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Abstract.
We consider the three dimensional electrodynamics described by a complex scalar field coupled

with the U(1) gauge field in the presence of a Maxwell term, a Chern-Simons term and the Higgs
potential. The Chern-Simons term provides a velocity dependent gauge potential and the presence
of the Maxwell term makes the U(1) gauge field dynamical. We study the Hamiltonian formulation of
this Maxwell-Chern-Simons-Higgs theory under the appropriate gauge fixing conditions.
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1. Introduction
We study the Hamiltonian formulation [1] of the
three dimensional (3D) electrodynamics [2–22], in-
volving a Maxwell term [20], a Chern-Simons (CS)
term [19, 21, 22], and a term that describes a cou-
pling of the U(1) gauge field with a complex scalar
field in the presence of a Higgs potential [22]. Such
theories in two-space one-time dimension ((2+1)D)
can describe particles that satisfy fractional statistics
and are referred to as the reletivistic field theoretic
models of anyons and of the anyonic superconductiv-
ity [21, 22].

A remarkable property of the CS action [21, 22],
is that it depends only on the antisymmetric tensor
ϵµνλ and not on the metric tensor gµν . As a result,
the CS action in the flat spacetime and in the curved
spacetime remains the same [21, 22]. Hence CS action,
in both the Abelian and in the non-Abelian cases
represents an example of a topological field theory [21,
22].

The systems in two-space, one-time dimensions
(2+1)D (i.e., the planar systems, display a variety
of peculiar quantum mechanical phenomena ranging
from the massive gauge fields to soluble gravity [19–
22]. These are linked to the peculiar structure of the
rotation group and the Lorentz and Poincare groups in
(2+1)D. The 3D electrodynamics models with a Higgs
potential, namely, the Abelian Higgs models involv-
ing the vector guage field Aµ with and without the
topological CS term in (2+1)D have been of a wide
interest [19–22].

When these models are considered without a CS
term but only with a Maxwell term accounting for the
kinetic energy of the vector gauge field and they repre-
sent field-theoretical models which could be considered
as effective theories of the Ginsburg-Landau-type [22]
for superconductivity. These models in (2+1)D or
in (3+1)D are known as the Nielsen-Olesen (vortex)
models (NOM) [20]. These models are the relativistic

generalizations of the well-known Ginsburg-Landau
phenomenological field theory models of superconduc-
tivity [2, 20, 22].

The effective theories with excitations, with frac-
tional statistics are supposed to be described by gauge
theories with CS terms in (2+1)D and a study of these
gauge field theories and the models of quantum elec-
trodynamics involving the CS term represent a broad
important area of investigation [21, 22].

The CS term provides a velocity dependent gauge
potential [21, 22], and the presence of the Maxwell
term in the action makes the gauge field dynami-
cal [20]. We study the Hamiltonian formulation [1] of
this Maxwell-Chern-Simons-Higgs theory under the
appropriate gauge fixing conditions [20, 22].

The quantization of field theory models with con-
straints has always been a challenging problem [1].
Infact, any complete physical theory is a quantum
theory and the only way of defining a quantum theory
is to start with a classical theory and then to quan-
tize it [1]. Theory presently under consideration is
also a constrained system. In the present work, we
quantize this theory using the Dirac’s Hamiltonian
formulation [1] in the usual instant-form (IF) of dy-
namics (on the hyperplanes defined by: x0 = t =
constant) under appropriate gauge-fixing conditions
(GFC’s) [1, 19–22].

2. Hamiltonian formulation
The Maxwell Chern-Simons Higgs Theory in two space
one time is defined by the following action:

S =
∫

L(Φ, Φ∗, Aµ) d3x, (1)
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where the Lagrangian density L (with κ = θ
2π2 ;

θ being the CS parameter) is given by:

L =
[

− 1
4FµνF µν + (D̃µΦ∗)(DµΦ) − V (|Φ|2)

+κ

2 ϵµνλAµ∂νAλ

]
(2)

V (|Φ|)2 = γ + β|Φ|2 + α|Φ|4

= λ(|Φ|2 − Φ2
0)2 ; (Φ0 ̸= 0). (3)

Where the covariant derivative is defined by:

Dµ = (∂µ + i eAµ)

D̃µ = (∂µ − i eAµ)
gµν = diag(+1, −1, −1)
ϵ012 = ϵ012 = +1
µ, ν = 0, 1, 2. (4)

In the above Lagrangian density the first term is the
kinetic energy term of the U(1) gauge field and second
term represents the coupling of U(1) gauge field with
the complex scalar field as well as kinetic energy for
the complex scalar field. Third term describes Higgs
potential and the last term is the CS term.

