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Abstract. Time history analysis using direct time integration is a versatile and widely accepted tool
for analysing the dynamic behaviour of structures. In 2008, a technique was proposed to accelerate the
time history analysis of structural systems subjected to digitised excitations. Recently, this technique
has been named as the SEB THAAT* (Step-Enlargement-Based Time-History-Analysis-Acceleration-
Technique), and the determination of appropriate values for its parameter is introduced as the main
challenge. To overcome this challenge, a procedure is proposed in this paper. The basis of the
procedure is the comments on accuracy control in structural dynamics and numerical analysis of
ordinary differential equations, legalised in the New Zealand Seismic Code, NZS 1170.5:2004. As the
main achievement, by using the proposed procedure, we can apply the SEB THAAT and carry out the
time history analysis clearly and with less parameter setting compared to the ordinary time history
analysis. The proposed procedure is always applicable and, except when the behaviour is very complex,
oscillatory and non-linear, the reductions in analysis run-time are considerable while the changes in
accuracy are negligible. The performance can be sensitive to the problem, the integration method, the
target response, and the severity of the non-linear behaviour. Compared to the previous tests on the
SEB THAAT, the efficiency of applying the SEB THAAT using the proposed procedure is better, the
sensitivity of the performance to the problem is lower, and a measure of accuracy is available. Compared
to other techniques for accelerating structural dynamic analyses, the use of the SEB THAAT according
to the proposed procedure has several positive points, including the simplicity of implementation.

Keywords: Structural dynamics, time integration, analysis run-time, response accuracy, digitised
excitation, the SEB THAAT, clear application, NZS 1170.5:2004.

1. Introduction
In many structural analyses, the behaviour is dynamic
and non-linear. The semi-discretised models can be
expressed as [1–6]:

Mü(t) + fint(t) = f(t), 0 ≤ t ≤ tend,

Initial conditions:

∣∣∣∣∣∣
u (t = 0) = u0,
u̇ (t = 0) = u̇0,
fint (t = 0) = fint0 ,

non-linearity constraints: Q,

(1)

where
t is the time,
tend stands for the analysis interval,
M is the mass matrix,
fint indicates the vector of internal force,
f(t) indicates the vector of excitation (external force),
u(t) denotes the vector of displacement,
u̇(t) denotes the vector of velocity,
ü(t) denotes the vector of acceleration,
u0 implies the initial displacement,

u̇0 implies the initial velocity,
fint0 implies the initial internal force (fint0 , is not

needed in linear problems, it may be essential in
the presence of material non-linearity),

Q represents the constraints that distinguish non-
linear behaviour from linear behaviour, e.g. rigid
barriers cannot be passed (see e.g. [7]).
For the analysis of Equation (1), direct time inte-

gration (see Figure 1) is a versatile tool that generally
leads to approximate solutions after lengthy computa-
tions [1, 2]. Accuracy and run-time are very impor-
tant in advanced computations, where many and/or
lengthy analyses are to be carried out, e.g. IDA (In-
cremental Dynamic Analysis) and analytical fragility
curve computations [8–10]. Accordingly, considerable
effort is being made to increase the accuracy and/or
to reduce the analysis run-time. Some of the main
approaches are:
(1.) reducing the structural models by replacing them

with models with fewer degrees of freedom [11–13],
(2.) reducing the number of excitation records, in

applications such as seismic analysis [14–16],
(3.) reducing the number of oscillatory modes [17–19],
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Figure 1. Brief description of analysis of Equation (1) using direct time integration.

(4.) time parallel methods [20–22],
(5.) using higher order/more accurate analysis meth-

ods/strategies, e.g. see [2, 23–27].

Meanwhile, in the last decades, direct down sampling,
truncation methods, and their combinations, are used
for faster analyses of structures under digitised exci-
tations [28–32].

Returning to Equation (1) and the time integra-
tion computation, when f(t) is available in a digitised
format, the generally accepted comment for the inte-
gration step is as follows [1, 33–36]:

∆t = min
(

T

χ
, ∆tcr, ∆tCFL, f ∆t

)
, (2)

where

∆t is the integration step,
T is the smallest oscillatory period with worthwhile

contribution to the response [36],
∆tcr is the upper bound on the integration step

because of the linear theory of numerical stability [2,
23, 33],

∆tCFL is the upper bound on the integration step
in wave propagation problems and associated with
spatial discretisation [37],

f ∆t is the step at which the excitation is digitised [1,
33, 35, 38] (and disappears when the excitation is
continuous),

χ is defined as follows [1, 34, 35]:

χ =


10 when the behaviour is linear,

100
when the behaviour is non-linear
and there is no impact,

1000
when the behaviour is non-linear
and there are impacts.

(3)

In many analyses, f ∆t is the governing term in Equa-
tion (2), leading to ∆t = f ∆t. Focusing on this

special case, which will be even more popular in fu-
ture (in view of the improvements in recording instru-
mentation), there are several major methods, that
can accelerate the analyses by modifying the f(t);
see [30–32, 39–42]. In view of the main features of
one of these methods, i.e. the SEB THAAT (Step-
Enlargement-Based Time History Analysis Accelera-
tion Technique) [38, 39, 43–46], as listed below:

• Significant reduction in the analysis run-time; see
Table 1,

• sufficiently accurate response history when the pa-
rameters are set properly; see e.g. [45, 46],

• simple formulation [1, 38, 39],
• good versatility; see Table 1,
• contribution of all the data of the original excitation

in the new excitation [1, 38, 39],
• having a mathematical basis [39],
• having a formulation that depends on the excitation

and not directly on the structural system [39],
• considerable number of the previous successful tests;

see the review presented in Table 1,
• reducing the analysis run-time without increasing

the use of in-core memory [1, 38, 39],

the SEB THAAT has a good potential to accelerate
analyses of systems subjected to digitised excitations.
In a review on the other methods [30–32, 40–42], three
do not use the original excitation’s total data in defin-
ing the new excitation [30–32], three take into account
features of earthquakes and may be inappropriate
for general structural dynamic problems [30, 31, 40],
one produces new excitations digitised in unequal
steps [40], the formulation and implementation of
one is complicated [41], and for the method proposed
in [42], the implementation is more complicated than
the SEB THAAT [38, 39] and the method is tested
on a small number of examples; see also Section 6.
The SEB THAAT is therefore a good candidate for
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Structural system Reduction in the
run-time [%]∗ Details

Residential buildings 50–90
About 200 buildings with linear/non-linear behavior,
regularity/irregularity in plan/height, under different
earthquakes

A thirty-story building 50 A thirty-story steel three-dimensional frame
subjected to two different excitations

Buildings subjected to
multi-component
earthquakes

75 An eight-story steel three-dimensional frame
subjected to the three-component Abbar earthquake

Water tanks 67 Some experimental- and some real-sized water tanks
subjected to different earthquakes

Bridges 30–80
About 20 real bridges with linear/non-linear
behaviors, some with pre-stressed elements, subjected
to different excitations including the multi-support

Power station, Cooling
tower, Space structure, Silo 50–90

A couple of each structure, considering
linear/non-linear behavior, different near-/far-field
excitations and different integration schemes

Earth dams <80 Several earth dams each subjected to several
earthquake records

Milad telecommunication
tower 50–70 Considering linear/non-linear behavior, near-/far-field

excitations, and different integration schemes
Structural systems damped
non-classically 30–90 Considering linear and non-linear behavior, and

different integration schemes
Typical Iranian multi-span
reinforced concrete bridges >50 Developing IDA curves and fragility functions,

considering deficient cap beam-column joint
∗ In the price of negligible inaccuracy.

Table 1. The main tests on the SEB THAAT’s performance (see [1, 47, 48]).

further study to speed up the analysis of structural
systems subjected to digitised excitations.

The objective of this paper is to review the
SEB THAAT and propose a procedure for its clear
application; such a procedure does not exist at
present; see [38]. In continuation, after reviewing
the SEB THAAT, its major challenge (i.e. proper
selection of the SEB THAAT’s parameter and clear
application of the SEB THHAT [38]) is discussed.
Then, to overcome the challenge, a procedure is pro-
posed and its performance is evaluated via several
examples, including a realistic example. A number
of mainly practical issues are discussed later, and fi-
nally, the paper concludes with an overview of the
achievements and an outlook for the future.

2. A review of the SEB THAAT
2.1. The focal idea, basics, and main

formulation
Convergence is the most basic requirement of approx-
imate computations [49, 50]. The analysis of Equa-
tion (1) by direct time integration is an approximate
computation [1, 2, 23]. Therefore, convergence must
be established for time integration calculations. Con-
vergence of the responses produced by time integration
implies that, for sufficiently small integration steps,

by using smaller steps, the difference between the
computed and exact responses should asymptotically
vanish; see Figure 2 and [2, 23, 51]. In Figure 2,
E is the error in arbitrary norm (the above-mentioned
difference) [52] and q is the rate of convergence, gen-
erally equal to the integration method’s order of accu-
racy [23, 39]. The analysis run-time is another impor-
tant feature of direct time integration [1, 2, 23, 53].

When the right-hand-side of the first relation in
Equation (1) is in digitised format, replacement of the
excitation with an excitation digitised in larger steps
can reduce the analysis run-time. The replacement
is, however, an approximate computation, and the
computed responses should continue converging to
the exact responses. This idea, in addition to using
all the data of the excitation in producing the new
excitation, is formulated as the SEB THAAT, based on
two mathematical facts, a broadly accepted convention
and a realistic assumption [39]. The two facts are:

(1.) Consider Equation (1), its analysis by an integra-
tion method of order q, and an approximation of
f(t), i.e. fnew(t), converging to f(t) with order q′. If
q′ ≥ q, the analysis of Equation (1) by the integra-
tion method, after replacing f(t) with fnew(t), leads
to responses that converge to the responses of the
original Equation (1), with order q [39, 54].

144



vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

Figure 2. Typical trend of convergence in direct time integration analysis.

(2.) For a continuous function of a continuously chang-
ing variable x, i.e. H(x), if ∆x is a sufficiently small
change of x, (O implies the big Oh operator) [55]:

H(x + ∆x) + H(x − ∆x) = 2H(x) + O(∆x2). (4)

The convention is the second order of accuracy of
majority of integration methods [2, 23]; and the re-
alistic assumption is that, despite being available in
digitised format, the f(t) in Equation (1) is a smooth
function [55] of t. If these are valid, the SEB THAAT
replaces f(t) (digitised in step f ∆t) with a new exci-
tation fnew(t), digitised in step (f ∆t)new:

(f ∆t)new = nf ∆t, n > 1 (5)

The new excitation, which preserves the response con-
vergence and uses all the data of the original excitation,
is defined as follows for integer values of n [1, 38, 39]
(for real values of n, see [56]):

fnew(t = ti) =

f̄(ti) when ti = 0

af̄(ti) + (1 − a)
n′∑

k=1
bk[

f̄ (ti + k f ∆t)
+f̄ (ti − k f ∆t)

]
when ti = t1, t2,

, . . . , t′
end − nf ∆t

f̄(ti) when ti = t′
end

fnew(t ̸= ti) = 0

(6)

where

ti = i(n f ∆t), i = 0, 1, 2, . . . ,
t′
end

n f ∆t
, (7)

f̄(ti) =
{

f(ti) when 0 ≤ ti ≤ tend,

O when tend < ti ≤ t′
end,

(8)

a = 1
2 ,

bk = 1
2n′ ,

(9)

n′ =



n − 1
when ti = t1 = n f ∆t

or ti = t′
end − n f ∆t,

j

(
j ∈ Z+,

n

2 − 1 < j ≤ n

2

) when
n f ∆t < ti < t′

end − n f ∆t,

(10)

and considering that tend
f ∆t is not necessarily a positive

integer,

t′
end =


tend when tend

n f ∆t
∈ Z+,

l(n f ∆t)
when tend

n f ∆t
/∈ Z+,

tend < l(n f ∆t) < tend + n f ∆t.

(11)

Implementation of Equations (5)–(11) is reviewed in
Figure 3. Application of the SEB THHAT to analysis
of Equation (1), using a specific value of n, implies:
(1.) computation of fnew(t),
(2.) replacing f(t) with fnew(t) in Equation (1),
(3.) time integration of Equation (1), with the inte-

gration step, obtained from Equation (5).
In view of Equations (2) and (5)–(11) and Fig-
ure 3, for a clear and effective application of the
SEB THAAT, the value of n must be set carefully.
Assigning an excessively large value to n can lead to
very inaccurate responses, while assigning too small
a value to n will prevent the SEB THAAT from
reducing the analysis run-time, in accordance with
the potential of the problem, the analysis, and the
SEB THAAT.

