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Abstract. The ability to generate tight eigenenergy bounds for low dimension bosonic or ferminonic,
hermitian or non-hermitian, Schrödinger operator problems is an important objective in the computation
of quantum systems. Very few methods can simultaneously generate lower and upper bounds. One of
these is the Eigenvalue Moment Method (EMM) originally introduced by Handy and Besssis, exploiting
the use of semidefinite programming/nonlinear-convex optimization (SDP) techniques as applied to the
positivity properties of the multidimensional bosonic ground state for a large class of important physical
systems (i.e. those admitting a moments’ representation). A recent breakthrough has been achieved
through another, simpler, moment representation based quantization formalism, the Orthonormal
Polynomial Projection Quantization Bounding Method (OPPQ-BM). It is purely algebraic and does not
require any SDP analysis. We discuss its essential structure in the context of several one dimensional
examples.
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1. Introduction
The eigenvalue bounding problem for linear ordinary
differential equations, or linear partial differential
equations (i.e. LODE/LPDE) has been an active
area of research for many decades. In the context
of quantum physical systems, as represented by the
multidimensional Schrödinger equation,

− ℏ2

2m
∇2Ψ(−→r ) + V (−→r )Ψ(−→r ) = EΨ(−→r ), (1)

the generation of upper bounds to the individual dis-
crete state energies is readily obtainable through such
well known methods as that of Rayleigh-Ritz (RR) [1].
The challenge has been to find an equally effective
lower bound method. A well known lower bound
method is that associated with Temple [2]; however,
its convergence rate is slow. Nevertheless, it has served
as a spring board for other more effective lower bound
formulations. Among these is the work by Marmorino
et al. [3], and more recently, that of Martinazzo and
Pollak [4]. The latter are able to improve upon the
convergence rate of Temple’s lower bound formulation.

Despite these successes, two important facts remain.
The first is that all the above bounding methods
require the use of two different bounding formula-
tions. One for the upper bounds (RR), another for
the lower bounds. That is, they do not define a uni-
fied theoretical framework for simultaneously gener-
ating lower and upper bounds. Additionally, these
methods are based on a Hilbert space representation
for quantum systems, dependent on the existence of
hermitian hamiltonians. They are of little relevance
for bounding the real/complex eigenenergies of non-
hermitian systems, particularly those corresponding
to PT-symmetry breaking systems [5–8].

In this work we present a novel approach that
can generate tight bounds for the discrete states of
bosonic or fermionic, low dimension, systems, regard-
less if they are hermitian or not. It is referred to
as the Orthonormal Polynomial Projection Quantiza-
tion Bounding Method (OPPQ-BM), as developed by
Handy [9]; and based, in part, on a related method,
the OPPQ-Approximation Method by Handy and
Vrinceanu [10, 11]. Its general structure is outlined in
the following sections, through representative one di-
mensional systems, both hermitian and non-hermitian.
We outline the full OPPQ-BM theory within the con-
text of the one dimensional, double well, sextic anhar-
monic oscillator; and then demonstrate the existence
of the key structures necessary for its implementation
to the PT symmetry breaking problem with potential
V (x) = ix3 + iax.

Beyond the theoretical interest in bounds, they
are also of practical importance for delicate systems
where conventional computational methods may yield
widely varying results. That is, the availability of tight
bounds allows one to discriminate between competing
theories.

One famous problem of this type corresponds to the
Quadratic Zeeman (QZM) effect for superstrong mag-
netic fields. This problem was analyzed through many
different types of computational methods, resulting in
a wide range of values for the most challenging state
to compute: the ground state binding energy. This
was reviewed by Le Guillou and Zinn-Justin (LG-ZJ)
in the context of their order dependent conformal
transformation analysis [12]. Using novel, Moment
Problem [13] related, computational methods, Handy,
Bessis, et al. [14, 15]. were able to confirm the accu-
racy of the LG-ZJ analysis, by computing sufficiently
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tight bounds to the ground state binding energy. Sub-
sequent studies by Kravchenko et al. [16], and the
more recent work by Schimerczek and Wunner [17],
developed a different formulation that yielded vastly
improved estimates (not bounds). The work by Handy
extended OPPQ-BM to the QZM problem, yielding
bounds that significantly improved upon, or were com-
petitive with, the estimates by Kravchenko et al.

The QZM problem is an example of an important
class of problems for which bounding methods are
highly relevant. These are classified as singular per-
turbation – strongly coupled systems. Such systems
involve quantum particles subjected to very strong
forces, over relatively short length scales. This is in-
herently a multiscale problem, in keeping with the
objectives of wavelet analysis [18, 19], etc.

Our original immersion into the eigenenergy bound-
ing problem was through the study of strong coupling-
singular perturbation type systems, such as QZM.
The natural framework for regulating these systems is
through the use of a non-local, extensive, representa-
tion. The power moments provide such a representa-
tion. As such, the types of systems studied here are
those for which the Schrödinger operator configuration
space problem can be transformed into a moments’
equation counterpart for the power moments of the
bound state solutions. We refer to these as MER
type systems (i.e. those admitting a moment equation
representation). This will become clear below. This
condition can be relaxed, and essentially imposed on
systems that do not admit such MER formulations,
making the underlying OPPQ-BM principles applica-
ble to many different types of systems. The details of
this expanded analysis will be communicated shortly.

1.1. Singular-perturbation strong
coupling problems and moment
representations

It is not widely appreciated that power moments are
relevant in understanding the multiscale structure of
most systems. Thus, consider the scaling transform
of a given wavefunction (i.e. signal, where we have
simplified the notation to that of one dimension):

SΨ(a, b) ≡ 1
aν

∫ +∞

−∞
dx S(x − b

a
)Ψ(x), (2)

where

Lima→0+SΨ(a, b) = Ψ(b), (3)

and ν ≡
∫

dx S(x) ̸= 0.
Physicists are biased in favor of attaining an analyt-

ical understanding of problems. Therefore the natural
question to ask is, what is the analytical dependence
in the inverse scale (i.e. 1

a ) for this scaling transform,
if Ψ is a bounded, L2 state? It will become clear
from Eq. (4), that the power moments of the bound
state solution, determine the analytic structure of the

inverse scale expansion. These considerations underlie
the analysis by Handy [20].

Alternatively, engineers are more oriented towards
computational capabilities. If so, then it readily fol-
lows that the a → 0 limit can be replaced by the in-
tegral

∫ ∞
0 dα∂α

(
αS

(
α(x − b)

))
, where α ≡ 1

a , which
after a convolution substitution gives one the Contin-
uous Wavelet Transform [19].

For bound state configurations, if
lim|x|→∞ Ψ(|x|)S(|x|eiθ) = 0, exponentially, for
arbitrary θ, then the scaling transform becomes ana-
lytic in the inverse scale, 1

a . Under this assumption,
the scaling transform’s analytic expansion depends
on the moments [20]

SΨ(a, b) = 1
aν

∞∑
j=0

σj

j!aj

j∑
p=0

(
j
p

)
(−b)j−pµ(p), (4)

where ∂j
xS(0) ≡ σj , and

µ(p) ≡
∫ +∞

−∞
dx xpΨ(x). (5)

2. The moment equation
representation

The natural extension of the above considerations is
to study linear quantum systems whose differential
form is transformable into a moment equation. Thus
consider the sextic anharmonic oscillator potential,
where the physical parameters have been re-scaled:

−ϵ2∂2
xΨ(x) + (mx2 + gx6)Ψ(x) = EΨ(x). (6)

The nature of physical quantum systems is that the
discrete states decay exponentially, and therefore have
finite power moments. The unphysical solutions be-
come exponentially unbounded in one or both asymp-
totic directions, therefore their power moments are
infinite.