The model without the CS term describes an
Abelian Higgs model and is defined by the Lagrangian
density L = L

(
Φ, Φ∗, Aµ

)
where L is a function of

a complex scalar field and an Abelian gauge vector
field Aµ(x) defined by the above Lagrangian density.
In (2+1)D this theory is called as the Nielsen Olsen
(vortex) model (NOM). These models possesses sta-
ble, time independent (i.e., static), classical solutions
(which could be called 2D solitons). In fact, the model
admits the so-called topological solitons of the vortex
type [4].

Further, in this model, if we choose the parameters
of the Higgs potential to be such that the scalar and
vector masses become equal i.e., if we set the Higgs
boson and the vector boson (photon) masses to be
equal i.e., if we set: mHiggs = mP hoton = eΦ0 then
that implies:

V (|Φ|)2 = 1
2e2(|Φ|2 − Φ2

0)2. (5)

The above model then reduces to the so-called Bo-
gomol’nyi model which describes a system on the
boundary between type-I and type-II superconductiv-
ity [4].

In component form, the above Lagrangian density
can be written as:

L =
(

κ

2

)[
A0F12 + A1(∂2A0) − A2(∂1A0)

]
+

(
κ

2

)[
A2(∂0A1) − A1(∂0A2)

]
− 1

2F 2
12

+
[

1
2(∂1A0 − ∂0A1) + 1

2(∂0A2 − ∂2A0)
]

+
[

(∂0Φ∗)(∂0Φ) + i e(∂0Φ∗)A0Φ

− i e(∂0Φ)A0Φ∗ + e2A2
0Φ∗Φ

]
+

[
− (∂1Φ∗)(∂1Φ) − i e(∂1Φ∗)A1Φ

+ i e(∂1Φ)A1Φ∗ − e2A2
1Φ∗Φ

]
+

[
− (∂2Φ∗)(∂2Φ) − i e(∂2Φ∗)A2Φ

+ i e(∂2Φ)A2Φ∗ − e2A2
2Φ∗Φ

]
− V (|Φ|2). (6)

Canonical momenta obtained from the above La-
grangian density are:

Π = ∂L
∂(∂0Φ) = (∂0Φ∗ − i eA0Φ∗)

Π∗ = ∂L
∂(∂0Φ∗) = (∂0Φ + i eA0Φ)

Π0 = ∂L
∂(∂0A0) = 0 (7)

E1(:= Π1) := ∂L
∂(∂0A1)

= −(∂1A0 − ∂0A1) + κ

2 A2

E2(:= Π2) = ∂L
∂(∂0A2)

= (∂0A2 − ∂2A0) − κ

2 A1. (8)

Here Π, Π∗, Π0, E1, E2 are the momenta canonically
conjugate respectively to Φ, Φ∗, A0, A1, A2. The the-
ory is thus seen to possess only one primary constraint
(PC):

χ1 = Π0 ≈ 0. (9)

The canonical Hamiltonian density of the theory is
obtained using the Legendre transformation from the
Lagrangian density of the theory in the usual manner.
Every term in the Lagrangian density (including the
CS term) is equally important. The calculational de-
tails are omitted here for the sake of brevity. The total
Hamiltonian density of the theory is then obtained
from the canonical Hamiltonian density by including
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in it the primary constraint of the theory with the
help of the Lagrange multiplier field u ≡ u(xµ) (which
is dynamical) as follows:

HT = Π0u + Π Π∗ − ieA0(ΠΦ − Π∗Φ∗)

+ 1
2(E1

2 + E2
2)

+ 1
2F 2

12 +
[
E1(∂1A0) + E2(∂2A0)

]
+ 1

2

(
κ

2

)2
(A1

2 + A2
2)

