is a zero of Pi(z), it is an eigenvalue of the given tridiagonal matrix. Since, by the hypothesis
of (102 . B, > 0 for all k& > 1, the results of Arscott [24] confirm that (i) the zeros of P_1(x) and Py (z) interlace
— that is, between two consecutive zeros of either polynomial lies precisely one zero of the other (ii) at the zeros
of Py, (m) the values of Pj_1(z) are alternately positive and negative, (iii) all the zeros of Pi(x) — i.e. all the
eigenvalues of tridiagonal matrix are real and different.

6. MATHEMATICAL PROPERTIES OF THE FINITE ORTHOGONAL POLYNOMIALS
{Pr: (e0) iz

In this section, we shall study some of the mathematical properties of the orthogonal polynomials {P}} (0:n) }1y-
First, the zeros of the polynomial generated by the aforementioned determinant are all simple. This fact can be
confirmed by establishing the Christoffel-Darboux formula. Denote & = €¢,;, and y = €o,17, where k # k' and
k,k'=0,1,2,--- ,n—1: Forz £y

k P ()P (y) Pk+1( ) Pi(y) — Pi(x)Pia(y)
J J _ , (114)
;OJ. (c103)i (—n); (%)j (% —|—n—1>j k(o1 az)k (i) (62 +n—1) (x —y)
while, for the limit y — =z,
k 2 n IDn n Ipn
Z (7)] (gc _ [Pi1 (@) Pi(x) — [P ()] Py, () . (115)

5=0 Maas)! (=n); ((72> (& B 1>j Kllonag)*(=n) (072)1@ (2% e 1>k
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Here, the prime refers to the derivative with respect to the variable x. If x = xj is a zero of the polynomial
Pi(x) with multiplicity > 1, then P}’ (x;) = 0 and (115) yields the contradiction

2

(P} (1))
=0 jY(a1az)i(—n); (g—(l’)] (% +n— 1) '

J

0<

=0, (116)
and the zeros of the polynomial P]'(z), k = 1,2, ---n are distinct.

6.1. NORMS OF THE ORTHOGONAL POLYNOMIALS

Denote ¢¢., = x, the general theory of orthogonal polynomials [27] guarantees that the finite sequence of
polynomials {Pr(z)}}_, form a set of orthogonal polynomials for each n. This implies the existence of a certain
weight function, W(x), which can be normalized as

/ dw =1, (117)
for which
/ Pe(e)Pu (2)dW = prpro g, 0 <, K <, (118)

where pj denotes the norms of polynomials Py (z). These norms can be found from the recurrence relations (36))
by multiplying with z¥~1(x) and taking the integral over x yields the recurrence formula

/mk P () W(z)de = —k(n — k+1)((k — )a1 + Bo) x (B2 + as(k +n — 2)) /$k71p£_1($)w(x)dm, (119)

and thus
/73,?(1‘) "W (x) dz = k! (a1as)® (—n)y (BO> (ﬁ2 +n— 1) . (120)
a1 /) \a3 k
From which it follows
[P = i = kaeat o (2) (2 40-1) (121)
a1 /. \ a3 k

forall 0 < k <n.

Because of the Pochhammer identity (—n); = 0 for k > n, it follows from that the norms of all
polynomials P} (x) with k£ > n + 1 vanish. Thus

pr =0, k>n+1. (122)

We may also note, using the recurrence relation, that

[ 4Pl W) = —h((k — Das + 51) M (@r00)* (- <5) k (52 - 1) EENED

851 (O%:]

6.2. THE ZEROS OF THE POLYNOMIALS {P} (e0.n) }ig

One of the important properties of the polynomials P}, | (¢0.,) concerns their zeros. An argument provided
by Arscott [24] proves that if the product (yx - Tx) > 0 for all K = 1, 2, ..., n, then the polynomials that
satisfy the tri-diagonal determinant @ are real and simple. Let us denote that the roots of the polynomials
Ppyi(com) =0 by ef,,, £=0, 1, ..., n such that

n

r?—i—l (Eg;n) =0 ’ (124)

where
sg;n < eém << Egp -
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In particular, since Py, (g0;n) is of degree n 4 1 and all the roots are simple and different, it follows that

n

Pri1(eom) = H(50;n - ‘Sg;n)' (125)

£=0

The ‘discrete’ weight function W can be computed numerically [28] using , and - ) for the
given n. Denote Py(9) = P} (c0), and let the roots of P, (o) = 0 be 50 arranged in ascending order
for j =0,1,2,--- ,n. The weights W;,j = 0,1,--- ,n, for the orthogonal polynomlals {P}(0:n) iy can be
computed by solving the linear system