We can multiply the above equation by xp and inte-
grate by parts, assuming the underlying wavefunction
is that of a discrete state. We then obtain the moment
equation representation (MER):

gµ(p + 6) = − mµ(p + 2) + Eµ(p)
+ p(p − 1)ϵ2µ(p − 2), p ≥ 0. (7)

This homogeneous MER expression is a finite differ-
ence equation of effective order 1 + ms where ms = 5.
That is, for any E parameter value, the first six power
moments {µ0, µ1, . . . , µ5} (i.e. µ(ℓ) ≡ µℓ) are the
initialization moments, or missing moments, and gen-
erate all the other power moments through closed
form, energy dependent coefficients:

µ(p) =
ms∑
ℓ=0

ME(p, ℓ) µℓ, p ≥ 0. (8)

64



vol. 62 no. 1/2022 Algebraic Eigenenergy Bounding Method

If the coupling strength is large, g >> 1, the nat-
ural inclination is to attempt some kind of singular
perturbation analysis involving expansions around the
kinetic energy term; or, alternatively, a large pertur-
bative expansion/resummation analysis.

In configurations space, kinetic energy expansions
become singular (i.e. expanding in ϵ2) because the
order of the differential equation abruptly changes
from zero to two. However, the order of the MER
relation does not change as its kinetic energy counter-
part is set to zero. This is one simple evidence that
the MER transformation regulates singular perturba-
tion expansions (i.e. kinetic energy expansions). That
is, singular perturbation expansions in the moments’
representation are better behaved.

3. Generating eigenenergy bounds
within a moments’
representation

There are two methods for generating bounds within
a moment equation representation (MER). The first
method, referred to as the Eigenvalue Moment Method
(EMM), was developed by Handy and Bessis [14,
15], and is based on the Moment Problem [13].
Its theoretical-computational structure is based on
what is now referred to as semidefnite programming
(SDP) [21, 22]. As such, the SDP based formulation
of Handy and Bessis is the first use of such meth-
ods for quantum operators [22]. Its computational
implementation was done through the use of linear
programming [23], since SDP algorithms were not
known in the 1980s.

The second moment representation bounding for-
mulation is that presented in this work, OPPQ-BM.
Unlike EMM, OPPQ-BM is applicable to the low
lying discrete states of any system, hermitian, or non-
hermitian, bosonic, or fermionic, provided it admits
a moment equation representation (MER). EMM is ap-
plicable only for the multidimensional bosonic ground
state.

For systems admitting both EMM and OPPQ-BM,
it is our belief that at its basic level, EMM pro-
duces faster converging bounds (as shown in this work
through the analysis of the sextic anharmonic oscilla-
tor in Eq. (6)); however, if one optimizes the selection
of the reference/weight function, then OPPQ-BM can
yield significantly faster converging results.

The EMM formulation involves sophisticated, non-
linear, convex optimization analytical tools. How-
ever, OPPQ-BM is purely algebraic (i.e. eigenvalues,
eigenvectors, and algebra). Given the power of Math-
ematica, with unlimited precision, it can produce
spectacular results.

It is important to stress that EMM produces (when
applicable) tight bounds ab initio. The OPPQ-BM is
empirical. If the convergence of a particular parame-
ter is numerically observed, then one can confidently

generate bounds for the physical energies. We demon-
strate this.

4. The eigenvalue moment method

The bosonic ground state must be a positive (nonneg-
ative) configuration [24], Ψgr(−→r ) ≥ 0. If the corre-
sponding Schrödinger equation is transformable into
MER form, then one can impose the Moment Problem
positivity theorems and constrain the power moments,
and in turn the energy and missing moments. This
is the EMM-methodology. This was done, several
decades ago, by Handy and Bessis (HB) [14, 15].

The Eigenvalue Moment Method (EMM), achieves
geometric convergence rates for the bounds to the
ground state energy. The only limitation is that it can
only be applied to multidimensional bosonic systems,
and then only to the ground state. As previously
noted, it was used to solve the Quadratic Zeeman
(QZM) problem [15]. The bounding of bosonic ex-
cited states, through a moment representation, could
only be realized more recently through application of
OPPQ-BM [9].

One can extend the EMM quantization philosophy
to the probability density of one dimensional hermitian
Schrödinger operators. This is because the probability
density will satisfy a third order, linear, differential
equation (LODE). If the LODE representation ad-
mits a MER formulation, then one can generate tight
bounds to any discrete state. This is because all the
discrete states are associated with nonnegative, L2,
configurations.

If the underlying Sturm-Liouville problem is non-
hermitian, then the one dimensional Schrödinger equa-
tion can be transformed into a fourth order LODE
for the probability density. This approach was used
by Handy [8] in precisely computing the a-parameter
regimes where the system V (x) = ix3 + iax, violated
PT symmetry (i.e. PT symmetry breaking). These re-
sults were confirmed through a faster, moment based,
estimation procedure [25], that led to a more detailed
understanding for the onset of PT symmetry break-
ing. These results significantly improved upon the
predictions by Delabaere and Trinh [26], based on
asymptotic analysis. We revisit this problem in this
work.

The multidimensional probability density, S(−→r ) ≡
Ψ∗(−→r )Ψ(−→r ) will not generally satisfy a linear partial
differential equation; therefore, no MER relation can
be generated, and EMM cannot be applied. Never-
theless, through OPPQ-BM we can circumvent this
difficulty.
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5. The orthonormal polynomial
projection quantization
formalism

5.1. The OPPQ non-orthogonal basis
expansion

Let us expand the discrete state wavefunction in terms
of some appropriate, complete, non-orthonormal basis,
{Bn(x) ≡ Pn(x)R(x)}:

Ψ(x) =
∞∑

n=0
cnPn(x)R(x). (9)

We require a weighted polynomial basis, involving
orthonormal polynomials relative to some appropriate
positive weight R(x) > 0 (we adopt the one dimen-
sional notation for simplicity):

⟨Pm|R|Pn⟩ = δm,n. (10)

The weight is real, as are its orthonormal polynomials,
involving real polynomial coefficients:

Pn(x) =
n∑

j=0
Ξ(n)

j xj . (11)

For non-hermitian systems with complex bound
state wavefunctions, it is the projection coefficients,
{cn} that become complex.

The basis {Bn(x)R(x)} will be complete, but non-
orthogonal (i.e. ⟨Bm|Bn⟩ ≠ 0, if m ̸= n).

We can rewrite Eq. (10) as

m∑
j1=0

n∑
j2=0

Ξ(m)
j1

ω(j1 + j2)Ξ(n)
j2

= δm,n, (12)

where ω(j1 + j2) =
∫

dx xj1+j2R(x), the Hankel mo-
ment matrix of the weight, Wi,j ≡ ω(i + j).

Knowledge of the Hankel moment matrix allows
us to generate the orthonormal polynomials through
the Cholesky decomposition method, which involves
decomposing the positive Hankel matrix into the form
W = CC†. Let êj correspond to a unit vector in the
j-th component. We then solve for

−→Ξ
(j)

= (C†)−1êj . (13)

This generates the coefficient vector for Pn(x), or
−−→
Ξ(n).

The projection coefficients are obtainable from the
MER relation for the power moments of Ψ(x):

µ(p) ≡
∫

ℜ
dx xpΨ(x). (14)

Assume that the corresponding MER relation exists

µ(p) =
ms∑
ℓ=0

ME(p, ℓ)µℓ. (15)

It then follows that

cn = ⟨Pn|Ψ⟩,

=
n∑

j=0
Ξ(n)

j µ(j)

=
n∑

j=0
Ξ(n)

j

ms∑
ℓ=0

ME(j, ℓ)µℓ, (16)

cn(−→µ ) =
ms∑
ℓ=0

Λ(n)
ℓ (E)µℓ, (17)

where

Λ(n)
ℓ (E) =

n∑
j=0

Ξ(n)
j ME(j, ℓ). (18)

The MER relation suggested in Eq. (15) is a ho-
mogeneous relation for the power moments. Some
normalization condition needs to be imposed:

C(−→µ ) = 1. (19)

For one dimensional systems, the natural normaliza-
tion is the unit (nonlinear) normalization: |−→µ |2 = 1.
However, it need not be chosen as such. Alternative
choices [9] are linear normalizations such as µ0 = 1 or
µ0 + µ1 = 1, etc.