In view of Equation (5) and because of the small
run-time needed to implement Equations (6)–(11)
(compared to that of direct time integration), the
SEB THAAT can reduce the analysis run-time. How-
ever, the response of the analysis after applying the
SEB THAAT should differ negligibly from the re-
sponse computed ordinarily. With attention to Equa-
tion (2), a comment to limit the inaccuracy is to satisfy
(see [1, 38]):

f ∆t < min
(

T

χ
, ∆tcr, ∆tCFL

)
. (12)

2.2. The literature
Since its launch in 2008, research on the SEB THAAT
has progressed in two main directions. In one di-
rection, the performance of the SEB THAAT is un-
der test (see Table 1), considering different struc-
tural systems, different non-linear behaviours, differ-
ent damping mechanisms, different integration meth-
ods, different digitised excitations, etc., and start-
ing with single degree of freedom systems [39], re-
cently focusing on large systems such as the Mi-
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Figure 3. The process of replacing f(t) with fnew(t) using Equations (5)–(11).

lad telecommunication tower [57], earth dams and
bridges [47, 48, 58, 59], and the Lower San Fernando
Dam [60]. Each test looks for answers to the following
three questions:
(1.) Is Equation (12) valid?
(2.) When Equation (12) is valid, is there any real

value for n that, after using the SEB THAAT, leads
to sufficiently accurate target responses? Specifi-
cally, is the following equation valid:

Equation (12) holds ⇒ ∃ n > 1: Rnew ∼= R? (13)

(R and Rnew are the target responses obtained
from the ordinary analysis and the analysis using
the SEB THAAT, respectively.)

(3.) When Equation (12) is valid, is Equation (13)
valid for all values of n satisfying:

n ≤ nmax = 1
f ∆t

min
(

T

χ
, ∆tcr, ∆tCFL

)
? (14)

(Equation (14) is derived by replacing the f ∆t in
Equation (12) with nmax f ∆t.)

For the problems reviewed in Table 1, the answers
to the three questions are positive, and the reduction
in the run-times is considerable [1, 43, 45–48, 57–67].
Even more, for some tests, Equation (13) holds for
values of n larger than the nmax in Equation (14), e.g.

see [66]. Furthermore, for two tests [57, 61], the accu-
racies increase after applying the SEB THAAT, i.e.
simultaneous reduction in the analysis run-time and
the error of the target response. Besides, the results of
the few tests carried out on systems with wave propa-
gation behaviour are satisfactory [1, 47, 58, 60]. Also,
in one test, the decrease in the run-time is greater,
when the behaviour is non-linear [57]. The successful
performance of the SEB THAAT, when the excitation
record is related to near- or far-field earthquakes, is
briefly demonstrated [60], as well. Impressive applica-
tion of the SEB THAAT to the analysis of multistory
steel structure buildings when the structural plan is
regular or irregular in plan or height is another great
achievement [44, 61, 66, 68]. It is also displayed that
the application of the SEB THAAT in analyses es-
sential for fragility study, though is together with
verification computations, can considerably reduce
the total run-time [47, 48]. Finally, some tests on the
application of the SEB THAAT to analyses other than
the solution of Equation (1) have been successfully
carried out; see [38, 69–71].

The other main direction of the research seeks an-
swers to various conceptual questions. First, it is
shown that the excitation can be multi-component [72].
The effect of non-linearity on the performance and
specifically the accuracy of the responses after appli-
cation of the SEB THAAT are studied next. As the
result, when the non-linearities are modelled properly
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Figure 4. Reduction in analysis run-time as a function of the scale n, for linear direct time integration computations
accelerated by the SEB THAAT.

and adequate values are assigned to the parameters
of the non-linear solution, the SEB THAAT’s per-
formance can be conceptually similar in linear and
non-linear analyses [46]. Meanwhile, the T in Equa-
tion (2) should be related to the target response [73].
Then, the practical preference for considering an up-
per bound for the enlargement scale, n, is mentioned
(see [1, 74]). The SEB THAAT is later compared
with direct down sampling; and as a main observation,
though the down sampling can lead to a good accuracy
and analysis run-time reduction in some tests, the per-
formance of the SEB THAAT is never weaker [64]. In
the same study [64], it is demonstrated, that for the
SEB THAAT to be successful, Equation (1) should not
necessarily be the result of finite element method [4,
75]; finite volume method [76] is also acceptable. It
is then studied whether the inaccuracy because of the
SEB THAAT can cause numerical instability [77]. As
the outcome, when Equation (2) holds, the responses
obtained from linear analyses are stable, regardless
of whether the SEB THAAT is applied. Meanwhile,
even when the integration method’s order of accuracy
is different from two, the SEB THAAT can be success-
ful [78]. The effects of the SEB THAAT on the run-
times of linear and non-linear time integration analyses
are compared as well [79]; in addition, it is also shown
that, in contrast to non-linear analyses, in linear anal-
yses, the reductions can be determined, in terms of
the enlargement scale (see [1]). The next study [80]
was on values of a and bk different from those intro-
duced in Equation (9) and subjected to the following
convergence-based restriction (inherited from [39]):

n′∑
k=1

bk = 0.5. (15)

As the result, though Equation (9) is not always
the best selection, it is the best selection when consid-
ering different cases of the parameters in Equation (1)
and different integration methods. The other question
was how to extend Equations (6)–(11) to an arbitrary
real value of n larger than one; an appropriate way
is presented in [56]. Some initial studies are also per-
formed on the frequency content of the inaccuracies
due to the SEB THAAT (see [1]). Recently, the per-
formance of the SEB THAAT has been studied when
the structural system is non-classically damped [43].
As the result, for majority of time integration meth-
ods, the performance is independent of the type of
viscous damping. In a very recent study, it has been
demonstrated that for steel structural buildings with
5–20 floors, the SEB THAAT can be reliably used,
considering n = 2 [44]. Finally, the performance of
the SEB THAAT compared to some other analysis
acceleration techniques is discussed in [42].

2.3. A major challenge
As discussed in [38, 44, 60], a major challenge for the
SEB THAAT is the clear and practical application
of the SEB THAAT. For a better explanation, with
reference to Figure 4 and Equation (12), the reduction
in the analysis run-time and the accuracy of the target
response can be very sensitive to the problem under
investigation. As a direct consequence, for a clear
practical application of the SEB THAAT, assigning
appropriate values to the SEB THAAT’s parameter,
i.e. n, is an important challenge.

In addition, time history analysis of structural sys-
tems, while irreplaceable in many cases [81], is gener-
ally time consuming [1, 23, 39, 82], especially when
the analysis is a part of a probabilistic or optimisation
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computation, the structural system is very large, or
the structural behaviour is highly non-linear or very
oscillatory; see [82–85]. In application of the SEB
THAAT, the reductions in the analysis run-time can
be significant (see Table 1), even compared to other
analysis acceleration methods (see [1] and Section 6).
Consequently, it is reasonable to use the SEB THAAT
to reduce the large computational efforts in many real
time history analyses. Developing a practical way for
clear and simple application of the SEB THAAT is
therefore a necessity, for which, the SEB THAAT’s
enlargement scale, n, should be set carefully.

Moreover, taking into account Equations (5)–(11)
and (13), n is the only parameter to be set for applica-
tion of the SEB THAAT (in addition to the parameters
of the ordinary time history analysis). Accordingly,
the main challenge for a clear practical application
of the SEB THAAT is determining the appropriate
value of n. Some ambiguities are stated next.

First, currently the only relation for determining
the n is the following inequality:

1 < n ≤ nmax = 1
f ∆t

min
(

T

χ
, ∆tcr, ∆tCFL

)
. (16)

Secondly, given its definition, T in Equation (16)
cannot be easily determined or estimated, especially
prior to the analysis. Next, that the definition of T ,
given immediately after Equation (2), and in par-
ticular the notion of “worthwhile” therein, is not
clear. Then, the T

χ in Equation (16) is not a pre-
cise criterion for accuracy [1, 86–90]. Finally, the T

χ

in Equations (2) or (16) is the only term in these
equations that relates the integration step to the
structural system and behaviour. Consequently, a di-
rect determination of n is complicated and can be
costly, contradicting the purpose of the SEB THAAT,
i.e. reducing the analysis run-time. An alterna-
tive can be to approximate the appropriate value
of n by some upper estimation of n and attempt
to correct the estimation in several steps. Mean-
while, for special groups of analyses, simple reliable
values can be assigned to n; for a recent achievement,
see [44].

3. Simple application of the
SEB THAAT

3.1. Theoretical bases
The current approach to applying the SEB THAAT is
to simply assign a value to n, based on the experience.
In this section, the current approach is replaced with
an algorithm that, starting from an upper estimation
of n, after a number of repetitive time integration
computations, assigns a value to n, appropriate for
the accuracy of the target response. The new approach
is consistent with the comments, in:
(1.) structural dynamics [33],

(2.) numerical solution of ordinary initial value prob-
lems [91],

(3.) the New Zealand Seismic Code, NZS
1170.5:2004 [35, 92].

Accordingly, it is reasonable to terminate the itera-
tions of the new approach using the criterion in the
New Zealand Seismic Code, NZS 1170.5:2004 [35, 92],
that is, after repeating a time integration computation
with half steps, the absolute relative difference of the
two peak target responses should not exceed 5 %. It is
reasonable to start from n = 20; see Figure 4 and [43].
Therefore, what remains unclear is mainly the details
of each successive analysis, with respect to the previ-
ous analyses. Specially, it should be determined how
to change the n and the ∆t. For non-linear analyses,
additional details, e.g. the non-linear tolerance, need
special attention, as well.

Using a subscript on the right to introduce the
sequence of time integration computation and paying
attention to the discussion above and Equation (5)
leads to:

∆t1 = n1 f ∆t, n1 = 20. (17)

With careful attention to Equation (17), the New
Zealand Seismic Code, NZS 1170.5:2004 [35, 92], and
the comments in structural dynamics and numerical
analysis of initial value problems [33, 91], not only
the n but also the f ∆t can change from one time
integration computation to the next time integration
computation. Even in ordinary analyses, when repeat-
ing a time integration computation with half an inte-
gration step, the f ∆t is halved by linear interpolation
of the excitation data [33, 35, 92, 93]. Consequently,
Equation (17) would rather be replaced with:

∆t1 = n1 f ∆t1, n1 = 20, f ∆t1 = f ∆t. (18)

It is also worth noting that the successive compu-
tations starting from Equation (17) cannot consider
integration steps smaller than f ∆t (see the inequality
in Equation (5)), whereas there is no limitation when
starting from Equation (18).

In view of the details of the SEB THAAT, the
fnew(t) corresponding to j = 1 can be obtained by
first replacing the digitised f(t), with a record, g(t),
digitised in steps equal to f ∆t1, using linear interpo-
lation; and then using Equations (6)–(11) and n = n1,
to replace g(t) with fnew(t). This approach can be
used for all the successive computations, i.e. arbi-
trary value of j (for the first computation, the linear
interpolation is trivial). Accordingly, by extending
Equation (18) to:

∆tj = nj f ∆tj , (19)

determination of how nj and f ∆tj should change with
j is to be clarified.

Comparing with the successive time integration
computations in ordinary time history analysis, where
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j 1 2 3 4 5 6 7 8 . . .
nj 20 10.5 5.75 3.375 2.1875 1.59375 1.296875 1.0742175 · · · > 1
∆tj

∆tj−1
- 0.2625 0.2738 0.2935 0.3241 0.3643 0.4069 0.4428 · · · < 0.5

∆tj

f ∆t 20 5.25 1.4375 0.421875 0.13671875 . . . . . . . . . · · · > 0

Table 2. A numerical review of Equation (22).

