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ABSTRACT. In this work, we derive two equivalent non-rational extensions of the quantum harmonic
oscillator using two different supersymmetric transformations. For these extensions, we built ladder
operators as the product of the intertwining operators related with these equivalent supersymmetric
transformations, which results in two-step ladder operators. We linearised these operators to obtain
operators of the same nature that follow a linear commutation relation. After the linearisation, we derive
coherent states as eigenstates of the annigilation operator and analyse some relevant mathematical and
physical properties, such as the completeness relation, mean-energy values, temporal stability, time
evolution of the probability densities, and Wigner distributions. From these properties, we conclude
that these coherent states present both classical and quantum behaviour.

KEYWORDS: Supersymmetric quantum mechanics, non-rational extensions, linearised ladder operators,

© 2022 The Author(s). Licensed under a|CC-BY 4.0 licence
Published by the [Czech Technical University in Prague

coherent states.

1. INTRODUCTION

In quantum physics, supersymmetric quantum me-
chanics (SUSY) is considered the most efficient tech-
nique to generate new quantum potentials from an
initial solvable one (see [IH5] for reviews on the topic).
This method allows modifying the energy spectrum
of an initial Hamiltonian to obtain new Hamiltonians
with known eigenstates and eigenvalues. These po-
tentials obtained with SUSY are known as extensions
or SUSY partners of the considered initial potential.
Moreover, when two different SUSY transformations
lead to the same potential (up to an additive constant),
it can be said that the extensions are equivalent [6] [7].

Equivalent rational extensions of the quantum har-
monic oscillator are very attractive in mathematical
physics since its eigenstates are written in terms of
exceptional orthogonal polynomials and the results
are useful for studying superintegrable systems or gen-
erating solutions to the Painlevé equations [SHI0]. In
a recent work of the authors [I1], it was shown that
the equivalence between SUSY transformations goes
beyond rational extensions and can be extended to
non-rational extensions of the harmonic oscillator, i.e.
extensions whose potentials cannot be written as the
quotient of two polynomials, by considering not only
polynomial solutions but also general solutions of the
Schrodinger equation.

However, since the birth of quantum theory, it has
been relevant to study the quantum states at the
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border between classical and quantum regimes. In this
sense, it is well-known that Schrodinger, in 1926 [12],
derived quantum states of the harmonic oscillator
that resemble classical behaviour on the phase-space
as the classical oscillator does. Later on, in 1962,
Glauber rediscovered these states, known as coherent
states, and found that they provided the quantum
description of coherent light [13]. Since then, there
has been a continuous research activity in quantum
physics looking for quantum states with a behaviour
at the border between classical and quantum regimes
by examining semi-classical phase-space properties, in
particular, by systems generated by SUSY [4] [14H20].

The coherent states of the harmonic oscillator are
Gaussian states, labeled by a complex number z, that
minimize the Heisenberg uncertainty relation. They
can be constructed either as displaced versions of the
ground state or as eigenvectors of the annihilation
operator. Moreover, they form an overcomplete set in
the sense that

1 o
;/C|z)(z|dz—1. (1)

These four properties are commonly used as defini-
tions of coherent states when we have a potential
different from the harmonic oscillator, see for exam-
ple [21H25]. Each definition gives, in general, different
sets of coherent states. In this work, we obtain coher-
ent states of non-rational extensions of the harmonic
oscillator as eigenvectors of the annihilation operator.
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For this purpose, we need to find ladder operators of
the system.

The outline of the work is the following: In the next
section, we present a short summary of SUSY. In Sec-
tion [3] we generate two equivalent non-rational exten-
sions of the harmonic oscillator. Then, we construct
ladder operators as the product of the intertwining op-
erators of the SUSY transformations. In the Section [4]
we linearise the ladder operators to obtain a linear
commutation relationship, then, we derive coherent
states as eigenstates of the annihilation operator and
study some of their properties. Our conclusions are
presented in the last section.