−
(

κ

2

)[
A2E1 − A1E2 + A0F12

]
+

[
(∂1Φ∗)(∂1Φ) + i e(∂1Φ∗)A1Φ

− i e(∂1Φ)A1Φ∗ + e2A2
1Φ∗Φ

]
+

[
(∂2Φ∗)(∂2Φ) + i e(∂2Φ∗)A2Φ

− i e(∂2Φ)A2Φ∗ + e2A2
2Φ∗Φ

]
, (10)

where

HT =
∫

HT d2x, (11)

with the total Hamiltonian density given by:

HT =
[
Hc + Π0u

]
. (12)

.
It is to be noted here that in the construction of

the canonical Hamiltonian density of the theory, all
the fields of the theory play an equally important role
through the Legendre transformation and through
the Lagrangian density of the theory that defines
the theory. Also, it is worth mentioning here that
the Hamilton’s equations of motion of the theory (that
are omitted here for the sake of brevity) obtained from
the total Hamiltonian density of the theory preserve
the constraints of the theory for all time. After pre-
serving the Primary constraint χ1 in the course of
time, one obtains a secondary constraint

χ2 =
[
ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)
]

≈ 0. (13)

The matrix of Poisson Brackets (PB’s) among the
constraints χi is a null matrix and thereby theory is
a gauge invariant theory and is invariant under the
following local vector gauge transformations:

δΦ = iβΦ, δΦ∗ = −iβΦ∗, δΠ0 = 0
δA0 = −∂0β ; δA1 = −∂1β ; δA2 = −∂2β

δΠ = −iβ(∂0Φ∗) − eβA0Φ∗ + i(e − 1)(∂0β)Φ∗

δΠ∗ = iβ(∂0Φ) − eβA0Φ − i(e − 1)(∂0β)Φ

δE1 = −κ

2 ∂2β; δE2 = κ

2 ∂1β; δu = −∂0∂0β. (14)

Here, β is the gauge parameter β ≡ β(xµ) and
the vector gauge current satisfies: ∂µJµ = 0. The
components of Jµ are:

J0 = J0 = (iβΦ)
[
∂0Φ∗ − i eA0Φ∗]

− (iβΦ∗)
[
∂0Φ + i eA0Φ

]
− (∂1β) F01 − (∂2β) F02

− κ

2
[
(∂1β)A2 − (∂2β)A1

]
J1 = −J1 = (iβΦ)

[
− ∂1Φ∗ + i eA1Φ∗]

− (iβΦ∗)
[

− ∂1Φ − i eA1Φ
]

− (∂0β) F10 − (∂2β) F21

+ κ

2
[
(∂0β)A2 − (∂2β)A0

]
J2 = −J2 = (iβΦ)

[
− ∂2Φ∗ + i eA2Φ∗]

− (iβΦ∗)
[

− ∂2Φ − i eA2Φ
]

− (∂0β) F20 − (∂1β) F12

− κ

2
[
(∂0β)A1 − (∂1β)A0

]
. (15)

For quantizing the theory using Dirac’s procedure
we choose the following two gauge-fixing conditions
(GFC’s):

ξ1 = Π ≈ 0
ξ2 = A0 ≈ 0. (16)

Here the gauge A0 ≈ 0 represents the time-axial
or temporal gauge and the gauge Π ≈ 0 represents
the coulomb gauge. These gauges are acceptable and
consistent with our quantization procedure and also
physically more interesting. Corresponding to this set
of gauge fixing conditions the total set of constraints
now becomes:

χ1 = Π0 ≈ 0
χ2 =

[
ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)
]

≈ 0

χ3 = ξ1 = Π ≈ 0
χ4 = ξ2 = A0 ≈ 0. (17)

The non-vanishing matrix elements of the matrix
Rαβ (:= {χ1, χ2}P ) of the equal-time Poisson brackets
of the above constraints are:

R14 = −R41 = − δ(x1 − y1)δ(x2 − y2)
R23 = −R32 = ieΠ δ(x1 − y1)δ(x2 − y2). (18)

The above matrix is nonsingular and the set of
constraints χi ; i = 1, 2, 3, 4 is now second class and
the theory is a gauge non-invariant theory. The non-
vanishing matrix elements of the matrix R−1

αβ (which
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is the inverse of the matrix Rαβ) are given by:

R−1
14 = −R−1

41 = δ(x1 − y1)δ(x2 − y2) (19)
(eΠ)R−1

23 = −(eΠ)R−1
32 = i δ(x1 − y1)δ(x2 − y2).