5.2. The OPPQ quantization condition
The OPPQ quantization condition requires that the
weight be chosen so that the following positive inte-
gral is bounded for discrete solutions and infinite for
unphysical solutions:

I[Ψ, R] =
∫

ℜ
dx

|Ψ(x)|2

R(x) , (20)

=
∞∑

j=0
|cj(E, −→µ )|2, (21)

where we have assumed Ψ is a bounded discrete state.
More generally, we note that depending on the

asymptotic behavior of the physical or unphysical (i.e.
unbounded) solutions, and the chosen asymptoic form
for the weight, the integral in Eq. (20) will satisfy the
quantization condition:

I[Ψ, R]

=
{

finite, ⇐⇒ E = Ephys and −→µ = −→µ phys

∞, ⇐⇒ E ̸= Ephys or −→µ ̸= −→µ phys.
(22)

The OPPQ quantization condition essentially be-
comes a shooting method in the E × −→µ , 1 + ms, pa-
rameter space (after imposing a normalization). This
is the essence of the OPPQ-BM bounding procedure.
The focus of the remaining OPPQ formalism is to re-
duce this shooting method to a minimization problem
in the energy parameter space.
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5.2.1. Selection of the OPPQ weight
The above formalism has two significant advantages.

The first is that it tells us that the weight should
not be chosen so that it asymptotically vanishes much
faster than the asymptotic form of the physical solu-
tions.

Thus, given a physical, discrete state, Ψ, let C(x)
satisfy the asymptotic relation:

Lim|x|→∞
Ψ(x)
R(x) = C(x). (23)

We then want ∫
dx|Ψ(x)C(x)| < ∞. (24)

In the works by Handy and Vrinceanu [10, 11],
which introduce a particular version of the OPPQ
formalism (i.e. to be referred to here to as the OPPQ-
Approximation Method (OPPQ-AM)), they argued
and demonstrated that the fastest convergence to the
discrete states is associated with weights that mimic
the asymptotic form of the desired discrete state:

Lim|x|→∞C(x) = const. (25)

The constant can be finite (i.e. zero), but not infinite
in a manner that violates Eq. (24).

5.2.2. Use of the ground state as a weight
Another advantage of the above formalism is that we
can take R(x) = Ψgr(x) even if we do not know the
functional form for the ground state.

As long as one does not require that the discrete
state wavefunction be reconstructed (i.e. one is only
interested in the eigenenergies) then the only infor-
mation required for the ground state is that its power
moments be known accurately. This then allows us
to generate the corresponding orthonormal polynomi-
als, allowing for the generation of rapidly converging
bounds to the discrete states. We demonstrate this
in this work (i.e. Table 8).

One can determine the power moments of the
ground state wavefunction either through EMM or
OPPQ-BM. Note that for bosonic systems, this is an
excellent use of EMM, since the ground state is usually
the only state that can be determined.

Using the ground state as a weight usually yields
the fastest convergence.

6. The OPPQ-approximation
method (OPPQ-AM)

From Eq. (21) and the OPPQ quantization condition
in Eq. (22) it follows that the physical energy and
missing moment values must satisfy

lim→∞cn(Ephys, −→µ phys) = 0. (26)

Since cn(E, −→µ ) =
−→
Λ

(n)
(E) · −→µ , from Eq. (17), the

1 + ms linear equations

ms∑
ℓ2=0

Λ(N−ℓ1)
ℓ2

(E) µℓ2 = 0, (27)

0 ≤ ℓ1 ≤ ms, can be used to approximate the physical
energies through the determinantal secular equation

Det
(

Λ(N−ℓ1)
ℓ2

(E)
)

= 0. (28)

This defines the OPPQ-Approximation Method
(OPPQ-AM). As indicated earlier, Handy and
Vrinceanu [10, 11] noted significant improvement in
the convergence rates when the weight, R, mimics the
asymptotic form of the desired physical states.

The OPPQ representation is very robust, and no
convergence irregularities emerge so long as the weight
does not decrease much faster than the asymptotic
form of the physical states. Provided this is satisfied,
the OPPQ-AM formalism will always converge to the
true physical energies; however, the rate of conver-
gence depends on the asymptotic properties of the
chosen weight.

Despite these impressive results, there is no guaran-
tee that, for hermitian systems, the energies generated
through Eq. (28) will be real. Spurious, small imagi-
nary parts may be produced from Eq. (28), that vanish
in the N → ∞ limit.

By way of contrast, the OPPQ-Bounding Method to
be described below, will always generate real energies
for hermitian systems. In addition, as its name sug-
gests, converging bounds to the discrete state energies
can be generated.

We make the last observation more explicit. As
will be shown below, OPPQ-BM generates, to each or-
der, an energy dependent function, LN (E). The local
minima, ∂ELN (E) = 0 will approximate the physi-
cal energies. These local minima can, essentially, be
bounded, through converging lower and upper bounds.
We refer to the local minima in LN (E) as the OPPQ-
BM estimates, in order to distinguish them from the
OPPQ-AM estimates from Eq. (28) and the OPPQ-
BM generated bounds.

7. The OPPQ-bounding method
We outline the structure of OPPQ-BM for one space
dimension problems. The major difference between
one dimensional and multidimensional MER type sys-
tems is that one dimensional problems have a fixed
number of missing moments: ms < ∞.

Multidimensional problems involve an infinite hi-
erarchy of missing moment subspaces of increasing
dimension. That is, ms → ∞. We develop the 1-
space dimension OPPQ formalism in a manner that
extends to multidimensions. How the normalization
prescription is chosen, plays an important role in the
formalism [9].
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Figure 1. Log10(λN (E)) for sextic anharmonic oscil-
lator system in Eq. (47); N = 20, 40, 100, 120.

The OPPQ quantization condition in Eq. (22) is
dependent on the positive, (essentially) increasing,
sequence, defined by the partial sums:

I[Ψ, R] = LimN→∞SN (E, −→µ ), (29)

where

SN (E, −→µ ) =
N∑

j=0
|cj(E, −→µ )|2, (30)

= ⟨−→µ |PN (E)|−→µ ⟩, (31)

where PN (E) is an energy dependent, positive matrix
(if N ≥ ms) of dimension (1 + ms) × (1 + ms):

PN (E) =
N∑

j=0

(−→
Λ

(j)
(E)

)∗−→
Λ

(j)
(E), (32)

involving the sum over dyad matrix expressions.
For non-hermitian systems, the “bra” missing mo-

ment vector in Eq. (31) requires the complex conju-
gate expression for positive norms on complex vector
spaces.

It trivially follows, by definition, that

0 < SN (E, −→µ ) < SN+1(E, −→µ ) < . . . < I[E, −→µ ]. (33)

The OPPQ quantization condition in Eq. (22) tells
us that the physical energy and corresponding missing
moments correspond to (Ephys, −→µ phys) points within
the E × −→µ parameter space where the functional
I[Ψ, R] has a local minimum. Also, for fixed Ephys,
the corresponding physical missing moment values
are those corresponding to a global minimum in the
missing moment space. Therefore, to order N we can
focus on the global minimum within the constrained
(i.e. normalized) missing moment space:

LN (E) ≡ Inf−→µ {SN (E, −→µ )|Cnorm(−→µ ) = 1}, (34)

where some convenient normalization has been
adopted, C(−→µ ) = 1.

5 10 15 20
E

1

2

3

4

5

Log
10
(�n(E))

Figure 2. Log10(λN (E)) for sextic anharmonic oscil-
lator even states in Eq. (65); N = 4, 6, 8, 10, 12; based
on the weight RL(ξ) = ξ− 1

2 exp(−ξ).
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Log
10
(�n(E))

Figure 3. Log10(λN (E)) for sextic anharmonic oscil-
lator even states in Eq. (65); N = 4, 6, 8, 10, 12; based
on the weight RG(ξ) = ξ− 1

2 exp(−ξ2/2).