> W PP(e),) =0 (126)
=0

for {=0,1,---,n

6.3. FACTORIZATION PROPERTY

Another interesting property of the polynomials {P}’(x)}}_,, aside from being an orthogonal sequence, is that
when the parameter n takes positive integer values, the polynomials exhibit a factorization property. Clearly,
the factorization occurs because the third term in the recursion relation vanishes when k = n+ 1, so that all
subsequent polynomials have a common factor Py, (¢) called a critical polynomial. Indeed, all the polynomials
Pp. p41(x), beyond the critical polynomial P}, (x) are factored into the product

Piini (@) = Qp(z) Pryq(x), k=0,1,..., (127)

where the sequence {Q} (x)} are polynomials of degree k =0, 1, ... . Interestingly, the quotient polynomials
{9} (x )} 22, form an infinite sequence of orthogonal polynomials. To prove this claim, we substitute (128)
into and re-index the polynomials to eliminate the common factor P}, ;(¢) from both sides. The recurrence
relatlon ) then reduces to a three-term recurrence relation for the polynomials { Q7 ({)}x>o that reads

Qr(x) = ((k+n)(k+n—ag + (k+n)b1 +2) Qi1 () — (k+n)(k —1)((k+n — Dar + Fo)
x (B2 + az(k +2n —2)) O} _y(x), (128)

where Q",(¢) = 0, and QF(¢) = 1. Hence, the quotient polynomials Q}(({) also form a new sequence of
orthogonal polynomials for each value of n. For example, if n = 2, the critical polynomial is

P3(z) = 2% + (202 + 361)7% + 2((3as + 2B2) Bo + Bi(aa + 1) + a1 (2a3 + Ba))x
+ 480 (a2 + B1)(az + B2) . (129)

and
Pi(z) = (z + 602+ 381) Pi(x),
P3(z) = (2% + (18az + 7B1)z — 4((3en + Bo)(4as + B2) — 3(202 + 1) (Baz + B1)) ) P3(z) ,
P (z) = (af‘ + (38az + 1261)a” + (43205 + 2900231 + 4TB7 — 2(124a s + 33asfo + 2601 B2 + TBof2)) «
— 10(B1(84aras + 23asfo — 667 + 181 B2 + 5062) + 2a2 (3Lasfo — 2757 + 7oz + 1201 (9as + 262))

— 14403 — 1560@&))7?? (2),

from which we have

©

(z) =

1( ): +6042+3517

Qa(z) = 2® + (18a2 + 7B1)z — 4((3an + Bo)(4as + B2) — 3(202 + B1) (a2 + 1)),

Qs(x) = 2° + (38az + 1261)x” + (432042 + 29002 81 + 4767 — 2(124ar1as + 33030 + 2601 B2 + 75052))

— 10(B1 (84 i3 + 23asBo — 657 + 18011 B2 + 5B0f2) + 22 (BlasBo — 276 + TPofB2 + 1201 (903 + 262))
— 14403 — 1560361) ,

0

o}

T
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and so on. The Christoffel-Darboux formula for this infinite sequence of orthogonal polynomials reads

k

5 Q)2 W) _ Q@R () ~ R @)% v) (150)
= JHaras)i(n+2); (g—? +n+ 1)j (2—2 + Qn)j k' (aras)f(n+2)k (i—? +n+ 1)k (&B—z + 271)]C (x—1y)’
and as y —
s (25 ()" _ 1O @V Qp) — [Qp@)) Qs (v) 131)
=0 ! (a1a3)i (n+2),; (5—‘1’ +n+ l)j ((% + Qn)j k! (cq )k (n + 2) (5—? +n+ l)k ((% + 2n)k
Theorem 6.1. The norms of all polynomials QF (§) are given by
G2 =K (aqaz)*(n +2)y (5"+n+1) <62+2n) : (132)
a1 L \Q3 k

Proof. The proof follows by multiplying the recurrence relation (128)) by #¥~2p(z), with the normalized weight
function [ p(x)dz =1, and integrating over . This procedure yields a two-term recurrence relation

G2 =k (k+n+1)((k+n)as + Bo) (B2 + as(k +2n - 1)) G2 |,

where G2 = [ |QF(2)|?p(2)dz = [ 2*Q}(x)p(x)dx with a solution given by (132). We see that, in general, the
norm of the polynomials Q7 (z) does not vanish. n
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