2. SUPERSYMMETRIC QUANTUM
MECHANICS

With this technique, we start with two Hamiltonians

1 d? ~ 1d2 -~
=10 e, @

where H is the initial Hamiltonian with known eigen-
functions ¢, (x) and eigenvalues E,, n = 0,1,2,...,
whereas H is the Hamiltonian under construction.
The potential V' is known as the extension or su-
persymmetric partner of V. Now, we propose the
existence of k-th order differential operators B, Bt
that intertwine H and H as

HB* =BYtH, BH=HB. (3)

By properly choosing k general solutions u; (j =
1,2,...,k) of the stationary Schrodinger equation
Huj = €ju;, with corresponding energies €;, the SUSY
partner potential V' (z) reads

V(z) =V(z) = InW(ug,ug,...,up)”, (4

where W(f1, fa, ..., fr) denotes the Wronskian of the
functions in its argument. The functions u; are usually
referred to as seed solutions and the constant €; as
factorization energies. Be aware that to have a regular
potential, we must choose the seed solutions in such
a way the Wronskian has no zeroes.

If B*i, # 0, the eigenfunctions ¢, n = 0,1, ...,
of H can be computed with the relation

BT ()
V(En—e1)...(Bn —ex)
1 W(U1,'LL2, .,uk,d)n)

- V(En =€) (En— ) W(ul,u;-..7uk) - ©)

Jn(x) =

The constructed Hamiltonian H may contain addi-
tional eigenfunctions v.,, known as missing states, for
some of the factorization energies ¢;, given by

W, ... Wim1, Wity - - - Ug) (6)
W(ul,...,uk) ’

e, X

If Jej fullfills the boundary conditions of the quantum
problem, then €; must be included in the spectrum of
H.

In particular, for second-order supersymmetric
quantum mechanics, the intertwining operators have
the explicit form [26]

B |t g @], @)
Bt =3 [~ s+ )] ®

where the functions g(z), h(x) are found in terms of
the only two seed solutions w1, us with the correspond-
ing factorization energies €, €2, as

W’(ul, UQ)

g g
h==+4+=-2V4 —=
W(Ul,UQ)’ 2 + 2 +

g:

Finally, the intertwining operators B and BT fulfill
the following factorization relations:

BYB=(H—¢)...(H —¢), (10)
BBt =(H —¢)...(H — ¢), (11)

i.e., the product of B* and B are polynomials of the
Hamiltonians H and H.

3. NON-RATIONAL EXTENSIONS OF THE
QUANTUM HARMONIC OSCILLATOR
AND THEIR LADDER OPERATORS

Let us consider the harmonic oscillator potential V' =

%xz and the Hamiltonian H as
1d> 1,
H:—§@+§l‘ N (12)

whose eigenfunctions and eigenvalues are

bn(z) = ,/%Me*%{n(x),

where n =10, 1, 2,...
nomials [27].

When eigenfunctions of a Hamiltonian are employed
as seed functions to generate its SUSY partner, the
results are rational extensions and the transformation
is called Krein-Adler transformation [0, [7] 28].

Moreover, rational extensions can also be built by
employing the polynomial non-normalizable solutions
of the Schrodinger equation

1
En: a7
n+2

and H,(z) are Hermite poly-

2

Qom(x) = E%Hm(x)a E 1=~ (m+ ;) s
where m = 0,1,2,..., and H,,(z) = (—4)" H,,(ix)
are the modified Hermite polynomials [29], which are
free of nodes for even m and possess a single node at
x = 0 for m odd. In the case of m even, the reciprocal
of these solutions are square-integrable functions [6].
We can generate non-rational extensions of the har-
monic oscillator potential using non-polynomial solu-
tions of the Schrodinger equation as seed functions
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in a SUSY transformation. Let us write down the
general solution of the stationary Schrédinger equa-
tion, with an arbitrary factorization energy denoted
by £E=X+1/2, as

~F [Ha(2) + vHa(—2)), (13)

where

r(=3) 2
are defined as Hermite functions [30} [31]
I'(b) a+n
F = 1
1Fi(a;b:2) aZI‘b—i-n nl’ (15)

is the confluent hypergeometric function, and = is
a real parameter. If v > 0, the solution will have an
even number of zeroes and for v < 0, an odd number
of nodes.