∆tj = f ∆tj (see [33, 35, 92]), f ∆tj can be consid-
ered representing the inaccuracy because of the in-
tegration method’s approximation [1, 2, 23]. Sim-
ilarly, with regard to Equation (5), nj represents
the inaccuracy due to the SEB THAAAT. There-
fore, with attention to the theoretical bases of the
SEB THAAT [38, 39], it is reasonable to preserve the
consistency between the changes of the two sources
of inaccuracy. Given this, the New Zealand Seismic
Code, NZS 1170.5:2004 [35, 92], and the fact that,
at n = 1 and f ∆t → 0, the inaccuracies due to the
SEB THAAT and the approximations of the integra-
tion method disappear, it is reasonable to preserve
the consistency by:

nj − 1
nj−1 − 1 = f ∆tj

f ∆tj−1
= 1

2 , j = 2, 3, 4, . . . (20)

Specifically, the reason for the “ 1
2” in Equation (20)

is the tradition of halving the integration steps to
check the accuracy of the target response in engineer-
ing and science; see [33, 35, 91, 93]. Together with
Equations (18) and (19), Equation (20) leads to the
following integration steps:

∆tj = nj f ∆tj , j = 1, 2, 3, . . .
j = 1 : n1 = 20, f ∆t1 = f ∆t

j = 2, 3, 4, . . . : nj = nj−1 + 1
2 , f ∆tj = ∆tj − 1

2

(21)

and the fact that (see also Table 2):

0.25 <
∆tj

∆tj−1
= nj

nj−1

f ∆tj

f ∆tj−1

=

nj−1 + 1
2

nj−1

f ∆tj−1

2
f ∆tj−1

= 1
4

nj−1 + 1
nj−1

< 0.5, j = 2, 3, 4, . . .

(22)

From Equation (22) and Table 2, the following points
can be concluded:
(1.) The ending criterion of the time history anal-

ysis in the New Zealand Seismic Code, NZS
1170.5:2004 [35, 92] cannot be used, when setting
the integration step according to Equation (21).
The reason is that, different from what is implied in
Equation (21) (see the third row in Table 2), in the
procedure in the New Zealand Seismic Code, NZS
1170.5:2004 [35, 92], the integration step halves with
each new time integration. Using Pj to introduce
the peak target response in the jth computation,

Figure 5. A procedure for simple and clear applica-
tion of the SEB THAAT.

the correct ending criterion is (see Appendix A, for
a proof attempt):

|Pj−1 − Pj |
Pj

≤ 1
60

[(
4nj−1

nj−1 + 1

)2
− 1

]
,

j = 2, 3, 4, . . .

(23)

Note that, using nj−1 = 1 in Equation (23) simpli-
fies Equation (23) to the ending criterion in the New
Zealand Seismic Code, NZS 1170.5:2004 [35, 92].

(2.) A procedure that uses Equation (21) for comput-
ing ∆tj can be continued endlessly, until the ending
criterion is satisfied, i.e. there is no lower bound on
∆tj . The reason is implied in the relation leading
to ∆tj ; see Equation (21) and Table 2.

(3.) As it should, the integration step ∆tj converges
to zero (see the last row of Table 2).

A procedure to simply and clearly apply the
SEB THAAT is presented next.

3.2. The procedure
By using the following procedure, assigning values to
n, the main parameter of the SEB THAAT, can be
automated, eliminating concerns about determination
of n (see Figure 5):
(a) Select the target response, the integration method
(preferably unconditionally stable; see [1, 2, 23, 94]),
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j 1 2 3 4 5 6

δ̄j 1.E−2 1.E−6 1.E−9 1.E−11 1.E−13 1.E−14

Table 3. Values of non-linear tolerance in application of the proposed procedure.

and for non-linear problems, set the non-linear so-
lution details.

(b) j = 0.
(c) j = j + 1.
(d) Compute nj , using:

n1 = 20, (24a)

nj = nj−1 + 1
2 , j = 2, 3, 4, . . . (24b)

(e) Use linear interpolation to change the f(t) at the
right hand side of Equation (1) to g(t), digitised in
steps equal to f ∆tj , defined as follows (when j = 1,
g(t) = f(t)):

f ∆tj = f ∆t

2j−1 . (25)

(f) Use Equations (6)–(11) to change g(t) to fnew(t),
digitised in steps equal to ∆tj :

∆tj = nj f ∆tj . (26)

(g) Time integrate Equation (1), considering fnew(t)
as f(t), and ∆tj as the integration step; for non-
linear problems, use the non-linear tolerances, δ̄j ,
stated in Table 3 (see the comments in [95] and
the difference between the integration steps in the
last row of Table 2), and do not stop the computa-
tion when the iteration of non-linear solution fails
(see [96]).

(h) Compute the peak target response, as Pj .
(?) If only one-time integration computation is car-

ried out, return to Step (c).
(?) If the last two peak target responses computed

in Step (h) do not satisfy Equation (23), return to
Step (c).

(i) Accept the last time integration computation and
response as final.

(j) Stop.

Obviously, for application of the above procedure, no
parameter regarding the SEB THAAT needs to be set
in advance, a measure of inaccuracy is computed (see
Appendix A), and there is no limitation for the appli-
cation. These are remarkable achievements in terms of
simplicity, availability of a measure of inaccuracy, and
versatility. Nevertheless, it is also essential to study
the accuracy and computational effort of applying the
SEB THAAT according to the proposed procedure
and compare the results with those summarised in
Table 1.

3.3. Complementary points
The procedure proposed in the previous section, be-
sides eliminating the need to select a value for n, has
removed the T , χ, ∆tcr, and ∆tCFL from the analysis.
This is an additional significant achievement, simpli-
fying the analysis even more. The removal of these
four parameters can be explained by considering the
role of these four parameters in time history analysis.
In short, these parameters are only necessary to main-
tain the accuracy (including numerical stability) of
the target response [1, 2, 23, 33, 34]. Meanwhile, the
accuracy is checked in the last decision-making step
of the proposed procedure (just before the Step (i)).
Therefore, it is reasonable to consider the accuracy
control according to Equation (2) redundant and dis-
card it.

A main difference between the previous applica-
tions of the SEB THAAAT and applying the SEB
THAAT according to the proposed procedure is that
while in the previous applications there was only one
time integration computation, several time integration
computations are essential when using the proposed
procedure. In addition, a measure of the accuracy is
available in terms of the peak target response when
using the proposed procedure. Accordingly, when
comparing the proposed procedure with the ordinary
analysis, it is reasonable to carry out the ordinary
analysis sequentially, each time with half steps, and
end the analysis iterations with the 5 % criterion of
NZS 1170.5:2004, as well. (This is in agreement with
the existing comments; see [33, 91, 93].) Considering
this and Figure 5, we can expect the proposed proce-
dure to be neither complicated nor computationally
expensive.

Finally, it is worth noting that adding the “prefer-
ably unconditionally stable” to the Step (a) of the
proposed procedure implies that using an uncondi-
tionally stable method for the analysis is preferable,
but not obligatory [2, 23, 94]. (Only, unconditionally
unstable methods should not be used.) Several expla-
nations can be presented for this statement in Step (a)
of the procedure. Firstly, the procedure involves re-
peating time integration computations, and hence
even when the response is inaccurate in one-time inte-
gration computation, it may be sufficiently accurate
in the subsequent computations. The run-time needed
for the inaccurate computation is negligible compared
to the total analysis run-time as well; see the last row
of Table 2 and [1]. The second explanation is that the
time history analysis and time integration are mostly
for non-linear analyses [1, 2, 23], for which satisfying
the requirements of linear stability may be insufficient;
see [1, 86–90, 97]. And as the final explanation, using
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j 1 2 3 4 5 6 ≥7

δ̄j 1.E−2 1.E−4 1.E−6 1.E−8 1.E−10 1.E−12 1.E−14

Table 4. Values of non-linear tolerance for ordinary sequential time integration computations [95].

Equations (24)–(26), similarly for all problems, re-
gardless of the integration method, makes the analysis
to be simpler, more attractive, and perhaps even more
efficient for large problems.

4. Illustrative examples
4.1. Preliminary notes
Ground motions are generally available in a digitised
format [33]. For this reason, and because of the role of
the New Zealand Seismic Code, NZS 1170.5:2004 [35,
92] in the presented discussions, the structural systems
in this section are considered to be subject to ground
acceleration. Accordingly, in Equation (1):

f(t) = −MΓüg(t), (27)

where
üg(t) implies the ground acceleration,
Γ is a vector with the size of the degrees of freedom,

needed for matrix multiplication and considering
spatial changes of üg [33].

In addition, similarly to the majority of the past stud-
ies on the SEB THAAT (see Table 1), the examples
here have a structural dynamic nature, where the
members of Γ are all equal to one. Furthermore, as
explained in Subsection 3.3, for comparing the or-
dinary analysis with the analysis according to the
proposed procedure, the former is consisted of sequen-
tial time integration computations. The procedure is
similar to the proposed procedure, with roots in con-
ventional analyses (see [33, 35, 92]; only slight changes
(including replacement of Table 3 with Table 4 and
using nj = 1) are implemented in the proposed proce-
dure. For a better explanation, for ordinary analyses,
first, a time integration computation is carried out
with f ∆t as the integration step and the non-linear
tolerance recommended in [95]; see Table 4. The com-
putation is then repeated, with updated parameters,
including half integration steps, new non-linear tol-
erances (see Table 4), and new excitations obtained
using linear interpolation. If the absolute relative
difference of the two peak target responses is not
more than 5 %, the last response is final. Otherwise,
the computation is repeated, until convergence of the
peak target response is reached. Meanwhile, as demon-
strated in [96], similar to the analyses using the pro-
posed procedure for application of the SEB THAAT,
the time integrations do not stop when the non-linear
solutions fail.

A question that may arise here is why in the first
time integration computation of the ordinary time
history analysis, the selection of the integration step is

not according to Equation (2) or its slightly modified
version in the New Zealand Seismic Code [35, 92].
A main reason is that, given the objective of the paper
and the ending criterion of the proposed procedure,
it is sufficient to show that the proposed procedure
is clear in application and can notably reduce the
analysis run-time (compared to the ordinary analyses),
for many cases. Considering these, for the sake of
simplicity and consistency with the analyses according
to the proposed procedure, it is reasonable to consider
one of the terms in the right hand side of Equation (2),
and use f ∆t as the integration step of the first time
integration computation of the ordinary time history
analysis. For majority of cases, this approach (using
an integration step in the first analysis larger than the
result of Equation (2)) will reduce the analysis run-
time of ordinary time history analysis. The reduction
in analysis run-time due to the use of the proposed
procedure will then be a lower-bound of the true
reduction in the analysis run-time. When needed,
Equation (2) can be considered for determination
of the integration step in the first time integration
computation of the ordinary time history analysis.

Accuracy of the responses after applying the
SEB THAAT according to the proposed procedure
is determined by comparing the responses with the
responses obtained from the ordinary analysis. The
run-times essential for the analyses are compared in
view of the total numbers of integration steps. Ac-
cordingly, in this section, fractional time stepping,
with the maximum number of non-linear iterations
equal to five (as conventional) [98, 99], is used for the
non-linear solution. Other choices for measuring the
analysis run-time and non-linear solution are used in
the study of a realistic example in Section 5. All values
are given in the International System of Units (SI).

4.2. Example one: A simple non-linear
problem

Figure 6 shows a preliminary model of a tall build-
ing’s structural system, subjected to a ground ac-
celeration. g stands for the acceleration of gravity,
equal to 9.81 m s−2, and Table 5 reviews the model’s
main properties. Specifically, the stiffness is linear-
elastic/perfect-plastic considering unloading (uyi is
the yield displacement of the ith spring), and hence
the behaviour may be non-linear.

In Step (a) of the proposed procedure, the base
shear is set as the target response, and the C-H
method [100] (ρ∞ = 0.7) is set for time integra-
tion. Steps (b)–(d) lead to n1 = 20. As the result
of Steps (e) and (f), Figure 7a shows the excitation
in the first time integration computation (“new” as
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(a). Structure’s model.

(b). Ground acceleration.

Figure 6. The structural system in the first example.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10−9 × mi 3 3 3 3 3 3 3 3 1.5 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5
10−9 × ki 2 2 2 2 1.2 1.2 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.1 0.1 0.1
10−9 × ci 1.2 0.8 0.6 0.25 0.25 0.15 0.05 0.02 - - - - - - - - - -

uyi 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3

Table 5. Main properties of the structural system in the first example.

a subscript implies that the argument is related to
the SEB THAAT’s application using the proposed
procedure). In Step (g), the non-linear tolerance is
set to 10−2 that, when used together with the inte-
gration step set in Step (f), results in the time history
reported in Figure 8a for the target response, the peak
of which is stated at the top of the figure. In view of
the number of analyses carried out, the computation
proceeds from Step (h) to Step (c). Steps (c) and (d)
lead to n2 = 10.5, using which, Steps (e) and (f) result
in Figure 7b as the excitation record. In Steps (g)
and (h), using the tolerance in Table 3 corresponding
to j = 2 and the integration step equal to the step of
the excitation in Figure 7b, leads to a time integra-
tion computation with the results shown in Figure 8b.
According to the number of time integration computa-
tions performed, it is then checked whether the peak
target responses reported in Figures 8a and 8b satisfy
Equation (23). The answer is positive, and Step (i)
introduces Figure 8b as the final response; and the
procedure stops in Step (j).

