
1 Introduction
The theory of dynamic optimization problems has been

developed quite well. However, it is still not much used in ap-
plications. There are several reasons for this – the first is that
solving a general dynamic optimization problem requires
solving a general boundary problem for a system of ordinary
differential equations. This problem is difficult, due to the
need for proper discretization and also to the huge time con-
sumption. Another drawback is that the control law cannot be
formulated in the feedback form. That is why this theory was
almost abandoned, despite its successful applications to the
optimization of, e.g., space flights in the 1960’s. This theory
with some applications to this area has been introduced in
many publications, e.g., [2].

The boundary problem arising from the dynamic optimi-
zation can be solved using the finite element method (FEM)
similarly as it is used for solving partial differential equations.
Hence it is possible to use PDE solving tools for dynamic
optimization. Thanks to the vast efforts made in computer
equipment in the last twenty years, powerful and user-
-friendly software packages for solving boundary problems
for ordinary differential equations have appeared. One
such software system is Femlab. Its close relationship to the
well-known Matlab system makes its application in complex
control problems straightforward.

Even if the modern computer equipment is used for solv-
ing the boundary problem, computations can take too long to
be used for directly designing a control law. Hence we have
designed a hierarchical controller. The theory of hierarchical
control systems was developed in the early 1980’s in the works
of Singh, Siljak, Findeisen and others. A good summary of
this theory can be found in [4].

In this article we design a control algorithm based on
general dynamic optimization in the upper level. The lower
level was designed via the theory of LQ control. We use the
FEMLAB 2.3 package for solving the optimization problem,
and the implementation is also described. Simulations show-
ing the advantages of the hierarchical control approach are
mentioned. This approach can handle nonquadratic cost
functionals, e.g. functionals containing a barrier function.
This paper summarizes and extends the results from [6].

2 Hierarchical control law
The real-time optimal control problem was divided into

two subproblems. The first problem is to compute the optimal

trajectory prediction. This involves dynamic optimization.
The Femlab system was used to carry out computations at
this level. The second subproblem is to track this optimal tra-
jectory. This is the task of the LQ controller. These two
subproblems are solved in different levels. The first is referred
to as the upper while the latter is the lower level of the control-
ler. The tracking in the lower level is independent of the
computations of the upper level. Thus both these tasks may
run in parallel. The scheme of the hierarchical control system
is shown in Fig. 1 [4, 7].

We will now outline the main features of both levels now.

Upper level
� determines the optimal trajectory for a long period ahead,
� time-consuming calculations are carried out here,
� the whole structure of the system is taken into account, in-

cluding nonlinearities etc.,
� only the slower dynamics are considered.

Lower level
� is responsible for tracking the optimal trajectory,
� compensates the disturbances,
� the control law should be as simple and as fast as possible

and should have the feedback form,
� when designing the control law design the most important

connections are taken into account while the nonlinearities
can be replaced by their linearizations,

� the influence of the fast modes should be also be taken into
consideration.
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Fig. 1: Scheme of a hierarchical control system



The delay caused by computation of optimal control law
in the upper level design should also be taken into account.
While this computation is being carried out, the lower level
uses the trajectory computed in the previous step. The time
during which the trajectory computed in one computational
step of the upper level is used is denoted by Tv. This period
must be longer than the longest computation in the upper
level.

3 Control algorithm design of the
upper level
In this paragraph we will introduce the optimal control

problem, which makes up a central part of the upper-level
design. Then we will focus on how the results are applied in
order to complete the upper level design.

Let T>0. We consider the system described by the state
equation

� �� ( ), ( )x f x t u t�

together with the initial condition

x T x( ) � 0 .
Our aim is to design a control u(t) such that the cost

functional

� �J T j x t u t t

T

T TH

( ) ( ), ( )�

�

� d

is minimized. In the definition of the cost functional, TH
stands for the prediction horizon and j denotes a continu-
ously differentiable function such that the integral exists. The
horizon TH must be longer than the longest time necessary
for the calculations described below. It can, however, be sig-
nificantly greater, as mentioned in [5].

The optimization is performed under the condition that
the state equation is satisfied for every t between T and TH.
The problem described above will be referred to as the up-
per-level problem at time T on the interval (T, TH) with the
initial condition x T x( ) � 0 and denoted by (P[T, x0]).

First, we introduce the solution of the problem (P[T, x0]).
Then we will demonstrate how it can be used for the upper-
-level definition.

Proceeding as in [2], we infer that the problem (P[T, x0]) is
equivalent to the problem of unconstrained minimization
of the Lagrange functional L that is defined as follows:

� � � �� �� �L T j x t u t t x t f x t u t tT

T

T TH

( ) ( ), ( ) ( ) �( ) ( ), ( )� � 	 


�

� � d .

