
https://doi.org/10.14311/AP.2022.62.0080
Acta Polytechnica 62(1):80–84, 2022 © 2022 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

ON THE WESS-ZUMINO MODEL: A SUPERSYMMETRIC FIELD
THEORY

Daya Shankar Kulshreshthaa,∗, Usha Kulshreshthab

a University of Delhi, Department of Physics and Astrophysics, Delhi – 110007, India
b University of Delhi, Kirori Mal College, Department of Physics, Delhi – 110007, India
∗ corresponding author: dskulsh@gmail.com

Abstract. We consider the free massless Wess-Zumino Model in 4D which describes a supersymmetric
field theory that is invariant under the rigid or global supersymmetry transformations where the
transformation parameter ϵ (or ϵ̄) is a constant Grassmann spinor. We quantize the theory using
the Hamiltonian and path integral formulations.
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1. Introduction
Supersymmetry (SUSY) is a symmetry that rotates
bosons into fermions and fermions into bosons. It
is one of the beautiful symmetries of nature. Also,
a field theory (FT) which remains invariant under the
rigid or global supersymmetry transformations (where
the transformation paremeter is a constant Grassman
spinor) and which also satisfies the super Poincare
algebra (SPA) is usually referred to as a supersym-
metric field theory (SFT). In this article, we consider
the free massless Wess-Zumino Model (WZM) in 4D
which describes a SFT. It may be important to men-
tion here that the WZM is the first known example of
an interacting 4D quantum field theory with linearly
realised SUSY, studied by Wess and Zumino using
the dynamics of a single chiral superfield (composed
of a complex scalar and a spinor fermion). It may
be important to mention that the WZM represents
a typical SFT which is of central importance in the
theory of SUSY, supergravity and superstring theory
(SST) and for further details we refere to the work of
Refs. [1–8].

The WZM describes an example of a non-manifest
supersymmetry [5]. One could of course go to the
formalism of superspace and superfields to construct
a theory that has a manifest supersymmetry [5]. Tak-
ing this theory as an example, it is possible to formu-
late supersymmertic field theories in different dimen-
sions including in higher dimensions. The WZM also
provides a basic framework for the study of Ramond
Nievue Schwarz (RNS) SST [8] which is an example
of a SST with non-manifest SUSY. Further, start-
ing with the WZM, it is also possible to construct
a supergravity theory [1–6, 8].

SPA is a graded Lie algebra that includes anti-
commutation relations (ACR’s) involving the super-
charge Qa – the generator of the SUSY transforma-
tions. WZM is one of the simplest examples of a SFT.
In this article, we discuss the supersymmetry of WZM

and present some remarks with respect to the rigid
or global supersymmetry versus the local supersym-
metry (which happens to be a Supergravity theory).
Finally we consider the constraint quantization of this
theory [7]. It is important to mention that the su-
persymmetry has profound applications in conformal
hadron physics from light-front holography where it
even has some observational prospects [9–11].

As mentioned above, the supersymmetry is a sym-
metry that relates bosonic and fermionic variables (or
the bosons and fermions) so that:

δB = ϵ̄F , δF = ϵ ∂B ; ∂ ≡ ∂µ (1)

Here, δ is bosonic, B is bosonic and F is fermionic.
The transformation parameter ϵ (or ϵ̄) is a constant
Grassman spinor and is fermionic. Grassman vari-
ables are anti-commuting. Supergravity theory on the
other hand is a theory that has “local supersymmetry”
and it is invariant under local Susy transformations
where the transformation parameter depends on the
spacetime xµ. So the transformation parameter for
supergravity: ϵ(xµ) or ϵ̄(xµ) depends on xµ and hence
supergravity is a “gauge theory” of gravity. In con-
trast to this the WZM is a supersymmetric FT with
rigid or global (not local) Supersymmetry.