In the ordinary analysis, a time integration com-
putation is first performed with steps equal to
f ∆t (=0.01 s) and a non-linear tolerance equal to 10−2

(see Table 4). The resulting time history of the target
response and the peak value are shown in Figure 9a.
The second computation is carried out with half steps
and a non-linear tolerance equal to 10−4 (see Table 4).
The consequence is shown in Figure 9b. Given the
peak values noted at the top of Figures 9a and 9b,
the difference in the peak target responses is much
less than 5 % and hence the response displayed in
Figure 9b is final. The run-times of the two analy-
sis approaches are compared in Table 6 (where the
red oval shapes refer to the run-time details of the
final computations and the red numbers are used to
compare the run-times), and the good accuracy is evi-
dent when comparing Figures 8b and 9b. The result
is an 87.26 % reduction in the analysis run-time, at
the cost of a visually unrecognisable change in the
accuracy of the target response. Therefore, by using
the proposed procedure, the SEB THAAT may be
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(a). j = 1. (b). j = 2.

Figure 7. Excitation records obtained from Steps (e) and (f) of the proposed procedure for the first example.

(a). j = 1. (b). j = 2.

Figure 8. History of the target response and the peak value as the result of Steps (g) and (h) of the proposed
procedure for the first example.

(a). j = 1. (b). j = 2.

Figure 9. History of the target response and the peak value obtained from ordinary time history analysis of the first
example.

easily applicable (without worrying about the value of
n) and significantly speed up non-linear time history
analyses. Finally, it should be noted that the be-
haviour of the structural system is indeed non-linear,
albeit slightly, as shown in Figure 10.

4.3. Example two: An interesting linear
problem

The model in Figure 11a is subjected to the ground
acceleration in Figure 11b. The target response, S, is
the sum of the kinetic energy EK and the potential en-
ergy EP (equal to the input energy of the earthquake

minus the energy damped in the structure), i.e.,

S = EK + EP . (28)

Given Equations (1) and (28), by denoting the dis-
placements of the three masses by u1, u2, and u3, and
the corresponding velocities by u̇1, u̇2, and u̇3, the
target response S can be expressed as [93]:

S =5(u̇2
1 + u̇2

3) + 10u̇2
2

+ 10u1
2 + 5(u3 − u1)2 + 20u3

2.
(29)

Starting the study with the proposed procedure, in
Step (a), S is the target response and the integration
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Analysis
iteration

Ordinary sequential analyses Proposed procedure

Integration
step [s]

Number of
integration

steps

Total number
of integration

steps

Integration
step [s]

Number of
integration

steps

Total number
of integration

steps
1 0.01 8 006 8 006 0.2 606 606
2 0.005 16 190 24 196 0.0525 2477 3 083

Table 6. Study of the analysis run-times of the first example.

Figure 10. Exact history of the target response in the first example and its linear counterpart.

(a). Structure’s model.

(b). Ground acceleration.

Figure 11. The structural system in the second example.

154



vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

(a). j = 1. (b). j = 2.

Figure 12. Records obtained from Steps (e) and (f) of the proposed procedure for the second example.

(a). j = 1. (b). j = 2.

Figure 13. History of the target response and the peak value obtained from Steps (d) and (e) of the proposed
procedure applied to the second example.

(a). ∆t = f ∆t. (b). ∆t = 0.5f ∆t.

Figure 14. History of the target response together with the peak value obtained from ordinary time history analysis
of the second example.

method is set to the HHT method [101] (α = −0.05,
γ = 0.55, β = 0.275625). As the results of Steps (b)–
(d), j = 1 and n1 = 20. The result of Steps (e)
and (f) is the digitised record displayed in Figure 12a.
Steps (g) and (h) lead to the target response history
and the peak value shown in Figure 13a. Since only
one time-integration computation is carried out, the
computation proceeds to Step (c), which, together
with Step (d), lead to j = 2 and n2 = 10.5. Using
these results, Steps (e) and (f) lead to Figure 12b, from
which Steps (g) and (h) lead to Figure 13b. The peak
target responses in Figures 13a and 13b are compared
with respect to Equation (23), and as the result, the
response reported in Figure 13b is final.

The first time integration computation of the or-
dinary time history analysis is carried out with
steps equal to that of the excitation record,
i.e. f ∆t = 0.005 s. The obtained target response is
shown in Figure 14a. The time integration is then
repeated with half a step, resulting in Figure 14b.
The peaks of the two responses are within 0.02 % rel-
ative difference. Accordingly, Figure 14b represents
the final target response. The accuracy is determined
by comparing Figures 14b and 13b, and the analy-
sis run-times are compared by the number of steps,
which is clear due to the linear behaviour. As a
result, by using the SEB THAAT according to the
proposed procedure, assigning a value to n is auto-
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(a). Model of the structure. (b). Ground acceleration.

Figure 15. The structural system in the third example [96].

Property Floor (i)
1 2 3 4 5 6

10−9 × mi [Kg] 1.8 1.8 1.8 1.8 0.6 0.6
10−11 × ki [N/m] 1.2 1.2 1.2 1.2 0.2 0.2

Damping [N s m−1] Classical [33], considering 2 % damping for the 1st and 3rd natural modes

Table 7. Main properties of the structural system in the third example [96].

(a). Target response. (b). Displacement of the sixth floor.

Figure 16. Exact responses of the system introduced in Figure 15 and Table 7.

mated, the response is computed accurately, and the
run-time is reduced, with the decrease of the number
of integration steps from 12 000 ( 20

0.005 + 20
0.005×0.5 ) to

962 ( 20
0.005×20 + 20

0.005×0.5×10.5 ), i.e. 91.98 %.

4.4. Examples three and four: Tests on
analyses non-linear due to elastic
impact

4.4.1. A brief overview
Pounding and collision are of major causes of de-
struction during earthquakes [102–105]. Besides, time
history analysis is a powerful tool for seismic analysis
(see [1, 33, 35]) and, in the first and second examples,
the damping was nonzero and non-classical. Consid-
ering these, two structural models, involved in elastic

impact, one damped classically, and one undamped,
are studied, in the next two subsections.

4.4.2. A classically damped system involved
in elastic impact

Consider the structural system introduced in Figure 15
and Table 7. The average acceleration method [106]
is selected for the time integration, and the velocity
of the third floor is set as the target response. Given
Figure 16, the elastic impacts actually occur and cause
the behaviour to be non-linear. For both the ordinary
and proposed analyses, details of the non-linear solu-
tion are set similar to those in the first example. After
the sequential time integration computations, the re-
sults shown in Table 8 and Figure 17 are achieved.
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Features
Analysis

Ordinary According to the
proposed procedure

Number of time integration computations 2 2
Total number of integration steps 4 788 888

Decrease in the analysis run-time [%] 81.45

Table 8. Summary of the analysis run-time study for the system introduced in Figure 15 and Table 7.

Figure 17. Final responses obtained for the system introduced in Figure 15 and Table 7 using average acceleration
time integration method.

Figure 18. The ground acceleration in repetition of the study of the system introduced in Figure 15a and Table 7.

Accordingly, the reduction in the analysis run-time is
81.45 %, and despite the slight difference between the
two graphs in Figure 17, the accuracy is acceptable,
considering that:

(1.) The main seismic features of the response [33]
are not changed,

(2.) both the ordinary and the proposed analyses do
not consider the accuracy in the entire history,

(3.) neither of the two graphs in Figure 17 are exact,
(4.) results of non-linear dynamic analyses are rarely

exact [1, 89, 97, 107].

The study is repeated, considering the excitation in
Figure 18 (instead of that in Figure 15b). Also, instead
of one target response, three target responses, includ-
ing the third floor’s displacement, velocity, and accel-
eration, are taken into account, separately. Results of
the study are summarised in Table 9 and Figure 19, dis-
playing the very good performance of the SEB THAAT

when applied according to the proposed procedure. In
more detail, while the difference between Figures 19a
and 19b is negligible, the computation leading to Fig-
ure 19b is about 10.8 times faster, i.e. the analysis run-
time is 90.71 % shorter. Table 9 and Figure 19 also dis-
play that the performance of the proposed procedure is
not necessarily sensitive to the target response. In con-
trary, comparing Table 8 with Table 9 and Figure 17
with Figure 19 implies that the performance of the
SEB THAAT’s application using the proposed proce-
dure can be sensitive to excitation. Finally, Figure 20
confirms non-linearity of the dynamic behaviour.

4.4.3. An undamped system involved with
elastic impact and material
non-linearity

The structural system in this section is the bridge
structure introduced in Figure 21 (see [96, 108]), where
the vertical movements are neglected, the decks are
rigid, the piers are massless, the damping is zero, the
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Target response

Number of
time integration computations

Total number of
integration steps Decrease in the

analysis
run-time [%]Ordinary

analysis

Analysis according
to the proposed

procedure

Ordinary
analysis

Analysis according
to the proposed

procedure
3rd floor’s displacement 2 2 113 056 10 500 90.71

3rd floor’s velocity 2 2 113 056 10 500 90.71
3rd floor’s acceleration 2 2 113 056 10 500 90.71

Table 9. Summary of the analysis run-time study for the system introduced in Figures 15a and 18 and Table 7.

(a). Analysed ordinarily. (b). Analysed according to the proposed procedure.

Figure 19. Final responses for the system introduced in Figures 15a and 18 and Table 7 using the average acceleration
time integration method.

(a). The first target response. (b). The third target response. (c). Displacement of the sixth floor.

Figure 20. Evidences for the non-linear behaviour of the system introduced in Figures 15a and 18 and Table 7.
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(a). Model of the structure.

(b). Ground acceleration.

Figure 21. The structural system in the fourth example.

impacts are elastic, and the following three alterna-
tives are considered for the s in Figure 21a:

s = 0.4657588964, 0.7452142342, 1.117821351, (30)

and the rest of the parameters are set as follows:

di = 0.2 m, ki = 0.2 × 105 N m−1,

mi = 3 × 106 kg, uyi
= 0.3 m,

i = 1, 2, 3, . . . , 7.

(31)

Equation (30) introduces three cases, where the struc-
tural system has 25 %, 100 %, and 200 % additional
excitation, compared to when the system is in the
vicinity of linear/non-linear behaviour, for which,
s = 0.3726071171 (note that the non-linearity is of
piece-wise linear type [1, 107, 108]). These percent-
ages can also be referred to as the severity of the
non-linear behaviour, SN; see [96]. Accordingly, by
studying the performance of the proposed procedure
for different values of s, we can arrive at an idea about
the effect of severity of the non-linear behaviour on
the performance. The displacement of Point A in

Figure 21 (the central pier’s mid-point), uA, and the
potential energy of the system, EP , i.e.:

EP = 1
2

7∑
i=1

uifi, (32)

are considered as target responses, in two separate
studies (the new variable fi stands for the shear force
of the ith pier from left). In addition to the fact that,
because of Equation (30), the behaviour is non-linear,
given the sizes of di and uyi

in Equation (31), the
elastic impact is always involved in the non-linear
behaviour. By removing the material non-linearity,
the target responses change as shown in Figure 22, in
orange. Evidently, the contribution of material non-
linearity is negligible when SN = 25 % and is signifi-
cant when SN = 100 % and SN = 200 %. Meanwhile,
by comparing the blue graphs in Figures 22a, 22b,
and 22c, we can get an idea of the extent to which
the non-linearity can affect the behaviour.

In addition to changes in the physical parameters,
i.e. the target response and the severity of non-linear
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(a). SN = 25 %.

(b). SN = 100 %.

(c). SN = 200 %.

Figure 22. Exact target responses of the system defined in Figure 21 and Equation (31).