The vector-valued function � (having the same size as the
state vector) is the Lagrange multiplier, sometimes also called
the co-state or the adjoint state. The functions u, x, � that solve
the minimization problem also satisfy the following set of
equations on the interval (T, TH) (DxF, or DuF denotes the de-
rivative of function F with respect to variable x or u.):

� �� ( ), ( )x f x t u t�

� � � �� ( ), ( ) ( ), ( ) ( )� �� �D j x t u t D f x t u t tx x

� � � �0 � �D j x t u t D f x t u t tu u( ), ( ) ( ), ( ) ( )�

with boundary conditions defined as follows:

x T x

T TH

( )

( )

�

� �
0

0�

while the value of the state at the end of the interval (T, TH)
and also the value of the co-state at time T are not defined.
Then the boundary value problem for this set of equations is
correctly defined. See [2, 9] for details.

We will now describe the functionality of the upper level.
Since the solution of the optimization problem takes a consid-
erable time, the algorithm for the solution can be started with
period Tv, as described above. The period must be longer
than the time necessary for carrying out the computations,
but it must be also shorter than the prediction horizon TH.
During that period, the following actions take place (let us as-
sume that the current time is kTv):
1. The prediction of the state variables at time (k�1)Tv is

evaluated with the help of the feedforward computed at
time (k
1)Tv. We denote this prediction by �((k�1)Tv).

2. The optimization problem P[T(k�1)Tv, �((k�1)Tv] is
solved.

3. The optimal feedforward for the lower-level control loops
on the interval [(k�1)Tv, (k�2)Tv] is evaluated. We will
clarify this step in the following paragraph.

At the time slot (k�2)Tv the optimal feedforward is saved
into the buffer and these steps are repeated with new values of
the initial and terminal time of the optimization problem.
This is a kind of “receding horizon” method. It constitutes an
essential part of predictive control theory [5].

4 Design of the lower level
We will now describe the functionality and the design of

the lower-level controllers. First we mention that we will make
use of the possibility to decompose the system. We briefly
mention this decomposition. The most important condition
is that the systems must be almost autonomous, and their
mutual interaction is only weak. In what follows we assume
that the system can be divided into N subsystems. The system
matrix (or, if the original system was nonlinear, its linear-
ization) can be written as follows:

A �

�

�










�

�

�
�
�
�

�

A

A
A

N

connection

1 0

0

�

� � �

�

.

The term Aconnection contains all the interactions that are
not taken into account in the lower-level design. We also
assume that matrices B, Q, R can be decomposed similarly,
with compatible dimensions so that the i-th subsystem (with
neglected interactions) is described by the equation

�x A x B ui i i i i� � .
Since high speed is the main required feature, we decided

to implement this level using time–invariant LQ controllers.
LQ controllers also offer the advantage of a straightforward
analysis of the cost of the control. See, e.g., [1, 9] for general
LQ-control theory and [7, 8] for more results about decen-
tralized LQ control and about constraints imposed by the
prescribed structure of the controller.

We assume that the lower lever controller of the i-th sub-
system should track the optimal trajectory x topt

i ( ) and the opti-
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mal control u topt
i ( ), which were evaluated in the upper level.

The tracking should be such that the cost

� � � �J x t x t Q x t x t

u t

i i
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i
i

opt
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H

� 
�
��
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�

� ( ) ( ) ( ) ( )
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 �
��

u t R u t u t topt
i T

i
i

opt
i( ) ( ) ( ) d

is minimal. Here, symbol ui(t) denotes the optimal control
which is applied to the system, and xi(t) stands for the real
trajectory. We assume that the weighting matrices Qi and Ri

are positively semidefinite and positively definite, respec-
tively.

Using the dynamic programming approach (see e.g. [1]),
we can infer that the optimal control is given by the formula

u t u t u ti
feedback
i

feedforward
i( ) ( ) ( )� � .

The control consists of a feedback term and a feedforward
term. For the feedback term it holds:

u t R P t B x tfeedback
i i i iT i( ) ( ) ( ) ( )� 
 
1

while the feedforward is defined by:

u t R B p t u tfeedforward
i i iT i

opt
i( ) ( ) ( ) ( )� 
 �
1

where function P i(t) is actually the solution of the continuous
Riccati equation with the initial condition P i(T�TH) � 0 for
the i-th system. Function pi(t) solves the following differential
equation
�( ) ( ( ) ( ) ) ( ) ( )p t A P t B R B p t Q x P t B ui i iT i i i i

opt
i i i

o� 
 � 

1
pt

i t( )

with the initial condition pi(T�TH) � 0. The last term in the
equation is nonstandard. It is due to the existence of the de-
sired control, which should also be tracked. Note that this
equation is solved in the backward direction.