3.1. FIRST SUSY TRANSFORMATION

As the first non-rational extension of the harmonic
oscillator, we perform a second-order SUSY transfor-
mation where we add two new levels with factorization
energies —3/2 < & < 1/2 and & = E_o = —3/2,
both below the ground state energy. We start by
choosing the seed solutions as

uD(@) = e~ T [Hy, () + vHy, (—2)),
uy! (z) = g1 (), (16)

where \; = & —1/2. To obtain a nodeless Wronskian
W(ugl),ugl)), we take v > 0. Notice that & is an
arbitrary energy between Fg = 1/2 and E_o = —3/2.
By following the relation , we can define a set of
second-order intertwining operators B(Y), B+ which
satisfy the relations

HOBW+ = pO+H, (17)

and its adjoint. The SUSY partner potential is

1
0 = g2 - [m W(u?),uél))} (18)

Since ugl) is an infinite series, the potential v s

a non-rational extension of V. To find the eigenfunc-

tions of the Hamiltonian H (1) we use the operator
BW+ ag

B(l)ﬂ/,n
\/(En - 51)(En - 52> ,

Regarding both missing states of this extension

P = n=0,23,... (19)

(1) (1)
~ U ~(1) ’LLl

) o —2 g o —ZL (20)
W) T W, W)
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due to a stronger divergent behaviour of the Wron-
skian when |z| — oo than the solutions ug ),uél),
the Hamiltonian H H® contains two new bounded
states w(l) and 1/)5 , SO its spectrum is Sp{H(1 } =

{E,Q,gl, ny n—O ]. 2 }

3.2. SECOND BUT EQUIVALENT SUSY
TRANSFORMATION

We can obtain the same Hamiltonian H M up to
an additive constant, with a different second-order
SUSY transformation. Let us choose the following
seed solutions:

e~ [Hy, (2) + vHyy (—2)],  (21)

with the factorization energies &3 = F1, and £, = & +
2, respectively. Note that Ao = A\; +2. Again, through
the relations and . we can define second-order
differential oper~ators B®, B+ which intertwine
a Hamiltonian H® with H as

H®BA+ = p@+g, (22)

The supersymmetric partner potential is

~ 1
7O = 2 W o). (@3)

. 2) . P C o THE) .
Since u(2 ) is an infinite series, V() is a non-rational

extension of V. The eigenfunctions of its Hamiltonian
are

B@ty,
V(E, — &) (B, — &)

and the missing states

P2 = n=0,23,..., (24)

2 2
(2) ~2) (2)

Uy Uy
Ve,

09 ~
2 2 ) 2 2)y
W (ui® us?) W (ui® us?)

(25)

In this case, owing to the divergent asymptotic be-

haviour of the solution ug) when |z| — oo, the missing

state {/}vg) is not normalizable, and since u(12)

the state 1; ) g square integrable Therefore, the en-

ergy Spectrum of H® is Sp(H®) = {Ey, &3, Fs,...}.
It is important to notice that the seed functions

ugl), ugl) used to construct H®) are related to the

seed solutions ug ), ug ) involved in H®. The func-

tions ugl and u2 satlsfy u(Ql) = \/2\/me” u§2), and
a‘a‘u;2 =22\ — )ugl), where a~ is the annihila-
tion operator of the harmonic oscillator. Then, by

a direct substitution, it can be shown that

converges,

H® =g 42,

Thus, VD and V@ are equivalent non-rational exten-
sions of the harmonic oscillator. Notice that due to
this equivalence, the eigenfunctions obtained by both
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transformations are the same but with eigenvalues dis-
placed. In the first extension, the ground state is the
missing state wg), which is also obtained by B®)t ).

Moreover, the missing state {/;(1) corresponds to the

missing state 1/}5 b Finally, relations and are

also equivalent as 1/1(2 zzn 9, Where n = 2, 3, 47 e

3.3. LADDER OPERATORS

Since both Hamiltonians H®) and H® are equivalent,
we can simplify the notation by defining H ) as H,
its eigenfunctions simply by ¢, the potential V@ a
V, and & as e. Be aware that 1/2 < e < 5/2.