Case Target
response Integration method SN [%] Case Target

response Integration method SN [%]

C111 uA Average Acceleration 25 C211 EP Average Acceleration 25
C112 uA Average Acceleration 100 C212 EP Average Acceleration 100
C113 uA Average Acceleration 200 C213 EP Average Acceleration 200
C121 uA Central difference 25 C221 EP Central difference 25
C122 uA Central difference 100 C222 EP Central difference 100
C123 uA Central difference 200 C223 EP Central difference 200
C131 uA C-H (ρ∞ = 0.85) 25 C231 EP C-H (ρ∞ = 0.85) 25
C132 uA C-H (ρ∞ = 0.85) 100 C232 EP C-H (ρ∞ = 0.85) 100
C133 uA C-H (ρ∞ = 0.85) 200 C233 EP C-H (ρ∞ = 0.85) 200

Table 10. The eighteen cases under consideration in the study of the system introduced in Figure 21 and
Equation (31).

behaviour SN, changes in the integration method (as
a computational parameter) are also taken into ac-
count. The analyses are carried out thrice, using the
average acceleration [106], the central difference [109],
and the C-H [100] (ρ∞ = 0.85) time integration meth-
ods. Consequently, eighteen cases are included in
the study; see Table 10, where, in the first and fifth
columns, the three digits in right of each C introduce
the target response, the integration method, and the
severity of non-linear behaviour, respectively. The
final results are reported in Figures 23–25, where the
first number in the top boxes implies the percentage

of reduction in the analysis run-time and the two num-
bers in the parentheses are the numbers of repetitions
in the ordinary and proposed analyses, respectively.
The main observations are as follows:

(1.) The final target responses obtained from the pro-
posed analysis approach and ordinary analysis do
not always match over the entire analysis interval.

(2.) In rare cases, the application of the SEB THAAT
using the proposed approach seems to slightly
increase the analysis run-time; see Figures 25a
and 25e.
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(a). C111. (b). C211.

(c). C121. (d). C221.

(e). C131. (f). C231.

Figure 23. Final responses obtained for the systems introduced in Figure 21 and Equation (31) and the corresponding
reductions in the analysis run-times, when SN = 25 %.

(3.) Both the accuracy of the target response and the
reduction in the analysis run-time because of ap-
plying the SEB THAAT according to the proposed
procedure may be sensitive to the target response,
the integration method, and the severity of non-
linear behaviour. In particular, the reductions in
the run-time are generally greater when examin-
ing the displacement of Point A. Meanwhile, the
sensitivities are greater when the SN is greater.
The first observation can be explained by the seis-

mic requirements that influence the analysis proce-
dures (see also [33, 35, 92]). Based on these needs,
the ending criterion of both the ordinary and pro-
posed analyses is the convergence of the peak target
response. Therefore, it is not reasonable to expect the
two responses to necessarily match or even come close
to each other over the entire time frame of the analy-

ses. Accordingly, the accuracy shown in Figures 23–25
is acceptable. Further explanation is presented in
Section 6.

Regarding the second observation, firstly, the num-
ber of cases displaying a longer analysis run-time when
using the proposed procedure is low and the observed
amount of the increase is small. Then, the observation
is in agreement with the literature [1, 46, 79], accord-
ing to which, the details of the non-linear solution
should be set carefully. For instance, for this specific
problem, by changing the maximum number of non-
linear iterations from five to three, the reduction of the
analysis run-time in Figure 25a changes from −9.07 %
to approximately +14.25 %. Thirdly, as stated in
Section 4.1, the first time integration computation of
ordinary analyses is generally carried out with a step
obtained from Equation (2) or a slightly different
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(a). C112. (b). C212.

(c). C122. (d). C222.

(e). C132. (f). C232.

Figure 24. Final responses obtained for the systems introduced in Figure 21 and Equation (31) and the corresponding
reductions in the analysis run-times, when SN = 100 %.

version of Equation (2) (e.g. see [35, 92]). For the
previous examples in this paper, the result of Equa-
tion (2) is not very different from f ∆t. In this example,
however, the result of Equation (2) is about 30 times
smaller than f ∆t. Using the correct step for the first
time integration computation of the ordinary analysis
changes Figure 25 to Figure 26, where the reduction in
the analysis run-time is considerable and about that of
the previous examples, and the accuracies of the blue
graphs are about those of the black graphs, as well as
the blue graphs in Figure 25. Finally, and in comple-
tion of the previous explanation, the behaviour of the
system corresponding to Figure 25 is very complicated;
Figure 27 clearly displays that, when SN = 200 %, the
response is not only highly oscillatory [110, 111], but
also mathematically stiff [112, 113].

And to explain the third observation, the time his-

tory analysis, ordinarily or according to the proposed
procedure, is sensitive to the target response (because
of the ending criterion of the analysis), is sensitive to
the integration method (because of the direct effect of
the integration method on the response), and is sensi-
tive to the SN (because changes in the SN change the
excitation). Therefore, it is reasonable to expect that
the difference of the final responses obtained from the
two analyses also depend on these three parameters
and the performance of using the SEB THAAT accord-
ing to the proposed procedure to be sensitive to these
parameters. It is also worth noting that because of the
fact that convergence is preserved in different stages
of the discussion, and the ending criterion in the pro-
posed procedure is in close relation to the convergence
(see Appendix A), the sensitivity to the integration
method is much lower than the sensitivities to the

162



vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

(a). C113. (b). C213.

(c). C123. (d). C223.

(e). C133. (f). C233.

Figure 25. Final responses obtained for the systems introduced in Figure 21 and Equation (31) and the corresponding
reductions in the analysis run-times, when SN = 200 %.

SN and target response. In more detail, sensitivity to
the integration method is negligible, unless when the
SN is very high and proper convergence is delayed to
smaller steps; see Figures 23–25 and [1, 89, 97]. The
better performance when the target response is the
displacement of Point A can be explained by the fact
that both the SEB THAAT and the proposed proce-
dure are based on the convergence of the responses;
see also [1, 39]. Non-linear behaviour potentially con-
flicts with convergence of the responses produced by
the time integration [97]. Besides, because of the na-
ture of the problem, specifically the similarity of the
column characteristics and the structure’s geometry,
the most crucial source of non-linearity is the collision
of the first and last decks with the adjacent supports.
Given this, the location of Point A in the structural
system, and that the potential energy is affected by

the response at different locations in the system, the
effect of the non-linearity on the displacement of Point
A is less than the effect on the total potential energy.
Consequently, the performance is reasonably better
for the displacement of Point A. The lower sensitivity
at lower SN values can be explained in a similar way.

5. A realistic example
Most of real structural systems are of a few thou-
sand degrees of freedom. Therefore, to display that
the proposed procedure can be successful in practice,
a three-dimensional steel structure subjected to a two-
component earthquake is studied in this section; see
Figures 28 and 29 and Table 11. When modelling the
structural system, no specific assumption, e.g. shear
building assumption, is taken into account. One node
is added at the mid-point of each beam and column,
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(a). Figure 25a. (b). Figure 25b.

(c). Figure 25c. (d). Figure 25d.

(e). Figure 25e. (f). Figure 25f.

Figure 26. Changes due to the use of the correct value of the integration step in the first time integration of the
ordinary analyses.

with exception of the beams already halved by brac-
ings, as well as the beams at the highest level. Each
of the four beams at the highest level is divided to
six beam-elements. The lengths of beam-elements
are hence equal to two meters throughout the model.
This results in a model with 4 968 degrees of free-
dom. The pattern of the bracings is continued to the
ground. The lumped masses are placed at the beam-
column connections, equal to 5 000, 10 000, 20 000, and
43 200 kg at the corners of each level of the structure
(not at the top level), at the periphery of each level
(not at the corners and top level), at the connections
not at the periphery, and at the connections at the top
of the structure (see Figure 28a), respectively. Damp-
ing is assumed to be of Rayleigh type [33], and equal
to five percent in the first and third natural modes of
the linear structure. Four target responses are taken

into account simultaneously; given Figure 28a, accel-
eration and displacement of Point A in the x and
z directions, respectively, displacement of Point B in
the x direction, and the total base shear. The latter
is obtained from:

VBS =
√

(
∑

Base Columns Rx)2 + (
∑

Base Columns Ry)2
, (33)

where, VBS represents the total horizontal force trans-
mitted to the foundation (disregarding the damping
forces), and Rx and Ry stand for the shear force at the
lowest floor’s typical column in the x and y direction,
respectively. Figure 28b, together with the difference
between Figures 30a and 30b, confirms that the struc-
tural behaviour is non-linear. Simple two-node beam-
column elements and two-node truss elements are used
for the finite element modelling of the beams (and
columns) and bracings, respectively [4, 75, 94]. The
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(a). Exact potential energy.

(b). Exact displacement of Point A.

Figure 27. Complexity of the structural behaviour in the fourth example when SN = 200 %.

average acceleration method [106] is used for the time
integration. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [114, 115] is used for the non-linear
solution. Finally, the OPEN System for Earthquake
Engineering Simulation (OPENSEES) is chosen as
the structural analysis software [116].

The results of analysing the system ordinarily and
when applying the SEB THAAT using the proposed
procedure are reported in Table 12 and Figure 31.
Accordingly, the performance of the proposed proce-
dure may be acceptable for realistic structural systems.
The increase in computational efficiency is consider-
able, as well. Finally, the presented example differs
from the previous examples in the size of the structure,
the consideration of a two-component earthquake as
the excitation, the non-linear solution method, and
the consideration of multiple target responses simul-
taneously.

6. Discussion
6.1. The achievements and their

significance
In line with the objective of the paper, the main
achievement is that the SEB THAAT can now be
applied, without assigning a value to the enlargement
scale n. This is important from a practical point of
view, particularly because of the significant variation
in the reduction in the analysis run-time, reported in
Table 1.

Meanwhile, we can compare the previous applica-
tions of the SEB THAAT, summarised in Table 1, with
the 25 observations reported in Sections 4 and 5 (see

Table 13). As a result, when using the proposed pro-
cedure, the overall reductions in run-time are higher
and the sensitivity to the problem is lower. In ad-
dition, compared to the previous tests, which were
some on linear and some on non-linear analyses, the
tests reported in this paper (with the exception of
the second example) are on non-linear analyses, some
with complicated behaviour. In conclusion, the use
of the proposed procedure for application of the SEB
THAAT, can be considered adequate. For a detailed
comparison, the first example, which showed an 87 %
reduction in the analysis run-time at the cost of a
visually unrecognisable change in accuracy (see Ta-
ble 13), is re-examined using the SEB THAAT with-
out the new procedure. For this example, the ap-
plication of the SEB THAAT considering different
values of the enlargement scale n, the integration
method and the target response according to Sec-
tion 4.2, and a conventional value for the non-linear
tolerance, i.e. 1.E−4 (see [117]), leads to Figure 32.
It can be clearly seen that without using the pro-
posed procedure, the 87 % reduction in the analy-
sis run-time, observed in Section 4.2, is achieved at
the cost of 33 % change in the accuracy of the tar-
get response when using n = 36. In comparison,
the use of the SEB THAAT according to the pro-
posed procedure, achieved only a 1.21 % change in
accuracy, as can be seen from Figures 8b and 9b,
and its performance is, therefore, superior to the
previous applications of the SEB THAAT. Accord-
ingly, using the proposed procedure for application
of the SEB THAAT in the first example has consid-
erably increased the computational efficiency of the
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(a). Model appearance.

(b). Material.

Figure 28. Structural system in the realistic example.
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(a). x direction component. (b). y direction component.

Figure 29. Earthquake record in the realistic example.

Structural member Profile Area [cm2] Moment of inertia [cm4]
Beams IPE 270 45.90 5790
Columns Box 360×360×16 214 41 450
Bracings 2U160 48.00 -

Table 11. Structural members and their properties in the realistic example.

(a). The linear counterpart. (b). The actual system.

Figure 30. Target responses of the realistic example.
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Analysis
Number of

time integration
computations

Total analysis
run-time

Reduction in
the run-time

[%]
Ordinary 2 12h 56′ 11′′

93Using the SEB THAAT according
to the proposed procedure 2 56′ 23′′

Table 12. Summary of the analysis run-time study for the system in the realistic example.

Figure 31. Accuracy of the proposed approach in the realistic example.
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Structural system
Reduction in
the analysis
run-time [%]

Accuracy of the target
response Details

An eighteen story building 87 Visually matching in the
entire analysis interval See Section 4.2

A linear three-DOF system 92 Visually matching in the
entire analysis interval See Section 4.3

A six story building subjected to
pounding at the sixth floor studied in
four cases

81–91
Visually matching almost

in the entire analysis
interval

See Subsection 4.4.2

A multi-span bridge in 18 different
cases of non-linear behavior,
integration method, and target
response

77–97∗
The peak target responses,
and the frequency content

are very close
See Subsection 4.4.3

A realistic six floor building 93
Visually matching almost

in the entire analysis
interval

See Section 5

∗ For the sake of brevity, only six results are presented in Figure 26; however, the presented reduction is based on 18 results.