An important result is that

LN (E) < LN+1(E). (35)

This trivially follows from Eqs. (33-34).
An immediate consequence is that the counterpart

to the quantization condition in Eq. (22) now becomes
simpler:

lim
N→∞

LN (E) =
{

finite ⇐⇒ E = Ephys,

∞ ⇐⇒ E ̸= Ephys.
(36)

Combining this with Eq. (35) we obtain:

0 < LN (E) <LN+1(E) < . . .{
finite, ⇐⇒ E = Ephys

∞, ⇐⇒ E ̸= Ephys.
(37)

Therefore, the LN (E) functions form an increasing,
nested, concaved upwards, sequence of positive func-
tions. This is demonstrated for the sextic anharmonic
harmonic oscillator problem (Figures 1-3), as well as
the non-hermitian ix3 + iax potential (Figure 4), on
the complex energy domain. Only at the exact physi-
cal energy will the limit be finite. Everywhere else it
will become infinite.
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Figure 4. Log10(λN (E)) for N = 20, 30, 40, 50,
V (x) = ix3 + iax, a = −2.70

Given the behavior of the LN (E), it is clear that
the local minima in the energy variable, at a given
order “N”, should approximate the physical energies.
Thus, for each physical discrete state, its correspond-
ing approximants, Ephys;N , will satisfy

∂ELN (E(min)
phys;N ) = 0, (38)

resulting in

lim
N→∞

E
(min)
phys;N = Ephys. (39)

More importantly, these local minima have a very
important property. The expressions LN (E(min)

phys;N )
form an increasing, positive sequence, bounded from
above by the physical counterpart. This follows from

LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1), (40)

which follows from:

LN (E(min)
phys;N ) < LN (E(min)

phys;N+1)

< LN+1(E(min)
phys;N+1). (41)

It now follows that the counterpart to the OPPQ
quantization condition in Eq. (22) becomes

0 < LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1) < . . .

< L∞(Ephys). (42)

Thus, the {LN (E(min)
phys;N )} form a monotonically in-

creasing positive sequence bounded from above by
the physical value. The minima do not necessarily
converge monotonically.

8. The OPPQ-bounding method
Upon reviewing Eq. (42) a bounding strategy emerges.
Assume that the sequence elements can be generated
to sufficiently high expansion orders, and that a rough
upper bound, BU can be discerned:

LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1) < . . .

< L∞(Ephys) < BU . (43)

Given the behavior of the LN (E) functions, as given
in Eqs. (35-37), one can readily determine energy
parameter values satisfying

LN (E(L)
phys;N ) = LN (E(U)

phys;N ) = BU , (44)

such that

E
(L)
phys;N < Ephys < E

(U)
phys;N , (45)

and

lim
N→∞

(
E

(U)
phys;N − E

(L)
phys;N

)
= 0+. (46)

As a point of comparison, the Rayleigh-Ritz (RR)
method solely produces upper bounds. Regardless of
how rapidly these bounds converge from above (to
the physical value), there is no theoretical criteria by
which the RR results can suggest a lower bound to
the physical energy. The OPPQ-BM method does.

9. The sextic anharmonic double
well potential

The sextic anharmonic oscillator (double well) poten-
tial problem is defined by

−∂2
xΨ(x) + (x6 + mx2)Ψ(x) = EΨ(x), (47)

where we will take g ≡ 1 and m = −4.
There are three different configuration space repre-

sentations for the sextic anharmonic oscillator prob-
lem, each with different MER relations of varying
order. The most immediate is simply working with
Ψ as given in Eq. (47). This leads to a sixth order
(i.e. 1 + ms = 6) finite difference MER relation, as
given in Eq. (48). We examine both OPPQ-AM and
OPPQ-BM as applied to this representation.

The next configuration space representation is that
of the Ψ2(x) presentation. It leads to a MER relation
of order 3 (i.e. 1 + ms = 3). We do not apply either
OPPQ formulation to this case. However, one can
use EMM to bound all the low lying discrete states;
thereby providing a test for the effectiveness of OPPQ.

The third, and last, sextic configuration space rep-
resentation is provided by the contact transformation,
Φ(x) = exp(− x4

4 )Ψ(x). This leads to the most effi-
cient MER representation, corresponding to a first
order (homogeneous) MER relation (i.e, 1 + ms = 1).
It results in the fastest OPPQ and EMM convergence.

9.1. EMM-Ψ
The first MER representation to be considered, for
the sextic anharmonic oscillator, results from a direct
MER analysis of the Schrödinger equation representa-
tion in Eq. (47). The power moments along the entire
real axis are referred to as the Hamburger moments
µ(p) =

∫
ℜ dx xpΨ(x).

Upon multiplying both sides of Eq. (47) by xp and
implementing an integration by parts analysis, implic-
itly assuming that one is working with a discrete state,
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there ensues a Hamburger moment equation relation
(MER) of the form:

µ(p + 6) = − m µ(p + 2) + Eµ(p)
+ p(p − 1)µ(p − 2), p ≥ 0. (48)

This is a MER equation of order 1 + ms = 6. The
MER relation in Eq. (48) applies to both even and
odd discrete states.

The generator form for the above MER becomes

ME(p + 6, ℓ) = − m ME(p + 2, ℓ) + EME(p, ℓ)
+ p(p − 1)ME(p − 2, ℓ), (49)

p ≥ 0; and 0 ≤ ℓ ≤ ms = 5. The initialization
conditions becomes

M(ℓ1, ℓ2) = δℓ1,ℓ2 , (50)

for 0 ≤ ℓ1,2 ≤ 5.
The OPPQ representation becomes

Ψ(x) =
∞∑

n=0
cnPn(x)R(x). (51)

One can take the weight to be the Gaussian, RG(x) =
exp(−x2), or the asymptotic form for the physical
states, RA(x) = exp(− x4

4 ). In the original formulation
of the OPPQ-Approximation Method (OPPQ-AM)
Handy and Vrinceanu examined both; and demon-
strated the superiority of RA(x). Our interest here
is to demonstrate this approach, and to implement
the OPPQ-Bounding Method with regards to the RA

formulation.
The orthonormal polynomials for the Gaussian,

RG(x), are determined by the Hermite polynomials

⟨Ĥm|exp(−x2)|Ĥn⟩ = δm,n, (52)

or

Ĥn(x) = 1√√
π2nn!

Hn(x). (53)

The orthonormal polynomials (i.e. their coefficients)
for RA(x) are determined through the Cholesky de-
composition of the Hankel moment matrix

Wm,n ≡
∫

ℜ
dx xm+nexp(−x4/4), (54)

or

Wm,n =
{

0, if m + n = odd,

2η− 1
2 Γ( η+1/2

2 ), if m + n = 2η, (even).
(55)

The projection coefficients are determined by

cn(E, µ0, . . . , µ5) =
ms=5∑
ℓ=0

Λ(n)
ℓ (E) µℓ, (56)

from Eq. (17-18), where

Λ(n)
ℓ (E) =

n∑
j=0

Ξ(n)
j ME(j, ℓ). (57)

The OPPQ-Approximation Method corresponds to
solving the secular equation

cN−ℓ1(E, −→µ ) = 0, (58)

for 0 ≤ ℓ ≤ 5 and N → ∞, or

Det
(

Λ(N−ℓ1)
ℓ2

(E)
)

= 0, (59)

a 6 × 6 determinantal secular equation.
In summary, having chosen N , we need to generate

{Λ(n)
ℓ (E)|N − ms ≤ n ≤ N}. This requires the or-

thonormal polynomials to order N and the generation
of ME(p + 6, ℓ), for 0 ≤ p ≤ N − 6. The Hankel mo-
ment matrix for the weight are required up to order
2N .

The results for both choices of weight are indicated
in Tables 1 and 2, for the first ten discrete state
energies. It is clear that the RA choice for the weight
is orders of magnitude faster than the simple Gaussian.