Strictly speaking, the LQ control on the horizon equal to
the optimization horizon in the upper level (denoted by TH,
see below) presented so far should be applied. Nonethe-
less we assume that the horizon is long enough to replace
the time-variant control by the time-invariant control without
a significant loss of accuracy. Another advantage is that we
obtain a time-invariant gain in the control loop. This feature
simplifies the implementation significantly. Hence we replace
matrix function P i(t) by its limit value P i in the differential
equation for function pi(t). The limit solution P i solves the
algebraic Riccati equation:

0 1� � 
 �
A P P A P B R B P QiT i i i i iT i i i i( ) .

This trick simplifies the implementation of this level
significantly.

5 Analysis of the influence of the
decomposition on the total cost
In this section we will analyze the increase in the cost when

the control algorithm is designed using a hierarchical ap-
proach. We will make some assumptions that will simplify our
analysis. First we assume that the total cost is quadratic, i.e.,
that there exist a symmetric positive semidefinite matrix Q
and a symmetric positive definite matrix R such that

� �J T x t x t Q x t x t u t Ru t tw
T

w
T

T

T TH

( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )� 
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�

� d

where xw denotes the desired trajectory that is to be tracked
by the controlled system. Moreover we assume that the
weighting matrices can be decomposed as described above.
The dynamic optimization yields an optimal trajectory that
should be tracked together with the optimal control that
should be applied. This trajectory, or control, is denoted by
xopt, uopt. (We will omit the explicit writing of time argument t
in what follows.) We then have

�J T x x x x Q x x x x
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T
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Here, JUL denotes the optimal cost achievable by the opti-
mization in the upper level and JLL stands for the lower-level
optimal cost. The following holds for them:

� �J x x Q x x u Ru tUL w opt
T

w opt opt
T

opt

T

T TH

� 
 
 �

�

� ( ) ( ) d

and

� �J x x Q x x u u R u u tLL opt
T

opt opt
T

opt

T

T TH

� 
 
 � 
 


�

� ( ) ( ) ( ) ( ) .d

Nonlinearities would make this reasoning much more com-
plicated. The same holds if the cost is non-quadratic.

6 Upper level implementation
We mention how the control scheme described above can

be implemented using the Femlab software package. The
implementation is fairly straightforward since this software
enables easy cooperation with Matlab. We will describe briefly
how the code was generated and what changes are to be
made. We used the Femlab 2.1 system (see [3]) as well as its
graphical user interface (GUI). Generating the code using the
GUI saves a lot of effort.

For simplicity we assume the system to be of order two.
Implementation of the control algorithm for a higher-order
system will then be a straighforward extension of our
approach We chose the general form, 6 one-dimensional
equations on the interval (0, TH) in the initial menu. The
names of the functions are x1, x2, �1, �2, u1, u2. The first two
stand for the state, then the pair �1, �2 represents the co-
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-states, and finally the last two variables are used for control.
Then we define constants xx10 and xx20, which will be used
for defining the boundary conditions of the state variables.

Next we define the following system of equations, which
describes the dynamic optimization problem as introduced
above.

There is a slight problem with the definition of the bound-
ary conditions. It is clear from the definition of the state
and co-state functions that the following must be satisfied:
x1(0) � xx10, x2(0) � xx20, �1(TH) � 0, �2(TH) � 0. Never-
theless Femlab also requires initial conditions for the states
defined at the end of the interval and for the co-states at the
beginning. This is due to the fact that the Femlab GUI was
optimized for designing programs for solving differential
equations of the second order. Thus we have to define the
boundary condition as void. We defined there the conditions
x1(TH) 
 x1(TH) = 0, resp. �1(0) 
 �1(0) = 0, for the other
state and co-state variables by analogy. Then the equations are
correctly defined and their definition meets the requirements
of the Femlab system. We also have to define the functions
that evaluate the desired trajectory.

The following actions were carried out with the code gen-
erated by the GUI:
� It was declared as a function with input parameters time,

x1time, x2time. The time parameter contains the actual
time, and the parameters x1time, x2time contain the val-
ues of the state variables.

� The interval where the boundary problem was solved was
changed to (time, time � TH).

� At the beginning of the function, the value of the state vari-
ables is evaluated at the time slot time � 1. This is possible
since the control on this interval is known from the previ-
ous step.