Table 13. Brief review of the reduction in analysis run-times in Sections 4 and 5.

Figure 32. Changes in analysis run-time and accuracy of the peak target response in terms of n when applying the
SEB THAAT to the analysis of the first example without using the proposed procedure.

SEB THAAT. Consequently, the proposed procedure,
besides eliminating the ambiguity of assigning correct
values to the enlargement scale n, may enhance the
computational efficiency of using the SEB THAAT.
This implies improvement in simplicity and efficiency
of the SEB THAAT.

In addition, unlike previous applications of the
SEB THAAT, the parameters T and χ do not play
a role in the application of the SEB THAAT using
the new procedure. In other words, whereas in the
previous applications, the T and χ were considered
approximately and ambiguously but directly, by us-
ing the proposed procedure, the roles of T and χ are
implied in the repetitions of time integration computa-
tion indirectly but clearly and with less approximation.
This removes the problems of assigning values to T
and χ, and makes the application of the SEB THAAT
to be more simpler and clearer.

Due to the capabilities of time integration in
the analysis of systems with static instability (zero
stiffness) [1, 2, 23], it is reasonable to expect the

SEB THAAT to perform well in these analyses. This
has not yet been investigated [38], and the second
example in this paper is indeed the first report in this
field. Finally, none of the previous applications of
the SEB THAAT consider multiple target responses
simultaneously; the realistic example presented in this
paper is a pioneer in this area.

6.2. The weak points
Parameter-less simple and clear application of the SEB
THAAT with acceptable reduction in the analysis run-
time, and accuracy of the target response, is the main
advantage of the proposed procedure compared to the
previous applications of the SEB THAAT. However,
there are also disadvantages.

A disadvantage of the proposed procedure is that
the final target response may be digitised in steps
which, if smaller than the step of the excitation f ∆t,
may not be a fraction of f ∆t, and, if larger than
f ∆t, may not be a multiplier of f ∆t. This is triv-
ial in theory, but inconvenient in practice, and can
be a hindrance in post-processing. For example, it
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may prevent a simple increase of the accuracy of the
responses by Richardson extrapolation [25, 26, 118].

A second disadvantage is that using the proposed
procedure does not guarantee a decrease in analysis
run-time. In other words, although, in view of the
examples presented, the analysis run-time decreases
when the SEB THAAT is applied according to the
proposed procedure, and the probability of the run-
times increase decreases when the details of the non-
linear solution are well set, the probability has not
been theoretically prevented. This disadvantage is
likely to be more pronounced if the problem and/or
the analysis is unusually complex.

Finally, inherited from the New Zealand Seismic
Code, NZS 1170.5: 2004 [35, 92], when applying the
SEB THAAT according to the proposed procedure,
the analysis ends with convergence of the peak target
response. This criterion may be inappropriate for im-
portant analyses, especially when the target response
is to be computed accurately in the entire analysis
interval.

6.3. More on the complicatedness of the
bridge example

As implied in [96], for the structural system intro-
duced in Figure 21 and Equations (30) and (31), both
the structural behaviour and the time integration
computation are complicated. The main reasons are:
(1.) The non-linearity of the system originates in two

different sources, i.e. elastic collision and material
non-linearity; see Figure 22 and the following fourth
point.

(2.) Because of Equation (30), the behaviour is compli-
cated, especially when SN = 200 %; see Figures 22c
and 27.

(3.) Also because of the shape of the excitation in
Figure 21b, the mathematical stiffness [112, 113] of
the problem is considerable.

(4.) As the main reason for complexity of the be-
haviour, in view of Figure 21a and Equation (31),
the collisions and material loading/unloading at
different locations of the structural system and at
different time instants are completely dependent.
In other words, independent of the excitation and
the SN, the non-linearity starts with the collision
of the first or seventh mass to the neighbouring
support. Then, when the columns are in the plastic
range, the collision of the mass above the column
with one of the two neighbouring masses (or sup-
port) will usually result in unloading and change in
the behaviour of the column from plastic to elastic.
This means that many collisions and unloading oc-
cur simultaneously, which adds complexity to both
the behaviour and the computation. Finally, the
complexity because of this reason increases by the
second and third reasons mentioned above, i.e. high
SN and mathematical stiffness.

(5.) The last example in [96] differs from the bridge
example presented in Subsection 4.4.3, in the earth-
quake excitation and the values of SN. The two
excitations in the example in [96] are not particu-
larly more complex than the excitation in Subsec-
tion 4.4.3. In addition, while the structural behavior
in the example presented in [96] is very complicated,
the maximum values of SN in the examples in [96]
and this paper are 100 % and 200 %, respectively.
Therefore, the bridge example presented in this pa-
per is more complicated than that presented in [96].

The complexity of the behaviour and the computa-
tion leads to a weaker performance of the proposed
procedure in this special example as compared to
the other examples studied in this paper; see Ta-
ble 13. Nevertheless, this is consistent with the na-
ture of time integration analyses, which may require
very small integration steps to achieve sufficient ac-
curacy in non-linear complicated analyses; see [1, 86–
90, 96, 97, 107, 108, 119, 120]. In other words, the
weaker performance in highly complicated non-linear
problems, though would rather be eliminated, is to be
expected, taking into account the performance of well-
known time integration methods in analysis of complex
structural dynamic behaviour [2, 23, 86–90, 121–126].

6.4. Comparison with other analysis
acceleration methods

The aim of this paper is only to simplify the applica-
tion of the SEB THAAT by eliminating the parame-
ters from the application process. The objective has
been achieved and, in the cases studied (as examples),
efficiency has been improved; see Table 13. In addi-
tion, the SEB THAAT has already been compared
with some other techniques; see [1, 42]. Taking this
into account, the comparison presented in [1] is briefly
extended in Table 14 to a rough comparison between
the following eight techniques:
(1.) The SEB THAAT according to the new proce-

dure, proposed in this paper,
(2.) direct down sampling [28],
(3.) parareal time integration [20–22, 127],
(4.) time integration of integrated problems [41],
(5.) combination of truncation and direct down sam-

pling [30],
(6.) impact based replacement of the earthquake

record [40],
(7.) the SEB THAAT by assigning values to the en-

largement scale n [38, 39],
(8.) adaptive fast non-linear analysis; see [128–130].

The comparison shows the superior performance of
the SEB THAAT using the proposed procedure from
various points of view. It is also worth noting that the
overall reduction in the analysis run-time because of
the eighth technique [128–130] is slightly higher than
that of the first technique; see Table 13 and [128].
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Feature Technique
(1) (2) (3) (4) (5) (6) (7) (8)

Simplicity of application a b e d d d c d
Effect on the in-core memory a a c b a a a b
Number of the past successful tests b a c d c d b c
Theoretical basis a c a d c c b b
Versatility a a a b a b a c
Capability to be simply plugged in analysis software a a d e b c a c
Using all the excitation data a c a a b a a a
Computational effort needed for application b a f g d e b c
Additional computational facilities needed b a e d c c b c
Number of parameters additional to ordinary analysis a b d a c b b b
Applicability beyond structural dynamics a a a b b c a c
∗ The “a”, “b”, “c”, “d”, “e”, “f”, and “g”, respectively, imply that the technique is the first, second, third, fourth, fifth,

sixth, and seventh best technique from the point of view of the feature stated in the first column.

Table 14. A rough comparison between eight techniques for accelerating time history analysis of Equation (1)∗.

However, even from the point of view of computational
efficiency, the first technique is superior due to its
negligible impact on the in-core memory, and the
larger number of the examples presented in this paper
compared to those presented in [128, 129].

6.5. Main challenges and a perspective
of the future

By using the proposed procedure, the SEB THAAT
can be simply and clearly applied to structural dy-
namic analyses. Considering this, Tables 1 and 13,
and the significance of computations’ run-times [131],
it is reasonable to use the proposed procedure for ap-
plication of the SEB THAAT in real analyses. More
efforts are nevertheless essential (some ongoing), in
the following directions:
(1.) With regard to the SEB THAAT and its applica-

tion:
(a) Enhancement of the application to complex
structural dynamic analyses, e.g. highly oscilla-
tory non-linear analyses.

(b) Application to wave propagation problems.
The behaviour of many important oscillatory sys-
tems is a combination of structural dynamics and
wave propagation. As indicated in Table 1 and
Sections 4 and 5, the SEB THAAT has mostly
been tested in application to structural dynamic
problems. In wave propagation problems, the
number of degrees of freedom is generally larger,
the run-times are more, and the need to speed
up the analysis is greater.

(c) Application to the analysis of systems subjected
to various excitations. Many important structural
systems can be subjected to several digitised ex-
citations simultaneously, e.g. off-shore platforms
that are exposed to earthquake, wind, and sea
wave. These problems tend to be large, non-
linear, and complicated and time consuming to
analyse. The application of the SEB THAAT
to such problems can be complicated, especially

when the difference between the digitisation steps
is considerable. It is therefore essential to improve
the SEB THAAT and the proposed procedure to
accelerate such analyses.

(d) Increasing the public attention and interest in
the SEB THAAT, by:
i. Preparing a user-friendly internet webpage to

convert f(t) to fnew(t).
ii. Preparing a user-friendly internet webpage to

apply the proposed procedure.
iii. Testing the application of the SEB THAAT

according to the proposed procedure in the
analysis of large realistic systems with com-
plex behaviour (with a real need to reduce the
analysis run-time).

(2.) Regarding the proposed procedure:
(a) Introducing a theoretical guarantee, if neces-
sary together with modifications of the proposed
procedure, regarding the reduction of the anal-
ysis run-time, without significant change in the
accuracy, when applying the SEB THAAT to
arbitrary time history analysis.

(b) Making changes to the procedure so that either
the time step at which the final target response
is reported is an integer multiple of the excita-
tion digitisation step, or the excitation step is
an integer multiple of the target response output
step.

(c) Modification of the ending criterion of the pro-
posed procedure, for cases where checking the
peak of the target response is not sufficient, e.g.
very important structural systems.

The future of the SEB THAAT’s application using
the proposed procedure is promising in view of pre-
sented discussions, Tables 1, 13, and 14, Equation (12),
and the following two facts:
(1.) Due to improvements in recording instrumenta-

tion [48, 132, 133], the smallest available value of
f ∆t is in continuous decrease.
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(2.) Due to the continuous improvements in structural
optimisation [134–136], the ever-increasing variety
of material properties [137, 138], and the growing
importance of financial aspects, the general trend
of structural system changes is towards lighter and
less stiff structures. This leads to oscillations of the
target response in larger periods.

Many of the above seven challenges will be overcome in
the near future. In addition, the SEB THAAT and the
proposed procedure will be integrated in commercial
structural analysis software, which will allow many
numerical tests to be carried out leading to further
improvements. Various theoretical improvements can
be expected, as well. Finally, given the mathematical
basis of the SEB THAAT [1, 38, 39], the application
of the SEB THAAT using the proposed procedure can
be tested on problems other than Equation (1).

7. Conclusion
The SEB THAAT was proposed in 2008 as a tech-
nique to replace the digitised excitations with exci-
tations digitised in larger steps, so that time history
analyses can be accelerated at the cost of acceptable
changes in accuracy. After many successful tests on
the SEB THAAT, this paper proposes a procedure
that eliminates the need to assign values to the main
parameter of the SEB THAAT. Assigning values to
some parameters of the analysis is eliminated, as well.
The proposed procedure has roots in the New Zealand
Seismic Code, NZS 1170.5:2004 [35, 92], the computa-
tional traditions in structural dynamics [33], and nu-
merical solution of ordinary differential equations [91].
The main achievements are as follows:
(1.) The SEB THAAT can now be applied with no

concern about the parameters n, T , and χ; this is
even simpler than an ordinary (without application
of the SEB THAAT) analysis according to NZS
1170.5:2004 [35, 92].

(2.) Using the proposed procedure, the SEB THAAT
can be applied, regardless of the problem, the exci-
tation, the integration method, and the non-linear
solution details, i.e. no limitation exists for the
application of the SEB THAAT according to the
proposed procedure.