It is natural to normalize the missing moments
according to a unit normalization |−→µ |2 = 1, or

5∑
ℓ=0

µ2
ℓ = 1. (60)

Accordingly, the energy functional whose minimization
is part of the OPPQ-Bounding Method becomes:

LN (E) →
λN (E) ≡ Smallest Eigenvalue of PN (E), (61)

where the dyad matrix is given by

(
PN (E)

)
ℓ1,ℓ2

=
N∑

j=0
Λ(j)

ℓ1
(E)Λ(j)

ℓ2
(E). (62)

The λN (E) form a family of nested, increasing func-
tions, whose local minima approximate the eigenener-
gies, and serve to define a bounding formalism. We
depict this behavior for the RA(x) weight, in Figure 1.
The resolution is not too high and so it is difficult to
appreciate that the downward spikes actually are very
close to each other. This type of illustration becomes
easier to recognize in a subsequent reformulation of
the sextic anharmonic oscillator.

We can also apply EMM analysis to the system in
Eq. (47). The EMM procedure essentially imposes
the well known Hankel Hadamard Moment Problem
constraints in order to bound the discrete state ener-
gies associated with nonnegative configuration space
solutions. Since the only state of this type is the
ground state, which must also be of even parity, we
can further specialize the MER relation in Eq. (48) to
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N E0 E1 E2 E3 E4

25 -0.530376450630854 0.985067365669966 5.28830977093027 10.4934190522107 15.8338485774860
50 -0.523284216533135 1.00560182885171 5.37480811122565 10.5699924952422 16.7909114406834
75 -0.523268805558542 1.00576819439460 5.37496683348150 10.5725844031665 16.7952741272760
100 -0.523268623704744 1.00576834791848 5.37496999430605 10.5725850991710 16.7953468181267
125 -0.523268622109697 1.00576834035184 5.37497000920767 10.5725850451529 16.7953468448794
150 -0.523268622126032 1.00576834023041 5.37497000886154 10.5725850446303 16.7953468331754
175 -0.523268622127498 1.00576834022567 5.37497000884083 10.5725850445874 16.7953468327220
200 -0.523268622127550 1.00576834022555 5.37497000884007 10.5725850445860 16.7953468327042
25 -0.523268576015852 1.00576828117312 5.37497437050670 10.5726072299740 16.7951977796668
50 -0.523268622127552 1.00576834022554 5.37497000884005 10.5725850445859 16.7953468327034
100 -0.523268622127552 1.00576834022554 5.37497000884004 10.5725850445859 16.7953468327036
200. -0.523268622127552 1.00576834022554 5.37497000884004 10.5725850445859 16.7953468327036

Table 1. OPPQ-AM, for the first five states of V (x) = x6 − 4x2, ms = 5, RGauss = e−x2
and RA = e−x4/4 .

N E5 E6 E7 E8 E9

25 23.5770262257055 46.5131514442214
50 23.8599097864908 31.6506317849753 40.1684238879451 48.7083019153321 57.2184300245252
75 23.8838452220218 31.7416917119713 40.2993336329482 49.5062748750452 59.2851256940478
100 23.8839209143498 31.7425529172254 40.3026888622591 49.5114653542220 59.3258556535193
125 23.8839223617171 31.7425500612024 40.3027376770457 49.5115009782085 59.3262796515870
150 23.8839223760489 31.7425498440774 40.3027378004240 49.5115004143879 59.3262744628777
175 23.8839223758291 31.7425498374411 40.3027377924283 49.5115003807374 59.3262741019580
200 23.8839223758112 31.7425498371238 40.3027377918922 49.5115003775253 59.3262740863702
25 23.8828743775059 31.7384980035506 40.3209134822543 50.0634788389675
50 23.8839223758082 31.7425498371192 40.3027377921622 49.5115003777545 59.3262740709658
100 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373
150 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373
200 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373

Table 2. OPPQ-AM, for the sixth-tenth states of V (x) = x6 − 4x2, ms = 5, RGauss = e−x2
and RA = e−x4/4 .

such states, yielding a reduced finite order difference
equation for the power moments (i.e. ms = 2). The
results produced bounds to the 8th decimal place for
the ground state energy. We obtain the EMM bounds:
−0.523268623844284 < Egr < −0.523268619253327,
based on an expansion order of approximately 29
power moments (i.e. {µ(p)|0 ≤ p ≤ 28}). This was
done on a simple PC with about 14 place precision.

We note that the EMM bounds quoted above were
accurate to approximately eight decimal places, based
on approximately 28-29 power moments. The missing
moment order used for the even state formulation was
ms = 2. The OPPQ-BM bounds quoted in Table 3,
based on an ms = 5 MER formulation, use an optimal
weight, but only give us two decimal place accuracy
on the basis of 25 power moments. Of course, the
bounds quickly improve, as N → 125. We continue
these EMM versus OPPQ comparisons below.

By way of contrast, the OPPQ-BM procedure can
produce bounds on all the low-lying states. To pro-
duce these, we must first generate the local minima,
∂EλN (E(min)

phys;N ) = 0. Fortunately, these derivatives
can be obtained algebraically through a recursion
procedure. Following this, we must discern a crude

upper bound (i.e. B(U)
phys) to the positive sequence

{λN (E(min)
phys;N )|N > 0} < B(U)

phys. We then deter-
mine the energy interval whose endpoints satisfy
λN (E(L)

phys;N ) = B(U)
phys = λN (E(U)

phys;N ). These become
the lower and upper bound estimates for that physical
energy.

The above bounding analysis is initiated in Table 4
for the ground and second excited state of the sextic
anharmonic oscillator. Since the use of the RA weight
yields very rapid convergence, we see that the coarse
upper bounds, B(U) are easily determined. Using these
we can generate the bounds for the ground state and
first excited state, as given in Table 3. We note that
the OPPQ-BM bounds generated in Table 3 (we could
have continued tightening the bounds), for the ground
state, used 125 power moments giving us bounds at
the 18th decimal place. In Eq. (69) we quote the EMM
bounds obtained on the basis of 61 power moments.
The accuracy is at the 33rd decimal place. However,
in Eq. (70), using an optimal (Stieljes representation)
weight, the OPPQ-AM converged to 50 decimal places,
using only 45 power moments.
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N E
(L)
0;N E

(U)
0;N E

(L)
2;N E

(U)
2;N

25 -0.524852943468474 -0.521778245307431 5.368449680815753 5.384374689469648
50 -0.523268749143883 -0.523268495112775 5.374969291406036 5.374970726288986
75 -0.523268622134517 -0.523268622120587 5.374970008804361 5.374970008875728
100 -0.523268622127553 -0.523268622127552 5.3749700088400432 5.3749700088400468
125 -0.52326862212755223948 -0.52326862212755223934 5.3749700088400449937 5.3749700088400449945

B(U) = −0.876 B(U) = −0.990

Table 3. OPPQ-BM upper and lower bounds for the ground and second excited states, using RA = e−x4/4.

N ∂Eλ(E(min)
0;N ) = 0 Log10

(
λ(E(min)

0;N )
)

∂Eλ(E(min)
2;N ) = 0 Log10

(
λ(E(min)

2;N )
)

25 -0.523315367444853 -0.877054685910968 5.37640170043752 -0.991603081677466
50 -0.523268622128326 -0.877042389134943 5.37497000884746 -0.991530473233468
75 -0.523268622127552 -0.877042389134815 5.37497000884004 -0.991530473233135
100 -0.523268622127552 -0.877042389134815 5.37497000884004 -0.991530473233135

B(U) = −0.876 B(U) = −0.990

Table 4. OPPQ-BM Analysis for determining coarse upper bounds, B(U), for the ground and second excited states,
using RA = e−x4/4 .

9.2. EMM-Ψ2

Another MER representation for the sextic anhar-
monic oscillator is possible by working with the prob-
ability density, S(x) = Ψ2(x). It is easy to show that
the probability density for real potentials satisfies
a third order LODE. For the sextic anharmonic os-
cillator problem, this 3rd order LODE yields a MER
relation of order 3 (i.e. ms = 2). We do not give
the details of this analysis, since the following MER
representation offers the easiest OPPQ implementa-
tion. The value of EMM-Ψ2 is that we can bound
the discrete states and use the results to gauge the
effectiveness of OPPQ. This is referenced below.