Following the standard Dirac quantisation proce-
dure, the non-vanishing equal time Dirac Brackets
(DB’s) of the theory are obtained as:

(Π) {Π∗(x0, x1, x2) , Φ(x0, y1, y2)}D

= (−Π∗)δ(x1 − y1)δ(x2 − y2)

{Π∗(x0, x1, x2) , Φ∗(x0, y1, y2)}D

= {Π∗(x0, x1, x2) , Φ∗(x0, y1, y2)}P

= −δ(x1 − y1)δ(x2 − y2)

(ieΠ) {E1(x0, x1, x2) , Φ(x0, y1, y2)}D

=
(κ

2

)
δ(x1 − y1) ∂2δ(x2 − y2)

{E1(x0, x1, x2) , A1(x0, y1, y2)}D

= {E1(x0, x1, x2) , A1(x0, y1, y2)}P

= − δ(x1 − y1)δ(x2 − y2)

(ieΠ) {E2(x0, x1, x2) , Φ(x0, y1, y2)}D

= −
(κ

2

)
∂1δ(x1 − y1)δ(x2 − y2)

{E2(x0, x1, x2) , A2(x0, y1, y2)}D

= {E2(x0, x1, x2) , A2(x0, y1, y2)}P

= −δ(x1 − y1)δ(x2 − y2)

(Π) {Φ(x0, x1, x2) , Φ∗(x0, y1, y2)}D

= (−Φ∗)δ(x1 − y1)δ(x2 − y2)

(Π) {Φ(x0, x1, x2) , A0(x0, y1, y2)}D

= (Φ) δ(x1 − y1)δ(x2 − y2)

(ieΠ) {Φ(x0, x1, x2) , A1(x0, y1, y2)}D

= ∂1δ(x1 − y1)δ(x2 − y2)

(ieΠ) {Φ(x0, x1, x2) , A2(x0, y1, y2)}D

= δ(x1 − y1) ∂2δ(x2 − y2). (20)

Here one finds that the product of the canonical
variables appear in the expressions of the constraints
as well as in the expressions of the DB’s and therefore
for achieving the canonical quantisation of the theory,
one encounters the problem of operator ordering while
going from DB’s to the commutation relations, this
problem could however be resolved by demanding that

all the fields and the field momenta after quantisation
become Hermitian operators and that all the canonical
commutation relations need to be consistent with
the Hermiticity of these operators. This completes
the Hamiltonian formulation of the theory under the
choosen gauge fixing conditions.

It may be worthwhile to mention here that our
choice of GFC’s is by no means unique. In principle,
one can choose any set of GFC’s that would convert
the set of constraints of the theory from first-class
into a set of second-class constraints. However, it is
better to choose the GFC’s that are physically more
meaningful and nore relevant like the ones that we
have choosen. In our case the gauge A0 ≈ 0 represents
a time-axial or temporal gauge and the gauge Π ≈ 0
represents a Culomb gauge and both of them are
physically important GFC’s. Another important point
is that one can not choose covariant GFC’s here simply
because the constraints of the theory are not covariant
and therefore it would not work.

In path integral quantization (PIQ) [23], transition
to quantum theory is made by writing the vacuum
to vacuum transition amplitude for the theory, called
the generating functional Z[Jk] of the theory which in
the presence of the external sources Jk for the present
theory is [23]:

Z[Jk] =
∫

[dµ] exp
[
i

∫
d3x [JkΦk + Π∂0Φ

+ Π∗∂0Φ∗ + Π0∂0A0 + E1∂0A1

+ E2∂0A2 + Πu∂0u − HT ]
]
. (21)

Here Φk ≡ (Φ, Φ∗, A0, A1, A2, u) are the phase
space variables of the theory with the correspond-
ing respective canonical conjugate momenta: Πk ≡
(Π, Π∗, Π0, E1, E2, Πu). The functional measure [dµ]
of the theory (with the above generating functional
Z[Jk]) is:

[dµ] =
[
(ieΠ)δ(x1 − y1)δ(x2 − y2)

[dΦ][dΦ∗][dA0][dA1][dA2][du][dΠ]
[dΠ∗][dΠ0][dE1][dE2][dΠu]δ[(Π0) ≈ 0]
δ[[ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)] ≈ 0]

δ[Π ≈ 0]δ[A0 ≈ 0]
]
. (22)
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