(3.) In view of the presented twenty-five cases, the
performance of the SEB THAAT, when applied
according to the proposed procedure, is satisfactory.
However, it is weaker in the analysis of complicated,
highly oscillatory, and highly non-linear structural
dynamic systems. The weakness is consistent with
the characteristics of time integration analysis of
highly oscillatory highly non-linear systems.

(4.) The previous point is valid for the accuracy of the
target response, as well as the analysis run-time.

(5.) Both the reduction in the analysis run-time and
the accuracy of the target response are potentially
sensitive to the problem, the severity of non-linear

behaviour, the target response, the excitation, and
the integration method. Given the convergence, the
sensitivity to the integration method is less than
the other sensitivities, unless the behaviour is very
complicated.

(6.) Compared to the SEB THAAT’s previous appli-
cations, the performance of the SEB THAAT when
applied according to the proposed procedure seems
less sensitive to the problem.

(7.) The application of the SEB THAAT according
to the proposed procedure seems leading to more
computational efficiency compared to the previous
applications of the SEB THAAT.

(8.) Inherited from the features of time integration,
the SEB THAAT can reduce the analysis run-time
in analysis of statically unstable systems, with neg-
ligible effect on the accuracy of the target response.

(9.) The SEB THAAT can perform well when several
target responses are under consideration simultane-
ously.

(10.) Compared to several other analysis acceleration
methods, the application of the SEB THAAT using
the proposed procedure is superior, in terms of
simplicity of application, negligible effect on the
in-core memory, significant reduction in analysis
run-time, etc.

Based on the above results, the author can recom-
mend using the SEB THAAT according to the pro-
posed procedure for analysis of arbitrary structural
dynamic systems subjected to excitations available
in digitised format. Given the significant reduction
in the analysis run-time reported in Table 13, and
the fact that still only twenty-five cases have been
tested for the proposed procedure, it is recommended
that in real applications additional checks for accu-
racy be performed after the final response is obtained.
Repeating the analysis with other integration meth-
ods, or using the SEB THAAT without the proposed
procedure can be two alternatives. These checks will
negatively affect the reduction in the analysis run-
time, but are essential until sufficient testing of the
proposed procedure.

Some remaining challenges are as follows:
(1.) Improving the proposed procedure for cases with

complicated, highly oscillatory, highly non-linear
behaviour.

(2.) Detailed study of the ending criterion of the pro-
posed procedure for applications where controlling
the peak response is not sufficient for the response
accuracy.

(3.) Testing and improving the SEB THAAT and
the proposed procedure for an analysis of wave
propagation problems.

(4.) Testing and improving the SEB THAAT and the
proposed procedure for an analysis of structural
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systems subjected to several excitations, digitised
in steps, sized differently.
Finally, using the proposed procedure, the

SEB THAAT is applicable to analysis of problems
with governing equations different from Equation (1).
The performance, i.e., the reduction in analysis run-
time and the accuracy of the target response, should,
however, be investigated. This can accelerate analysis
of systems in different fields, and besides may increase
the interest in the SEB THAAT.

List of symbols
a An auxiliary variable in determination of the new

excitation by the SEB THAAT
bk An auxiliary variable in determination of the new

excitation by the SEB THAAT
ci Viscous damping of the ith damper in Figures 6a

and 11a
C-H Chung-Hulbert (time integration method)
Cijk An indicator for the cases examined in Subsec-

tion 4.4.3, introduced in Table 10
di Distances between the decks and the supports, intro-

duced in Figure 21a
E Computational error
EK Kinetic energy
EP Potential energy
Erj Error of the peak target response obtained from

the jth time integration computation of the proposed
procedure

fi Shear force of the ith column from left in Figure 21a
fint Vector of internal forces of an MDOF structural

system
f Vector of external forces of an MDOF structural

system
fnew New excitation obtained from the SEB THAAT
fint0 Vector of internal forces of an MDOF structural

system at t = 0
finti Vector of internal forces of an MDOF structural

system at t = ti

f̄ An auxiliary variable for determining the new excita-
tion by the SEB THAAT

g Acceleration of gravity
g(t) A record digitised in step f ∆tj , obtained from the

main excitation record, f , using linear interpolation, in
the proposed procedure

HHT Hilber-Hughes-Taylor (time integration method)
IDA Incremental Dynamic Analysis
ki Stiffness of the ith spring in Figures 6a and 11a
Lp Interval of the integration steps, at which the results

of the analysis converge properly
mi ith mass in Figures 6a and 11a
M Mass matrix
MDOF Multi-Degree-of-Freedom
n Step enlargement scale and the only parameter of

the SEB THAAT, eliminated when using the proposed
procedure

n′ An auxiliary variable for determining the new excita-
tion by the SEB THAAT

n1 Value assigned to n in the proposed procedure, in the
first time integration computation

nj Value assigned to n in the proposed procedure, in the
jth time integration computation

nmax Largest value of n satisfying the accuracy-based
comments on time integration step

Pj The peak target response in the jth time integration
computation of the proposed procedure

Pexact The exact peak target response
Q Constraints in the governing equation that distinguish

non-linear behaviour from linear behaviour
q Rate of convergence, generally equal to the order of

accuracy of the time integration method
q′ Rate of convergence of the approximation in the

excitation
Rx x direction component of the shear force in the typi-

cal column of the lowest floor of the realistic example,
without considering the damping forces

Ry y direction component of the shear force in the typi-
cal column of the lowest floor of the realistic example,
without considering the damping forces

R The target response obtained from the ordinary time
history analysis

Rnew The target response obtained using the SEB
THAAT

s A scaling factor for the excitation in Subsection 4.4.3
S Target response in the second example, equal to the

sum of the kinetic and potential energies
SEB THAAT The name of the technique, its ap-

plication is simplified in this paper (abbreviated
from Step-Enlargement-Based Time-History-Analysis-
Acceleration-Technique)

SI The International System of Units (abbreviated from
the French Le Système International d’Unités)

SN A measure for severity of the non-linear structural
dynamic behaviour, and abbreviation of Severity of
non-linear structural dynamic behaviour

t Time
tend Duration of the dynamic behaviour and the time

history analysis
t′
end Duration of the new excitation obtained from the

SEB THAAT
ti ith time station of the time integration computation
T Smallest oscillatory period with a worthwhile contri-

bution to the target response
(f ∆t)new Digitisation step of the SEB THAAT’s result
∆t Step of time integration computation
∆tj Integration step in the jth time integration compu-

tation in application of the SEB THAAT according to
the proposed procedure

χ A downscaling factor in Equation (2), introduced in
Equation (3)

∆tcr Upper bound of the integration step due to the
linear theory of numerical stability

∆tCFL Upper bound of the integration step in wave prop-
agation problems associated with spatial discretisation

f ∆t Digitisation step of the excitation
f ∆tj The digitisation step of the excitation in the jth

time integration computation in the analysis according
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to the proposed procedure
u Displacement vector of an MDOF structural system
u̇ Velocity vector of an MDOF structural system
ü Accelerations vector of an MDOF structural system
u0 Displacement vector of an MDOF structural system

at t = 0
u̇0 Velocity vector of an MDOF structural dynamic

system at t = 0
ü0 Acceleration vector of an MDOF structural dynamic

system at t = 0
ui Displacement vector of an MDOF structural dynamic

system at t = ti

u̇i Velocity vector of an MDOF structural dynamic
system at t = ti

üi Acceleration vector of an MDOF structural dynamic
system at t = ti

uA Displacement of central pier’s mid-point in Subsec-
tion 4.4.3

üg Ground acceleration
(üg)x x direction component of ground acceleration
(üg)y y direction component of ground acceleration
uyi Yield displacement of the ith spring in Figure 6a
u1 Displacement of the first mass in the second and

fourth examples
u2 Displacement of the second mass in the second and

fourth examples
u3 Displacement of the third mass in the second and

fourth example
u4 Displacement of the fourth mass in the fourth example
u5 Displacement of the fifth mass in the fourth example
u6 Displacement of the sixth mass in the fourth example
u7 Displacement of the seventh mass in the fourth exam-

ple
u̇1 Velocity of the first mass in the second example
u̇2 Velocity of the second mass in the second example
u̇3 Velocity of the third mass in the second example
VBS Total horizontal force transferred to the foundation

in the realistic example disregarding the damping forces
Z+ The set of positive integers
α One of the three parameters of the HHT time integra-

tion method
β One of the three parameters of the HHT time integra-

tion method
δ̄j The non-linear tolerance in the jth time integration

computation
ε Uniaxial strain
σ Uniaxial stress
σy Uniaxial yield stress
γ One of the three parameters of the HHT time integra-

tion method
Γ A vector which, if the f in Equation (1) originates in

üg, is essential in computation of f
ρ∞ Spectral radius of a time integration method at very

large values of ∆t
T

tan θ1 Young’s modulus
tan θ2 Slope of the second line in the uniaxial stress-

strain plot, for materials with bilinear behaviour and
kinematic hardening

Acknowledgements
The author is sincerely grateful to the reviewers of the
paper for their detailed comments, which improved the
quality of the paper from various points of view. The
second thanks of the author goes to the editors of the
journal, whose patience also allowed a sufficient period of
time between the initial submission of this paper and its
final acceptance, such that even some of the weaknesses
not directly addressed by the reviewers could be found
and corrected. The author also feels the need to express
his sincere gratitude to Mr. Saeed Amiri, for modelling
and carrying out the structural analyses of the realistic
example on OPEN SEES. Finally, the author acknowl-
edges the financial support of the International Institute
of Earthquake Engineering and Seismology (IIEES) in
relation to Projects 7420, 7510, 7528, and 7537.

References
[1] A. Soroushian. Integration step size and its adequate

selection in analysis of structural systems against
earthquakes. In M. Papadrakakis, V. Plevris, N. D.
Lagaros (eds.), Computational Methods in Earthquake
Engineering: Volume 3, pp. 285–328. Springer
International Publishing, Cham, 2017. ISBN
978-3-319-47798-5.
https://doi.org/10.1007/978-3-319-47798-5_10

[2] T. Belytschko, T. J. R. Hughes. Computational
Methods for Transient Analysis. Elsevier, Amsterdam,
Netherlands, 1983.

[3] J. Henrych. Finite Models and Methods of Dynamics in
Structures. Elsevier, Amsterdam, The Netherlands, 1990.

[4] K.-J. Bathe. Finite Element Procedures. Klaus-Jurgen
Bathe, USA, 2014.

[5] J. Argyris, J. P. Mlejnek. Dynamics of Structures.
Elsevier, Amsterdam, The Netherlands, 1991.

[6] T. Belytschko, W. K. Liu, B. Moran. Non-linear
Finite Elements for Continua and Structures. John
Wiley & Sons, New York, USA, 2000.

[7] P. Wriggers. Computational Contact Mechanics. John
Wiley & Sons, UK, 2002.