9.3. EMM e− x4
4 Ψ(x)

The third MER representation is obtained through
the contact transformation,

Φ(x) = exp(−x4

4 )Ψ(x). (63)

Since this involves a factor identical to the dominant
WKB asymptotic form for the physical states, the
MER representation for Φ will involve fewer missing
moments (i.e. none, after a normalization) than the
MER for Ψ, as given in Eq. (48), involving five (5)
missing moments (after imposing a normalization).
This is desirable since the lower the missing moment
order, the faster the convergence of either OPPQ or
EMM. We provide the details of both approaches
below.

9.4. OPPQ analysis of the (ms = 0) sextic
anharmonic double well oscillator

The double well anharmonic problem of interest is
that for the potential V (x) = x6 − 4x2, where x ∈ ℜ.
The physical solutions must die off, asymptotically,

according to the dominant WKB expression Ψ(x) ∼
exp(− x4

4 ).
If we work with the contact transformation in

Eq. (63) Φ(x) = exp(− x4

4 )Ψ(x), we note that the
discrete states remain normalizable and exponentially
bounded, in the Φ representation. Unphysical Ψ con-
figurations (i.e. non-normalizable due to their expo-
nentially unbounded form in one or both asymptotic
directions) map into non-normalizable Φ configura-
tions. The EMM formalism works in either represen-
tation, precisely because of this. We note that the
power moments for exponentially bounded configura-
tions exist; whereas they become infinite (or do not
exist) for unphysical configurations.

The Φ configurations must satisfy the differential
equation

Φ′′(x) + 2x3Φ′(x) + (7x2 + E)Φ(x) = 0. (64)

The Hamburger moment (i.e. µ(p) ≡
∫

ℜ dx xpΦ(x))
equation becomes

(2p − 1)µ(p + 2) = p(p − 1)µ(p − 2) + Eµ(p).

The even parity states will admit a MER for the even
order power moments, µ(2ρ) = u(ρ) or

(4ρ − 1)u(ρ + 1) = 2ρ(2ρ − 1)u(ρ − 1) + Eu(ρ). (65)

The odd parity states µ(2ρ + 1) ≡ ν(ρ) will satisfy
the MER :

(4ρ + 1)ν(ρ + 1) = 2ρ(2ρ + 1)ν(ρ − 1) + Eν(ρ). (66)

We note that the even order Hamburger moments
satisfy: µ(2ρ) = u(ρ) =

∫ +∞
0 dξ ξρ−1/2Φ(

√
ξ), where

x2 = ξ; however, the odd order Hamburger moments
satisfy µ(2ρ + 1) = ν(ρ) =

∫ +∞
0 dξ ξρΦ(

√
ξ). The

importance of these relations is that the respective
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N E0 E2 E4 E6 E8

10 -0.5234534028 5.354166238 16.82887249
20 -0.5232677208 5.375031586 16.79298386 31.63171200 49.94322409
30 -0.5232686293 5.374969341 16.79536744 31.74329539 49.45632020
40 -0.5232686220 5.374970019 16.79534604 31.74254727 49.51247497
50 -0.5232686221 5.374970009 16.79534686 31.74254902 49.51148774
60 -0.5232686221 5.374970009 16.79534683 31.74254987 49.51149946
70 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150043
80 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038
90 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038
100 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038

Table 5. OPPQ-BM Estimates (i.e. ∂EλN (E(min)
phys;N ) = 0), Φ representation, (Eq. 65) RL(ξ) = ξ− 1

2 exp(−ξ).

moments, in the context of Eqs. (65, 66) allow us to
implement a Stieltjes moment analysis through EMM.

We will only apply OPPQ on the even Ψ configu-
rations, for simplicity. However, since the even order
power moments are the moments of Υ(ξ) ≡ Φ(

√
ξ)√

ξ
,

the OPPQ expansion must be relative to this con-
figuration. Thus, the relevant OPPQ expansion will
be

Υ(ξ) =
∞∑

n=0
cnPn(ξ)R(ξ), (67)

where Φ’s power moments will satisfy Eq. (65).
Since the physical configurations behave, asymptot-

ically, as Ψ(x) ∼ exp(− x4

4 ), the transformed expres-
sions behave as Φ(ξ) ∼ exp(− ξ2

2 ).
Since the transformed system involves a Stieltjes

configuration supported on the nonnegative axis, one
might take the weight to be the exponential function,
R̃L(ξ) = exp(−ξ), with Laguerre polynomials; or the
Gaussian R̃G(ξ) = exp(−ξ2/2), restricted to the non-
negative real axis. However, for the quantization
integral in Eq. (20) to apply, particularly with regards
to the generation of bounds, we need to take into
account the ξ− 1

2 that is inherent to the transformed,
even order, power moments.

Based on the previous arguments we will work with
RL(ξ) = ξ− 1

2 exp(−ξ) and RG(ξ) = ξ− 1
2 exp(−ξ2/2).

The corresponding power moments for the weights,
in order to generate the orthonormal polynomials are
obtained as follows.

The power moments wL(p) ≡
∫ ∞

0 dξ ξpRL(ξ) or
wL(p) = Γ[p + 1

2 ] satisfy the recursion relation
wL(p + 1) = (p + 1/2)wL(p); whereas wG(p) ≡∫ ∞

0 dξ ξpRG(ξ), or wG[p] = 2
2p−3

4 Γ[ 2p+1
4 ], satisfy the

recursion relation wG(p + 2) = (p + 1/2)wG(p).
In their original work on the OPPQ-Approximation

Method (i.e. Eq. (28)), Handy and Vrinceanu imple-
mented OPPQ-AM with both of these types of weights
(i.e. using their counterparts along the entire real axis,
x ∈ ℜ). They showed that superior (faster converging)
results were obtained for weights that emulated the
asymptotic form of the physical states.

The enhanced efficiency of working with RG(ξ) in-
stead of RL(ξ) is evident in Figure 3 compared to
Figure 2 (i.e. the functions for the former are converg-
ing much faster around the physical energies).

The numerical results for the ms = 0 sextic an-
harmonic oscillator problem are given in the follow-
ing section. We only give numerical results based
on using RL(ξ). Instead of working with RG(ξ), we
will use the actual ground state wavefunction (i.e.
its power moments), Rgr(ξ). The reason is that
both have the same asymptotic behavior. That is,
Rgr(ξ) = Φgr(ξ) ∼ RG(ξ); therefore, upon solving for
the power moments of the ground state wavefunction
(including the energy), we can use it to generate its
orthonormal polynomials, and quantize the excited
states, through OPPQ.

To be able to do this requires sufficient accuracy in
the determination of the ground state power moments,
since these must generate a positive Hankel matrix
for the weight (before implementation of a Cholesky
analysis). Although this can be done through OPPQ,
EMM inherently works with positive matrices and
therefore is more efficient for doing this type of analy-
sis.

9.5. OPPQ results for the ms = 0, sextic
anharmonic oscillator

The OPPQ-Φ formulation is a zero missing moment
problem (i.e. ms = 0) and converges very fast.

In Figure 2 we plot the nested sequence λN (E), for
N = 4, 6, 8, 10, 12. This calculation was done based on
the RL(ξ) weight. A similar result holds for the RG(ξ)
weight as depicted in Figure 3. It clearly reveals the
faster convergence afforded by a weight that emulates
the asymptotic form of the physical states.