Now, we can define the ladder operators for the
SUSY extension H as the product of the intertwining
operators related to the equivalent SUSY transforma-
tions as in [32], i.e

Lt =BWtB® - = p@+p0), (26)

They satisfy the following commutation algebra

[H,L£*] = +207%, (27)

and

L7, LY = (H+2—-&)(H+2-&)
(H+2—&)(H+2- &)

—(H—-&)(H —&)(H - &)(H —&). (28)

From the relation and the diagram in Figure
we can observe how these operators are two-step lad-
der operators. Furthermore, the commutation rela-
tion indicates that these operators, together with
H , realize a polynomial Heisenberg algebra of third-
order [33], with a generalized number operator:

=Lt
= (H — &)(H — &)(H — &)(H — &). (29)

Ny(H)

The kernel of the annihilation operator £~ is com-
posed by the functions
Kq- = {JanJevaEsz(l)jLugZ)}' (30)

The first three elements of the kernel are eigenfunc-
tions of H and the last one is a non-normalizable
solution of the corresponding Schrédinger equation.
By applying iteratively the operator £* onto these
three eigenfunctions, we can construct a basis of
three subspaces of the Hilbert space, the direct sum
of the three Hilbert-subspaces compose the whole
Hilbert space (see Figure [2)). Notice that 1/}6 is an-
nihilated by £T, then the correspondlng subspace
will be one-dimensional whereas the other two are
infinite-dimensinal subspaces.

H? =gl 19 H H
by <5 <5
B B+ A
&= E, m-Cm .
&=6+2 1 B+ [r=B"8
) B+ B
Ey - ——— |
B2 B+
[~ =B®+B0)
& |
& =F,=-} m '

FIGURE 1. Diagram of the mechanism of the two-step

ladder operators
e
e
e

-

Fes £+ £
Es L+ L~
4 L+ L
Es L+ L~

Eo

IS L+ L [ ]

Eo [

FIGURE 2. Three independent energy ladders that
make up the spectrum of H. This spectrum is com-
posed by two infinite energy ladders and a single-
element one.

4. LINEARISED COHERENT STATES AND
THEIR PROPERTIES

Once we have defined the ladder operators £+ in ,
and clarify how they divide the Hilbert space into
two infinite subspaces (or energy ladders) plus a one-
dimensional subspace, we proceed to linearise them.
We focus on the two infinite subspaces since the con-
struction of the coherent state of the third subspace
is trivial. We define new ladder operators for each
infinite subspace as

I =0, (H)LT, [, =0, (H+2)L™, (31)

where v = 0, 3 is the index of the subspace. When
v = 0, we refer to the subspace span{tg, 12,4, ...}
and, when v = 3, we refer to the subspace
span{ts, 5, Y7, ...}. The operators o, are defined
as

— &7V,
— &)V (32)
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From , and considering o, (z) a regular function,
we obtain the following useful relations.

o (H)LT =LY 0,(H+2), o,(H)L =L o,(H—2);
LYo, (H)=0(H—-2)L", L o,(H)=0,(H+2)L".

Using , it is direct to show that the operators ll:,t
fulfill the linear commutation relation

[lVa l;f] = 21H”v (33)

where 1y is the identity in the subspace H”. There-
fore, on both Hilbert subspaces, the action of the
linearised ladder operators is

l;/(’/ju+2n =V 2n{/;l/+2(n—1)v
[jwu-i-Qn = \/mwzﬁLQ(nJrl)v (34)

where n =0,1,2,...

At this stage, we can define the linearised coher-
ent states as eigenstates of the linear annihilation
operator,

L |z")y=2z|z")y, v=0, 3, (35)

where z € C. We can make the expansion

o0

[2¥) = ch|u+2n>, (36)

n=0

where ¥, 12, (2) = (z|v + 2n) are the eigenfunctions
of the SUSY Hamiltonian, and following the defini-
tion (35)), we find that the explicit form of the nor-
malised coherent states is

=2 o= (2/V2)"
42(/ )

e

Notice that we obtained a similar expression of the
standard coherent states but with the relevant differ-
ence that the expansion is in terms of eigenfunctions
of the supersymmetric partner Hamiltonian H in the
subspace v.

[2) =e” v+ 2n). (37)

n=0

4.1. COMPLETENESS RELATION

An important property that the constructed coher-
ent states fulfill is that they form an over-complete
set on Hilbert subspaces, i.e., they solve an identity
expression [25]

1
g/c|zy> (2| d?z = 1qv. (38)

4.2. MEAN-ENERGY VALUES

The eigenvalue equation of the Hamiltonian H is given
by

~ 1
H|1/+2n>:(u—|—2+2n)|u—|—2n>, (39)
which leads to the energy expectation
V| IT | LV 1 2
(I H ) = vt 5+ el (40)

34

We observe that we obtain the well-known quantity of
energy-growth corresponding to the oscillator coherent
states, this result is another direct consequence of the
linear commutation relation between the linearised
ladder operators.