Let us us consider two consecutive infinitesimal rigid
supersymmetry transformations of a bosonic field B:

δ1 B = ϵ̄1F , δ2F = ϵ2∂B (2)

This then implies that the two internal SUSY trans-
formations lead us to a spacetime translation:

{δ1, δ2}B = aµ∂µB ; aµ = (ϵ̄2γµϵ1) (3)

Presence of a spacetime derivative of B on right hand
side (RHS) of above equation suggests that the Susy
is an extension of the Poincare spacetime symmetry:

{Qa, Q̄b} = 2(γµ)abPµ (4)
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Supercharge Qa (a = 1, 2, 3, 4 in 4D) is the gener-
ator of SUSY transformations. It is related to the
generator of spacetime translations Pµ and therefore
is not an internal symmetry generator. The SUSY
transformation is an extention of the Poincare space-
time symmetry. Supercharge Qa is a spinor. It is
fermionic and anti-commuting. Poincare algebra (PA)
after including the supersymmetry becomes the SPA.

2. The Wess-Zumino Model
The WZM is defined (on-shell) by the Lagrangian
density [5]:

L :=
[1

2(∂µA)∂µA− 1
2m

2A2 + 1
2(∂µB)∂µB

− 1
2m

2B2 −mgA(A2 +B2)

+ ψ̄(iγν∂ν −m)ψ − g (ψ̄ψ A+ iψ̄γ5ψB)

− 1
2g

2(A2 +B2)2
]

(5)

Here A is a scalar field, B is a pseudoscalar field,
ψ is a spin-1/2 Majorana field (ψ = ψC = Cψ̄T ). C
is the charge conjugation matrix and A = A† and
B = B†. All the fields here have the same mass m
and they couple with the same strength g. This is in
contrast to the non-SUSY FT’s.

This is due to the fact that states of a particular
representation of the super Poincare algebra (SPA) are
characterized by the eigenvalue m2 of P 2 (= PµP

µ)
and different values of spin s. Actually, all the fields
belong to the same mass multiplet in SPA.

Pauli-Ljubanski polarization vector is defined as:

Wµ := 1
2ϵµνρσP

νMρσ (6)

Here

P 2 = PµP
µ

W 2 = WµW
µ (7)

are Casimir operators of PA that satisfy:[
P 2,Mµν

]
= 0[

P 2, Pµ

]
= 0[

W 2,Mµν

]
= 0[

W 2, Pµ

]
= 0 (8)

We further have:

P 2 = m2 > 0
W 2 = −m2s(s+ 1). (9)

Where, m2 and (−m2s(s+1)) are the eigenvalues of P 2

and W 2. Here s denotes the spin of the representation
which assumes discrete values: s = 0, 1/2, 1, 3/2, . . .

This representation is specified in terms of the mass
m and spin s. Physically a state in a representation
(m, s) corresponds to a particle of rest mass m and

spin s. Also, since the spin projection S3 can take
any value from −s to +s, (massive particles fall into
(2s+ 1)-dimensional multiplets).

In WZM, all the fields namely, A, B, ψ, ψ̄ have the
same mass m and they couple with the same strength
g (in the unbroken SUSY) – in contrast to the non-
supersymmetric field theories. States of a particular
representation of SPA are characterized by the eigen-
value m2 of Casimir operator P 2 and different values
of spin s. Wµ is proportional to Pµ (generator of the
Poincare group):

Wµ = λPµ (10)

and

W0 = λP0 = −→P · −→J (11)

where

Pµ = (P0 ,
−→
P ). (12)

The constant of proportionality λ in Wµ = λPµ is
called Helicity and it is defined by:

λ :=
−→
P ·
−→
J

P0
(13)

for massless particles with λ := ±s where s =
0, 1/2, 1, . . . is the spin of representation. N = 1 is
called as the Minimal Supersymmetry and N > 1
is called the Extended Supersymmetry.

For simplicity we set (g = 0) yielding the La-
grangian density of the free WZM [5]:

L :=
[1

2∂µA∂
µA− 1

2m
2A2 + 1

2∂µB∂
µB

− 1
2m

2B2 + ψ̄(iγν∂ν −m)ψ
]

(14)

Theory is seen to be invariant (up to a total derivative)
under the rigid SUSY transformation [5]:

δA = ϵ̄ ψ

δB = −i ϵ̄ γ5 ψ

δψ = − (iγν∂ν +m) (A− iγ5 B) ϵ

δψ̄ = ϵ̄ (A− iγ5 B) (iγν←−∂ ν −m) (15)

Here ϵ is a constant Grasmann variable (which does
not depend on spacetime x ≡ xµ) implying a global
or rigid SUSY transformations. However, δψ and
δψ̄ here, are seen to depend on spacetime derivatives
of A and B. This implies that this is an extention
of Poincare spacetime symmetry (different than an
internal symmetry).