In Table 5 we give the OPPQ-BM energy esti-
mates (i.e. the local minima, ∂EλN (E(min)

phys.;N ) = 0)
for the low lying, even parity, discrete state ener-
gies, based on Eq. (65), using the inferior weight
RL(ξ) = ξ− 1

2 exp(−ξ).
Table 5 only cites results (to ten significant figures)

for N ≤ 100. Not shown in Table 5 are the OPPQ-BM
estimation results for the ground state at N = 120:
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N ∂ESN (E(min)
N ) = 0 Log(SN (E(min)

N )) cN (EN ) = 0 E
(L)
N E

(U)
N

20 49.94322409213197 7.982552803 49.4426432537 48.893 50.857
30 49.45632020275004 7.997267757 49.4986057623 49.366 49.546
40 49.51247497421839 8.002499541 49.5123070944 49.504 49.520
50 49.51148774312169 8.002657778 49.5114731270 49.510 49.512
60 49.51149945726214 8.002665930 49.5115007312 49.51140 49.51159
70 49.51150043370514 8.002667120 49.5115003992 49.51148 49.51151
80 49.51150037650008 8.002667337 49.511500375879294 49.5114990 49.5115017
90 49.51150037729806 8.002667346 49.511500377394135 49.5115001949 49.5115005597
100 49.51150037738496 8.002667348 49.511500377382972 49.5115003518 49.5115004029
110 49.51150037737999 8.002667348 49.511500377379789 49.5115003736 49.5115003811
120 49.51150037737991 8.002667348 49.511500377379918 49.5115003768 49.5115003780

B = 8.01

Table 6. OPPQ Results for E8: RL = e−ξ√
ξ

.

Egr = −.52326862212755224. This result lies within
the bounds generated through an EMM-Φ analysis
(based on the first 29 power moments):

−.5232686221275616 <

Egr < −.5232686221275495. (68)

We can infer that the EMM bounds in Eq. (68) pre-
dict the exact answer to 13 decimal places. This result,
based on 29 moments, surpasses the OPPQ-BM esti-
mation analysis in Table 5 (N = 30) of −0.5232712343,
at the fourth-fifth decimal place. Thus EMM-Φ, by
this comparison, is approximately three times more
efficient.

Having said this, we remind the reader that whereas
EMM involves sophisticated analysis (i.e. nonlinear
convex optimization), OPPQ is purely algebraic, and
implementable to arbitrary accuracy through algebraic
software, such as Mathematica. Additionally, EMM is,
in practice, only applicable to the (multidimensional)
bosonic ground state; whereas OPPQ applies to any
multidimensional bosonic or fermionic (low dimension)
system, including non-hermitian systems.

9.5.1. Generating bounds for E8

We re-examine the results in Table 5 for E8, the slow-
est converging energy. As with other methods, such
as Rayleigh-Ritz (RR), the manifest convergence of
the results (i.e. the N → 120 sequence in Table 5) is
no guarantee of the accuracy of the apparent limit in
predicting the true energy. Whereas EMM produces
converging bounds from first principles; OPPQ defines
a procedure by which one can generate bounds pro-
vided a certain parameter is empirically determined,
specifically the coarse upper bound, B(U). Below we
describe the OPPQ-BM bounding procedure in detail,
although the same underlies the results in Tables 4
and 3, for the ms = 3 MER formulation in Eq. (48).
The only advantage of the current problem is that
it is a zero missing moment problem, and therefore
easier to implement.

In Table 6 we provide the OPPQ-BM eigenenergy
estimate for E8 (the second column). The third col-
umn contains the increasing, convergent, positive se-
quence from which a coarse upper bound, B(U), is to
be empirically determined. Using this coarse upper
bound, we can generate arbitrarily tight bounds (i.e.
the last two columns), as N → ∞. Note that we
continued generating these bounds in Table 7. This
entire procedure is based on the assumption that the
manifest convergence of the third column in Table 6
is correctly bounded, from above, by the empirically
determined coarse upper bound, B(U). The fourth
column contains the OPPQ-AM estimate.

It is important to appreciate that the coarseness
of B(U) has nothing to do with the tightness of the
bounds, in principle, assuming one can generate high
OPPQ expansion orders.

Below we compare the accuracy of the OPPQ-
BM formalism to order N − 120, both with re-
spect to the OPPQ-BM energy estimate (E8 =
49.5115003774, from Table 6) and the OPPQ-BM
bounds (49.5115003768 < E8 < 49.5115003780, also
from Table 6), as compared to the bounds generated
by an EMM analysis. The results are very good and
consistent.

It is important to note that the OPPQ-BM estimate
obtained at lower order, does not have to lie within the
OPPQ-BM bounds obtained at higher order. Thus
the entry in the second column in Table 6, corre-
sponding to OPPQ-BM energy estimate (i.e. the local
minima) of E = 49.51148774312169 (i.e. N = 50),
lies outside of the bounds generated in the last two
columns, for N > 80. However, all OPPQ-BM esti-
mates must lie within the bounds calculated at lower
order.

9.6. Comparison with EMM bounds
Generally, the EMM analysis will be more efficient in
generating bounds than OPPQ-BM. That is, fewer
moments will be required to generate the same level
of tightness of the bounds. However, this depends
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N E
(L)
8 E

(U)
8

150 49.511500377377302482 49.511500377382545933
160 49.511500377379459378 49.511500377380389040
170 49.511500377379839286 49.511500377380009132
180 49.511500377379908253 49.511500377379940166
190 49.511500377379921131 49.511500377379927287
200 49.511500377379923601 49.511500377379924818
210 49.511500377379924086 49.511500377379924333
220 49.511500377379924184 49.511500377379924235
230 49.511500377379924204 49.511500377379924215
240 49.511500377379924208 49.511500377379924210
250 49.511500377379924209048830 49.511500377379924209558953
260 49.511500377379924209246851 49.511500377379924209360932
270 49.511500377379924209290914 49.511500377379924209316869
280 49.511500377379924209300890 49.511500377379924209306893
290 49.511500377379924209303186 49.511500377379924209304597
300 49.511500377379924209303723 49.511500377379924209304060

B = 8.01

Table 7. Bounds for E8 based on chosen B(U).

N E0 E2 E4 E6 E8

1 -0.5232686221275529
5 -0.5232686221276021 5.37847969429 16.78604192264
10 -0.5232686221275522 5.37497046837 16.79542276464 31.74535880954 49.5248113799
20 -0.5232686221275523 5.37497000884 16.79534683270 31.74254983720 49.5115003841
30 -0.5232686221275523 5.37497000884 16.79534683270 31.74254983711 49.5115003772

Table 8. OPPQ-BM Estimates (i.e. ∂ESN (E) = 0) for V (x) = x6 − 4x2, ms = 0, R(x) = Φgr(x) based on the first
61, EMM generated, ground state power moments {ugr(p ≤ 60)}.

on the choice of weight, as the following case exem-
plifies. Thus, with regards to the ms = 2 missing
moment formulation given earlier, the EMM bounds
for the ground state −0.523268623844284 < Egr <
−0.523268619253327, were based on the first 29 power
moments. The same (approximately) level of tight-
ness was achieved with OPPQ-BM using more than 50
power moments, based on the results in Table 3. Thus,
in this example EMM is vastly superior to OPPQ-BM.
However, for the next example the situation signifi-
cantly improves for OPPQ-BM over EMM.

For the ms = 0 formulation being considered, using
the first 62 Stieljes power moments (i.e. {u(p)|p ≤
61}), EMM achieves the bounds:

− .52326862212755223941616949719078449 < EEMM

< −.52326862212755223941616949719078395 (69)

Using the weight RL the OPPQ-AM estimate achieves
this level of accuracy on the basis of approximately
220 power moments; whereas the weight RG gener-
ates an OPPQ-AM estimate that surpasses the EMM
accuracy based only on the use of 45 moments (OPPQ-
AM):

EOP P Q−AM = −0.523268622127552239416169497
19078406116564771630604 (70)

9.7. Using the ground state as a weight
In Table 8 we implement OPPQ-BM on a representa-
tion that uses the generated moments of the unknown
ground state R(x) = Ψgr(x). As expected, the con-
vergence is very fast in comparison with results based
on RL.