4.3. TEMPORAL STABILITY

Another relevant property of the coherent states is
that they must remain coherent as they evolve in
time. By applying the time evolution operator U(t),
we obtain

U(t)2") = e (30 127 (1))

i.e., our linearised coherent states fulfill this condition.
The period of evolution of these states is 7 = m,
the half of the harmonic oscillator coherent states
(T = 2m). This means that in the phase-space, our
states need just the half of the time to return to the
same point with an acquired phase. This represents a
first clear indication of non-classical behaviour.

4.4. EVOLUTION OF THE PROBABILITY
DENSITIES

Let us analyse the time evolution of the probabil-
ity densities. For the classical coherent states, this
quantity is represented by a Gaussian wave packet
oscillating around the minimum of the potential. In
our case, we have:

pa(z,2,t) = (x| U(t) |2)]

=|g;a‘f@fiﬁgﬁwﬂawamﬁ. (41)

In the Figure 3] we plot this evolution. We ob-
serve that each coherent state is composed by two
wavepackets with a back-and-forth motion resembling
a semi-classical behaviour, since each wavepacket looks
like a harmonic-oscillator coherent state. The two
wavepackets interfere with each other, and it is more
noticeable when they collide around = 0. A par-
ity symmetry x — —z, is only apparent and cannot
be guaranteed for the SUSY extensions since the po-
tential V is only symmetric around z = 0 when the
parameter v = 0 in the seed function uéQ).

4.5. WIGNER DISTRIBUTIONS

An efficient tool to determine the nature of quan-
tum wave functions is the Wigner quasiprobability
distribution in the phase space, defined by

W(z,p) = % /:: " (:r - g) P (m + %) ePVdy. (42)

In Figure ] we show the corresponding Wigner
functions of coherent states for both subspaces. We
observe that the distributions possess regions with
non-positive values, which is a clear indication of the
non-classical behaviour or pure quantum nature of
our linearised coherent states.
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F1GURE 3. Time evolution of the probability densi-
ties (41) of the linearised coherent states (37) with
e=2,v7=2, Top: v=0, 2z =5, and Bottom: v = 3,
z=25.

4.6. HEISENBERG UNCERTAINTY RELATION

First, we introduce two Hermitian quadrature opera-
tors

I+, s
X = 5 X, = T (43)
and the uncertainties

Since the coherent states are eigenfunctions of [, it
is found that these uncertainties follow the product

1
0‘%{10%(2 = Z? (45)

indicating that they saturate the Heisenberg inequal-
ity.

5. CONCLUSIONS

We have found a family of equivalent non-rational ex-
tensions of the harmonic oscillator potential generated
through two different SUSY transformations involv-
ing general solutions of the stationary Schrédinger
equation in terms of Hermite functions. These SUSY

FI1GURE 4. Wigner distributions of the linearised co-
herent states with e = 2, y =2, 2 = 5, Top: v = 0,
and Bottom: v = 3.

transformations consisted in moving the first-excited
state to an arbitrary level between the ground and the
second-excited states, and, on the other hand, adding
two new levels below the ground state. We built
fourth-order differential ladder operators as the prod-
uct of the intertwining operators related to the equiva-
lent SUSY transformations. Then, we linearised these
ladder operators to have a linear commutation relation.
In addition, we realized that these operators divide
the entire Hilbert space of eigenfunctions into two
infinite energy ladders or Hilbert-subspaces, and one
single-element subspace. Then, we derived coherent
states of the linearised annihilation operator as eigen-
states. We uncovered that they are temporally stable
cyclic states with a period 7 = 7w, and we showed
as well that they form an overcomplete set in each
subspace. Moreover, they present the same energy
growth as the oscillator coherent states. For the time
evolution of the probability densities, we obtained the
structure of two oscillating wave-packets, each one
with a period 27, but the collective behaviour with
a period 7. For the Wigner functions, we observed
that they possess regions with non-positive values,
unveiling the quantum nature of these states. Finally,
by defining two Hermitian quadrature operators as in
the harmonic oscillator, we got the linearised coherent
states saturate the Heisenberg inequality. Therefore,
as we already mentioned, we conclude that our states
present both classical and quantum behaviour.
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