� Then the code generated by the GUI follows. Some modifi-
cations were made: the time interval where the problem is
solved was changed to time � 1, time � 1 � TH. The bound-

ary conditions on the state variables are their value at the
time time � 1, where the constant TH contains the length
of the prediction horizon.

� Then the feedforward functions were computed and saved.

The Simulink system was used for modeling the system.
To simulate both levels properly it would be necessary to run
the calculations in two different threads. We did not perform
this. The scheme is shown in Fig. 2.

The gains Gain and Gain1 together with the system build
up the lower level. The functions firstreference and
secondreference select the appropriate feedforward com-
puted in the upper level. The connection from the lower into
the upper level is realized by the function MATLAB Fcn,
which activates the upper level always after period 1.

7 Simulation results
A simulation example was performed with the system

� .x x x u1 1 2 1001� � �

� .x x x u2 1 2 2001� � �

together with the following quadratic cost functional J.
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The matrices Q, R in the upper-level cost functional
were chosen such that q1 � q2 � 10, r1 � r2 � 0.2. The lower-
-level compensators have gains optimal for controlling the
system, with the interconnections between these subsystems
neglected. The matrices in the quadratic cost functional are
chosen as q1, r1 resp. q2, r2.

We aim to design the control so that the state x1 will track
the reference x1w � sin 4 t and the state x2 will track the refer-
ence x2w � cos5 t.

The equations for the derivatives of the co-states attain the
following form
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Fig. 2: The simulation scheme



� ( ) .
( , )

� � �
�

�
1 1 1 1 1 2

1 2

1
001� 
 � � �q x x

b x x

xopt w
opt opt

� ( ) .
( , )

� � �
�

�
2 2 2 2 1 2

1 2

2
001� 
 � � �q x x

b x x

xopt w
opt opt

with zero terminal condition at T�3 again.
The state is shown in Fig. 3a without the barrier function

and without the presence of the additive noise. (In this and in
the following figures, the solid line represents the state x1 of
the system while the dashed line represents the reference.)
Fig. 3b shows the state x1 if the additive noise acts upon the
system while the barrier function is not present. The next two
figures show the state x1 in the situation after augmentation of
the cost functional by adding the barrier function. The state
x1 is shown in the Fig. 4a without the presence of the additive
noise, and in Fig. 4b in the presence of this noise. The state

space is shown in Fig. 5a, respectively 5b (with, respectively
without, the barrier function activated). Here we can easily see
the effect of penalizing the states that are close to the point xp.
The dashed circle joins the points where the barrier function
(defined above) attains the value 1.

Finally, if the system is controlled by the optimal control
computed in the upper level, the state x1 behaves as depicted
in Fig. 6 (solid line), the reference being again represented by
the dashed line. The loss of reasonable performance is due to
the fact that the system remains virtually uncontrolled during
the computations in the upper level while the noise still acts.

The simulations carried out show that the behavior of
states x1 and x2 is very similar. Therefore the state x2 is not
shown.
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The cost functional can also be augmented by a barrier function. To show how the optimal controller takes this into account
we carried out similar simulations of the same system when the term
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elsewhere

was added to the cost functional. This barrier function penalizes trajectories that are close to the point xP � ( . , )06 0 in the state
space. The system as well as the cost functional are very simple, but still this example demonstrates the main features of the
proposed approach.
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Fig. 3: State x1 a) without the presence of the noise, no barrier function, b) with noise added, no barrier function

a) b)

Fig. 4: State x1 a) without presence of the noise, with barrier function, b) with noise and barrier function added



7 Remarks
If the penalty on the tracking error is too great (qi = 1000),

certain problems with satisfying the boundary conditions oc-
cur – these conditions are not satisfied even after a great
number of iterations. Using such an inaccurate approxi-
mation of the optimal trajectory significantly decreases the
quality of the tracking.

Other problems occur if the barrier function is too steep –
the computations often end with an error message.

It is necessary to consider the huge time consumption in
the upper level. This is due to the feedforward computation.
At this stage a differential equation is solved. The optimal tra-
jectory x is on the right-hand side of this equation. This results
in the need to call the Femlab function postinterp always
when the right-hand side is evaluated. The postprocessing
seems to be rather time-consuming, and in this case its time
consumption of the time exceeds considerably exceeds the
time necessary for solving the boundary-value problem. This
difference is just strengthened by the fact that the optimal
trajectory need not be evaluated with high precision.

8 Conclusion
We have designed and simulated a hierarchical controller

where the optimization is based on the solution of a boundary
control problem. This problem is solved in Femlab 2.1. The
solution of this problem represents the reference trajectory
for the lower level of the hierarchical controller.
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