Supercurrent jµ of the theory could be easily calcu-
lated to be [5]:

jµ =
[ i

2 ϵ̄(A− iγ
5 B) (iγν←−∂ ν −m)γµ ψ

]
≡

[ 1
β
ϵ̄ kµ

]
(16)
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Here β is a real constant which could be suitably
choosen. The spinor charges Qa are defined by [5]:

Qa :=
∫
d3x k0

a

k0
a = i

2β
[
{(A− iγ5 B)(iγν←−∂ ν −m)}γ0ψ

]
a

(17)

Here k0
a are the spinor charge densities with a =

1, 2, 3, 4. Spinor charges and spinor charge densities
being fermionic satisfy SPA and the spinor charges
are seen to satisfy the anti-commutation relation
(ACR) [5]:

{Qa, Q̄b} = 2Pµ(γµ)ab (18)

This explicitly shows that the WZM obeys the SPA
and it is a supersymmetric FT having a rigid or global
SUSY. Also, the supersymmetry of the theory is a non-
manifest supersymmetry.

We now set m = 0 for making the fields to be
massless, so that the free massless WZM is defined by
the Lagrangian density:

L :=
[1

2∂µA∂
µA+ 1

2∂µB∂
µB + ψ̄(iγν∂ν)ψ

]
(19)

This is the simplest example of a supersymmetric FT
in 4D with a non-manifest supersymmetry.

We obtain the free WZM by setting g = 0 and it is
seen to be invariant, up to a total derivative, under
the rigid SUSY transformations [5]:

δA = ϵ̄ ψ

δB = −i ϵ̄ γ5 ψ

δψ = − (iγν∂ν) (A− iγ5 B) ϵ

δψ̄ = ϵ̄ (A− iγ5 B) (iγν←−∂ ν) (20)

Here ϵ is a constant Grasmann variable (which does
not depend on spacetime x ≡ xµ). Here, δψ and δψ̄
are seen to depend on spacetime derivatives of A and
B which implies that this is an extention or gener-
alization of the Poincare spacetime symmetry. (ϵ, ϵ̄)
being constant, implies that the symmetry is a rigid
or global Susy.

It is also possible to consider it as a theory of a single
complex scalar field and a fermionic field by combining
the fields A and B as follows:

ϕ(x) := (A+ iB)/2
ϕ⋆(x) = (A− iB)/2 (21)

implying therefore: δϕ = ϵ̄ψ̄ and δϕ⋆ = ϵψ and

δψA = 2i(σµϵ̄)A∂µϕ
⋆(x)

δψ̄Ȧ = −2i(σ̄µϵ)Ȧ∂µϕ(x) (22)

Since A is a scalar field and B is a pseudoscalar field,
the complex combination ϕ(x) transforms under the
parity transformation like complex conjugation. Here,

ψ and ψ̄ are not independent fields as they are the Ma-
jorana spinor fields in the Weyl formulation. Hence
the transformations of δψ and δψ̄ are not independent
and one could be obtained from the other. Supercur-
rent jµ of the theory is obtained as:

jµ =
[
i

2 ϵ̄(A− iγ
5 B) (iγν←−∂ ν)γµ ψ

]
≡

[ 1
β
ϵ̄ kµ

]
(23)

Here β is a real constant. Spinor charge Qa are:

Qa :=
∫
d3x k0

a

k0
a = i

2β
[
{(A− iγ5 B) (iγν←−∂ ν)}γ0 ψ

]
a

(24)

Here k0
a are the spinor charge densities with a =

1, 2, 3, 4. WZM being a supersymmetric FT, spinor
charges and the spinor charge densities are seen to
satisfy SPA and the spinor charges satisfy the ACR:

{Qa, Q̄b} = 2Pµ(γµ)ab (25)