9.8. EMM results for the probability
density

Application of EMM to the probability density (i.e.
EMM-Ψ2, an ms = 2 problem) yields the bounds
−.52326866 < E0 < −.52326857, 1.0057681 <
E1 < 1.0057685, 5.3749699 < E2 < 5.3749701,
10.5725845 < E3 < 10.5725855, 16.795339 < E4 <
16.795351, 23.883886 < E5 < 23.883961, 31.74217 <
E6 < 31.74323, 40.301 < E7 < 40.305, 49.506 <
E8 < 49.533 all to the same moment expansion or-
der of 28. We also note that an EMM-Ψ{ms = 2}
bounding formulation on the ground state yields com-
parable bounds using the first 28 power moments:
−.5232686237 < Egr < −.5232686193 . With regards
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to E8, extension of EMM-Ψ2{ms = 2} analysis to
the first 48 moments (i.e. {u(p)|0 ≤ p ≤ 47}) yields
the bounds 49.5115003768 < E8 < 49.5115003798.
These serve to further confirm some of the results
previously cited.

10. A PT-symmetry breaking,
non-hermitian, problem

Consider the non-hermitian system

−∂2
xΨ(x) + (ix3 + iax)Ψ(x) = EΨ(x), (71)

which is known to break PT symmetry for negative
values of the ‘a’ parameter (a < −2.611809356, and
for a < −5.375879629) from Refs. [8, 25]. The case
a = 0 has purely real eigen-energies, as computed by
Bender and Boettcher [5], and theoretically confirmed
by Dorey et al. [6]. The EMM-Ψ∗Ψ formulation also
provided strong numerical evidence for this [27].

States that are PT symmetric satisfy Ψ∗(−x) =
Ψ(x), and have real energies, E ∈ ℜ. States that
break this symmetry have complex conjugate pairs
for the energies (i.e. Ψ∗(−x) ̸= Ψ(x), with complex
energies E∗ and E, respectively).

We work with the MER-Ψ representation for which
the complex power moments on the real axis satisfy

µ(p + 3) = − aµ(p + 1) − iEµ(p)
− ip(p − 1)µ(p − 2), p ≥ 0. (72)

The recursion relation for the energy dependent gen-
erator coefficients is

ME(p + 3, ℓ) = − aME(p + 1, ℓ) − iEME(p, ℓ)
− ip(p − 1)ME(p − 2, ℓ), (73)

for p ≥ 0, 0 ≤ ℓ ≤ 2, and ME(ℓ1, ℓ2) = δℓ1,ℓ2 . This
is an ms = 2 representation of order 3. Since the
asymptotic form of the physical states goes as Ψ(x) ∼
exp(− 2

5 |x| 5
2 ), we can use the Gaussian weight R(x) =

exp(−x2/2). The OPPQ-BM formalism ensues as
before:

Ψ(x) =
∞∑

j=0
cjPj(x)R(x), (74)

involving real weights and corresponding orthonormal
polynomials. The complex projection coefficients are
given by

cj(E, µ0, µ1, µ2) = ⟨Pj(x)|Ψ⟩, (75)

or

cj(E, µ0, µ1, µ2) =
ms=2∑
ℓ=0

Λ(j)
ℓ (E) µℓ, (76)

where the coefficients depend on the orthonormal
polynomial coefficients and the ME(p, ℓ)’s:

Λ(j)
ℓ (E) =

j∑
η=0

Ξ(j)
η ME(η, ℓ). (77)

The OPPQ-BM quantization condition is

I[Ψ, R] =
∫

ℜ
dx

Ψ∗(x)Ψ(x)
R(x)

=
{

finite ⇐⇒ E = Ephys and −→µ = −→µ phys,

∞ ⇐⇒ E ̸= Ephys or −→µ ̸= −→µ phys.
(78)

We adopt the vector notation for the missing moments
−→µ ≡ (µ0, µ1, µ2).

Substituting the OPPQ representation we obtain:

I[Ψ, R] =
∞∑

j=0
c∗

j (E, −→µ )cj(E, −→µ ). (79)

Once again, the focus is on :

SN (E, −→µ )

=
ms∑

ℓ1=0

ms∑
ℓ2=0

µ∗
ℓ1

( N∑
j=0

Λ(j)
ℓ1

(E)∗Λ(j)
ℓ2

(E)
)

µℓ2 , (80)

involving the positive definite matrix

(
PN (E)

)
ℓ1,ℓ2

=
N∑

j=0
Λ(j)

ℓ1
(E)∗Λ(j)

ℓ2
(E). (81)

If we adopt a unit missing moment vector nor-
malization, then the focus for OPPQ-BM quantiza-
tion is on the behavior of the smallest eigenvalue,
λN (E) ≡ Smallest Eigenvalue

(
PN (E)

)
, viewed as

a function of the real and imaginary parts of the
energy variable. The focus is on determining the lo-
cal minima: ∂Er

λN (E(min)
N,phys) = ∂Ei

λN (E(min)
N,phys) = 0.

These derivatives can be obtained algebraically.
We outline the essential steps for algebraically gen-

erating the partial derivatives. First of all, we have
λN (E) = ⟨−→µ |PN (E)|−→µ ⟩, involving the normalized
missing moment (lowest) eigenvector. This is not an
analytic function in E, so we must work with the
partial derivatives with respects to Er,i. Thus, we
need ∂Er,iλN (E) = ⟨−→µ |∂Er,iPN (E)|−→µ ⟩. We can gen-
erate the required matrix expression from Eq. (80)
or ∂Er,i

PN (E) =
∑N

j=0

(
∂Er,i

Λ(j)(E)∗
)

Λ(j)(E) + c.c..
From Eq. (77), so long as the Ξ’s do not depend on
the energy parameter, we need ∂Er,i

ME(η, ℓ). How-
ever, this can be obtained recursively through the
expression in Eq. (72).

Our immediate interest is on the behavior of λN (E)
over the two dimensional complex energy plane, as
the parameter ‘a’ is varied, and N = 40. In
Figures 5-12 we show the convergence of two PT-
breaking (complex conjugate) energies (eventually be-
coming real) as we increase the a-parameter through
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Figure 5. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −3.30

Figure 6. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.90

Figure 7. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.70

Figure 8. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.50

Figure 9. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.30

Figure 10. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.10
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Figure 11. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −1.70

Figure 12. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = 0.00

−3.30, −2, 90, −2.70, −2.50, −2.30, −2.10, −1.70 and
0. These parameter values were chosen since it is
known that PT-symmetry breaking occurs at ac1 =
−2.611809356 (as well as at ac2 = −5.375879629) [8,
25].

Figure 7 shows the behavior of the physical energies
(i.e. defined by the local minima), for a = −2.70 ≈ ac1 ,
the critical value for the onset of symmetry breaking.
For this same a = −2.70, Figure 4 shows the behavior
of successive λN (E) surfaces for N = 20, 30, 40, 50.
Within the two dimensional graphical renderings, we
see similar behaviors to that in Figures 1-3. We can im-
plement the same OPPQ-BM bounding analysis used
previously, for hermitian systems, to bound the real
and imaginary parts of the discrete state real/complex
energies. The nesting of the respecive λN (Er, Ei) in
Figure 4 shows the viability of the previous OPPQ-BM
analysis for bounding the real and imaginary parts
of the complex-plane energies. This is the focus of
a future work.

We note that for a = 0, the local minima in Fig-
ure 12 correspond, approximately (due to the low
order, N = 40) to the PT-symmetric states with ener-
gies E0 = 1.15626707198811, E2 = 4.10922875280956,
E3 = 7.56227385497590 and E4 = 11.31442182025857
(not shown). These were determined by EMM [8] and
OPPQ-AM [10].

11. Conclusions
We have demonstrated the effectiveness of a new
eigenenergy bounding procedure implementable for
multidimensional discrete states regardless of the her-
mitian or non-hermitian character of the associated
Schrödinger operator. The discussion centered on
several one dimensional systems of this type. The
extension to multidimensions have been given else-
where [9]. The approach advocated here is purely
algebraic.
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