This implies that the WZM obeys SPA and it is a su-
persymmetric FT with a rigid Susy. SPA reads [5]:

[Pµ, Pν ] = 0 (26)

[Mµν , Pρ] = −i (ηµρ Pν − ηνρ Pµ) (27)

[Mµν ,Mρσ] =− i(ηµρMνσ + ηνσMµρ)
+ i (ηµσMνρ + ηνρMµσ) (28)

[Pµ, Qa] = 0 (29)

[Mµν , Qa] = −(σ4
µν)ab Qb (30)

σ4
µν := i

4 [γµ, γν ]

{Qa, Q̄b} = 2(γµ)ab Pµ

{Qa, Qb} = −2 (γµ C)ab Pµ

{Q̄a, Q̄b} = 2 (C−1γµ)ab Pµ (31)

SPA has 14 generators: 4 generators of Lorentz trans-
lations Pµ , 6 generators of Poincare transformations
Mµν and 4 spinor charges Qa (the Majorana spinors).
Here the indices a and b run from 1 to 4 in 4D.

3. Free massless WZM
We now set m = 0 for making the fields to be mass-
less, so that the free massless WZM is defined by the
Lagrangian density:

L :=
[1

2∂µA∂
µA+ 1

2∂µB∂
µB + ψ̄(iγν∂ν)ψ

]
(32)
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We break up the Lagrangian density of the free mass-
less WZM into bosonic and fermionic parts:

L = LB + LF

LB = 1
2∂µA∂

µA+ 1
2∂µB∂

µB

LF = ψ̄(iγν∂ν)ψ (33)

Further, LF (= LF ) could be written in two differ-
ent looking but conceptually equivalent forms (which
differ by a total derivative (t.d.)) as follows:

LF
1 = iψ̄γµ∂µψ

LF
2 = i

2

[
ψ̄γµ(∂µψ)− (∂µψ̄)γµψ

]
(34)

LF
1 − LF

2 = i

2∂µ(ψ̄γµψ) = i

2∂µj
µ

jµ = (ψ̄γµψ) (35)

Theory described by LF
1 is seen to possess a set of two

second class constraints:

ρ1 = (π + iψ̄γ0) ≈ 0
ρ2 = π̄ ≈ 0 (36)

Here, Fermi fields ψ and ψ̄ are to be treated as inde-
pendent fields. Theory described by LF

2 is also seen
to possess a set of two second class constraints:

χ1 = (π + i

2 ψ̄γ
0) ≈ 0

χ2 = (π̄ + i

2γ
0ψ) ≈ 0. (37)

The Fermi fields ψ and ψ̄ in this later case are not
independent fields. This is consistent with the defini-
tion of Majorana spinor fields (we remind ourselves
here that in WZM, the fermionic fields are Majorana
spinor fields).

We now study the Hamiltonian formulation of the
theory [7]. The canonical momenta following from
the Lagerangian density of WZM defined by L :=
(LB +LF ) with LF = LF

2 (working with the signature
ηµν := diag(+1,−1,−1,−1)) are:

ΠA := ∂L
∂(∂0A) = ∂0A

ΠB := ∂L
∂(∂0B) = ∂0B (38)

π := ∂L
∂(∂0ψ) = − i2 ψ̄γ

0

π̄ := ∂L
∂(∂0ψ̄)

= − i2γ
0ψ (39)

Theory thus has 2 primary constraints (PC’s):

χ1 = (π + i

2 ψ̄γ
0) ≈ 0

χ2 = (π̄ + i

2γ
0ψ) ≈ 0 (40)

In principle, χ1, χ2 represent an infinite number of
PC’s which could be labeled say by α, β (which run
from one to infinity). We however, ignore these fur-
ther labelings in our considerations. The canonical
Hamiltonian density of the theory is obtained as:

Hc =(∂0A) ΠA + (∂0B) ΠB + (∂0ψα) πα

+ (∂0ψ̄α) π̄α − LB − LF (41)

Hc = 1
2

[
Π2

A + Π2
B − iψ̄γk∂

kψ + i(∂kψ̄)γkψ
]

(42)

The total Hamiltonian density is:

HT := Hc + χ1 u+ χ2 v (43)

Demanding that the constraints χ1 and χ2 are pre-
served in the course of time one does not get any
secondary constraints and therefore these are the only
2 constraints that the theory possesses. Non-vanishing
matrix elements of the 2 × 2 matrix of the PB’s of
these above constraints among themselves are:

R12 = −R21 = iγ0δ(x1 − y1)δ(x2 − y2)δ(x3 − y3). (44)

The non-vanishing equal-time (ET) commutation
relations (CR’s) (denoted by a square bracket) and
ET anti-commutation relations (ACR’s) (denoted by
a curly bracket) of the bosonic and ferminic variables
of the theory are found to be:

[A(x, t),ΠA(y, t)] = i δ(x− y) (45)

[B(x, t),ΠB(y, t)] = i δ(x− y) (46)

{ψα(x, t), ψ̄β(y, t)} = γ0δαβ δ(x− y) (47)

δ(x− y) := δ(x1 − y1)δ(x2 − y2)δ(x3 − y3) (48)

These relations appear to be similar to the usual
ones. However, the fermionic spinor field ψ here is
not a Dirac spinor but it is a Majorana spinor having
real components: (ψ = ψC). We need to remember
here that the Dirac spinor is a 4-component spinor
which has complex elements and it could be expressed
in terms of two, 2-component Weyl spinors having
complex elements. However, if the elements of these
Weyl spinors are taken as real (ψ = ψC) then it
becomes a Majorana spinor (having real elements).

In path integral quantization (PIQ) [7], transition
to quantum theory is made by writing the vacuum
to vacuum transition amplitude for the theory, called
the generating functional Z[Jk] of the theory which in
the presence of the external sources Jk for the present
theory is [7]:

Z[Jk] =
∫

[dµ] exp
[
i

∫
dxdy[JkΦk + ΠA∂0A

+ ΠB∂0B + π∂0ψ + π̄∂0ψ̄

+ Πu∂0u+ Πv∂0v −HT ]
]

(49)
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Here Φk ≡ (A,B, ψ, ψ̄, u, v) are the phase space
variables of the theory with the corresponding
respective canonical conjugate momenta: Πk ≡
(ΠA,ΠB , π, π̄,Πu,Πv). The functional measure [dµ]
of the theory (with the above generating functional
Z[Jk]) is:

[dµ] =
[
[δ(x1 − y1)δ(x2 − y2)δ(x3 − y3)][dA]

[dB][dψ][dψ̄][du][dv][dΠA]
[dΠB ][dπ][dπ̄][dΠu][dΠv]

δ[(π + i

2 ψ̄γ
0) ≈ 0]

δ[(π̄ + i

2γ
0ψ) ≈ 0]

]
(50)

4. Conclusions and summary
Some important remarks may be helpful. In relativis-
tic quantum mechanics, the Dirac equation (DE) is
a single particle relativistic wave equation where ψ
represents a wave function. In FT, DE is an Euler-
Lagrange field equation which is obtained from the
Dirac action or the Dirac Lagrangian by using the vari-
ational principle.

WZM is the simplest example of a supersymmetric
field theory in 4D. This is also an example of a FT
with non-manifest supersymmetry. Taking the ex-
ample of free massless WZM, one could study many
important theories in different dimensions including
in higher dimsimensions. The theory also provides
a basic framework for the study of Ramond Nievue
Schwarz (RNS) superstring theory (SST) which is an
example of a SST with non-manifest SUSY. Starting
with the WZM, it is possible to construct a super-
gravity theory by gauging its global (rigid) SUSY into
a local SUSY through the Noether’s procedure.

Just to summarize in brief, we have studied in this
work, the WZM [5], which is a supersymmetric FT
that has rigid or global supersymmetry. The theory
has a supercharge Qa (a = 1, 2, 3, 4 in 4D) which is
a Grassmann spinor having anti-commuting proper-
ties. Theory is invariant under rigid supersymmetry
transformations where the transformation parame-
ter is a constant Grassmann spinor [5]. Finally, we
have also studied the Hamiltonian and path integral
quantization of the theory [7].
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