[8] D. Vamvatsikos, C. A. Cornell. Incremental dynamic
analysis. Earthquake Engineering & Structural
Dynamics 31(3):491–514, 2002.
https://doi.org/10.1002/eqe.141

[9] A. Miano, F. Jalayer, H. Ebrahimian, A. Prota.
Nonlinear dynamic analysis procedure with limited
number of analyses and scaling. In Proceedings of the
7th ECCOMAS Thematic Conference on Computational
Methods in Structural Dynamics and Earthquake
Engineering (COMPDYN 2019), pp. 970–985. 2019.
https://doi.org/10.7712/120119.6972.19723

[10] S. Diamantopoulos, M. Fragiadakis. Modeling,
fragility and risk assessment of ancient freestanding
columns and colonnades. Engineering Structures
275:115273, 2023.
https://doi.org/10.1016/j.engstruct.2022.115273

[11] N. Teunisse, L. Demasi, P. Tiso, R. Cavallaro.
Reduced basis methods for structurally nonlinear Joined
Wings. Aerospace Science and Technology 68:486–495,
2017. https://doi.org/10.1016/j.ast.2017.05.041

174

https://doi.org/10.1007/978-3-319-47798-5_10
https://doi.org/10.1002/eqe.141
https://doi.org/10.7712/120119.6972.19723
https://doi.org/10.1016/j.engstruct.2022.115273
https://doi.org/10.1016/j.ast.2017.05.041


vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

[12] Y. Lee, B. Seo, E. T. Lee. Application of model
reduction techniques to jacket structures. International
Journal of Steel Structures 15(1):1–6, 2015.
https://doi.org/10.1007/s13296-014-1101-6

[13] D.-H. Ko, S.-H. Boo. Efficient structural dynamic
analysis using condensed finite element matrices and its
application to a stiffened plate. Journal of Marine
Science and Engineering 10(12):1958, 2022.
https://doi.org/10.3390/jmse10121958

[14] J. Kiani, C. Camp, S. Pezeshk, N. Khoshnevis.
Application of pool-based active learning in reducing
the number of required response history analyses.
Computers & Structures 241:106355, 2020.
https://doi.org/10.1016/j.compstruc.2020.106355

[15] M. Mousavi, M. Ghafory-Ashtiany, A. Azarbakht.
A new indicator of elastic spectral shape for the reliable
selection of ground motion records. Earthquake
Engineering & Structural Dynamics 40(12):1403–1416,
2011. https://doi.org/10.1002/eqe.1096

[16] V. Manfredi, A. Masi, A. G. Özcebe, et al. Selection
and spectral matching of recorded ground motions for
seismic fragility analyses. Bulletin of Earthquake
Engineering 20(10):4961–4987, 2022.
https://doi.org/10.1007/s10518-022-01393-0

[17] D. N. Herting. A general purpose, multi-stage,
component modal synthesis method. Finite Elements in
Analysis and Design 1(2):153–164, 1985.
https://doi.org/10.1016/0168-874X(85)90025-3

[18] D. Rixen. A Lanczos procedure for efficient mode
superposition in dynamic analysis. In
43rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference.
https://doi.org/10.2514/6.2002-1393

[19] V. Sonneville, M. Scapolan, M. Shan, O. A. Bauchau.
Modal reduction procedures for flexible multibody
dynamics. Multibody System Dynamics 51(4):377–418,
2021. https://doi.org/10.1007/s11044-020-09770-w

[20] J. Cortial. Time-parallel Methods for Accelerating the
Solution of Structural Dynamics Problems. Ph.D. thesis,
Stanford University, USA, 2011.

[21] J. F. Hajjar, J. F. Abel. Parallel processing for
transient nonlinear structural dynamics of
three-dimensional framed structures using domain
decomposition. Computers & Structures
30(6):1237–1254, 1988.
https://doi.org/10.1016/0045-7949(88)90189-7

[22] B. G. Simpson, M. Zhu, A. Seki, M. Scott.
Challenges in GPU-accelerated nonlinear dynamic
analysis for structural systems. Journal of Structural
Engineering 149(3):04022253, 2023.
https://doi.org/10.1061/JSENDH.STENG-11311

[23] W. L. Wood. Practical Time Stepping Schemes.
Oxford, New York, USA, 1990.

[24] W. Kim, J. N. Reddy. A new family of higher-order
time integration algorithms for the analysis of structural
dynamics. Journal of Applied Mechanics 84(7):071008,
2017. https://doi.org/10.1115/1.4036821

[25] Z. Zlatev, I. Dimov, I. Faragó, A. Havasi. Richardson
Extrapolation: Practical Aspects and Applications
(Vol. 2). Walter de Gruyter GmbH, Berlin, Germany,
2018.

[26] M. N. Bismarck-Nasr, A. D. Marmo Oliveira. On
enhancement of accuracy in direct integration dynamic
response problems. Earthquake Engineering
& Structural Dynamics 20(7):699–703, 1991.
https://doi.org/10.1002/eqe.4290200708

[27] M. Rezaiee-Pajand, S. A. Esfehani, H. Ehsanmanesh.
An explicit and highly accurate Runge-Kutta family.
Civil Engineering Infrastructures Journal 56(1):51–78,
2023.
https://doi.org/10.22059/ceij.2022.330788.1792

[28] A. V. Oppenheim, R. W. Schafer. Discrete-time
Signal Processing. 3rd Ed. Prentice-Hall, Upper Saddle
River, NJ, USA, 2009.

[29] S. Srivastav, J. M. Nau. Structural response to
truncated earthquake accelerograms. Journal of
Structural Engineering 114(5):1189–1192, 1988.
https://doi.org/10.1061/(ASCE)0733-
9445(1988)114:5(1189)

[30] J. C. Reyes, W. A. Avila, A. Sierra. Fast nonlinear
response history analysis: An application to irregular
building structures. In D. Köber, M. De Stefano,
Z. Zembaty (eds.), Seismic Behaviour and Design of
Irregular and Complex Civil Structures III, pp. 47–55.
Springer International Publishing, Cham, 2020. ISBN
978-3-030-33532-8.
https://doi.org/10.1007/978-3-030-33532-8_5

[31] Y. H. Shuang Li, Y. Wei. Truncation method of
ground motion records based on the equivalence of
structural maximum displacement responses. Journal of
Earthquake Engineering 26(10):5268–5289, 2022.
https://doi.org/10.1080/13632469.2020.1868364

[32] Y. He, S. Li, Y. Wei, L. Xie. A novel strong ground
motion duration to reduce computation time of
structural time history analysis. Soil Dynamics and
Earthquake Engineering 164:107641, 2023.
https://doi.org/10.1016/j.soildyn.2022.107641

[33] R. W. Clough, J. Penzien. Dynamics of Structures.
McGraw-Hill, Singapore, 1993.

[34] J. F. McNamara. Solution schemes for problems of
nonlinear structural dynamics. Journal of Pressure
Vessel Technology 96(2):96–102, 1974.
https://doi.org/10.1115/1.3454158

[35] NZS 1170.5 Supp 1. Structural design actions – Part
5: Earthquake actions. Standards New-Zealand, New
Zealand, 2004.

[36] C. C. Chen, A. R. Robinson. Improved time-history
analysis for structural dynamics. I: Treatment of rapid
variation of excitation and material nonlinearity.
Journal of Engineering Mechanics 119(12):2496–2513,
1993. https://doi.org/10.1061/(ASCE)0733-
9399(1993)119:12(2496)

[37] C. A. de Moura, C. S. Kubrusly. The
Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser
Basel, Boston, USA, 2013.
https://doi.org/10.1007/978-0-8176-8394-8

[38] A. Soroushian. A technique for time integration with
steps larger than the excitation steps: review of the
past addressing the existing challenges and
a perspective of the future. In Proceedings of
8th ECCOMAS Thematic Conference on Computational

175

https://doi.org/10.1007/s13296-014-1101-6
https://doi.org/10.3390/jmse10121958
https://doi.org/10.1016/j.compstruc.2020.106355
https://doi.org/10.1002/eqe.1096
https://doi.org/10.1007/s10518-022-01393-0
https://doi.org/10.1016/0168-874X(85)90025-3
https://doi.org/10.2514/6.2002-1393
https://doi.org/10.1007/s11044-020-09770-w
https://doi.org/10.1016/0045-7949(88)90189-7
https://doi.org/10.1061/JSENDH.STENG-11311
https://doi.org/10.1115/1.4036821
https://doi.org/10.1002/eqe.4290200708
https://doi.org/10.22059/ceij.2022.330788.1792
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1189)
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1189)
https://doi.org/10.1007/978-3-030-33532-8_5
https://doi.org/10.1080/13632469.2020.1868364
https://doi.org/10.1016/j.soildyn.2022.107641
https://doi.org/10.1115/1.3454158
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2496)
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2496)
https://doi.org/10.1007/978-0-8176-8394-8


Aram Soroushian Acta Polytechnica

Methods in Structural Dynamics and Earthquake
Engineering (COMPDYN 2021), pp. 1476–1491. 2021.
https://doi.org/10.7712/120121.8574.19609

[39] A. Soroushian. A technique for time integration
analysis with steps larger than the excitation steps.
Communications in Numerical Methods in Engineering
24(12):2087–2111, 2008.
https://doi.org/10.1002/cnm.1097

[40] M. Hosseini, I. Mirzaei. Simplification of earthquake
accelerograms for rapid time history analysis based on
the impulsive load concept. In Proceedings of the
4th ECCOMAS Thematic Conference on Computational
Methods in Structural Dynamics and Earthquake
Engineering (COMPDYN 2013), pp. 2304–2312. 2013.
https://doi.org/10.7712/120113.4667.C1670

[41] S.-Y. Chang. Integrated equations of motion for
direct integration methods. Structural Engineering and
Mechanics 13(5):569–589, 2002.
https://doi.org/10.12989/sem.2002.13.5.569

[42] N. Majidi, H. T. Riahi, S. M. Zandi, I. Hajirasouliha.
Development of practical downsampling methods for
nonlinear time history analysis of complex structures.
Soil Dynamics and Earthquake Engineering 175:108247,
2023.
https://doi.org/10.1016/j.soildyn.2023.108247

[43] A. Soroushian. Performance of a time integration
acceleration technique applied to seismic analysis of
non-classically damped structural dynamics. Iranian
Journal of Science and Technology, Transactions of
Civil Engineering 46(2):1281–1300, 2022.
https://doi.org/10.1007/s40996-021-00666-z

[44] A. Soroushian, A. S. Moghadam, A. Sabzei, et al.
An engineering comment for simply accelerating seismic
response history analysis of mid-rise steel-structure
buildings. Journal of Architectural and Engineering
Research 4:3–23, 2023.
https://doi.org/10.54338/27382656-2023.4-001

[45] A. Soroushian. Direct time integration with steps
larger than the steps by which the excitations are
digitized [Title translated from Persian]. Technical
report no. 7510, International Institute of Earthquake
Engineering and Seismology (IIEES), Iran, 2011.

[46] A. Soroushian. On the performance of a recent
technique for more efficient time integration in severe
seismic conditions. In Proceedings of 1st International
Conference on Advances in Structural Engineering and
Mechanics (ASEM’11), pp. 2090–2108. 2011.

[47] M. A. Daziano. Seismic vulnerability assessment of
earth dams [Title translated from Spanish]. Ph.D. thesis,
National University of Tucuman, Argentina, 2017.

[48] A. Taghinia, A. Vasseghi, M. Khanmohammadi,
A. Soroushian. Development of seismic fragility
functions for typical Iranian multi-span RC bridges with
deficient cap beam – column joints. International
Journal of Civil Engineering 20(3):305–321, 2022.
https://doi.org/10.1007/s40999-021-00661-5

[49] P. Henrici. Discrete Variable Methods in Ordinary
Differential Equations. Prentice-Hall, Upper Saddle
River, NJ, USA, 1962.

[50] J. C. Strikwerda. Finite Difference Schemes and
Partial Differential Equations. Wadsworth
& Books/Cole, Pacific Grove, CA, USA, 1989.

[51] A. Soroushian. Proper convergence a concept new in
science and important in engineering. In Proceedings of
the 4th International Conference from Scientific
Computing to Computational Engineering
(4th IC-SCCE), pp. 607–613. 2010.

[52] A. Ralston, P. Rabinowitz. First Course in
Numerical Analysis. McGraw-Hill, USA, 1978.

[53] X. Zhou, K. K. Tamma. A new unified theory
underlying time dependent linear first-order systems:
a prelude to algorithms by design. International Journal
for Numerical Methods in Engineering 60(10):1699–
1740, 2004. https://doi.org/10.1002/nme.1019

[54] S. N. Penry, W. L. Wood. Comparison of some
single-step methods for the numerical solution of the
structural dynamic equation. International Journal for
Numerical Methods in Engineering 21(11):1941–1955,
1985. https://doi.org/10.1002/nme.1620211102

[55] M. D. Greenberg. Foundations of Applied
Mathematics. Dover Publications, Inc., Mineola, New
York, USA, 2013.

[56] A. Soroushian, Y. Zarabimanesh, K. Soleymani, S. M.
Khalkhali. A new technique for fractional enlargement
of integration steps in transient analysis against
digitized excitations. In Proceedings of the International
Conference on Structural Engineering Dynamics
(ICE-Dyn 2017), p. 119. 2017.

[57] Y. Zarabimanesh. On the possibility to reduce the
computational cost of time history analysis of the Milad
telecommunication tower [Title translated from Persian].
Master’s thesis, International Institute of Earthquake
Engineering and Seismology (IIEES), 2017.

[58] A. Soroushian, A. Vasseghi, M. Hosseini. On
practical performance of a technique for more efficient
dynamic analysis in view of real seismic analysis of
bridge structures. In M. Papadrakakis, M. Fragiadakis,
V. Plevris (eds.), Computational Methods in Earthquake
Engineering: Volume 2, pp. 613–634. 2013.
https://doi.org/10.1007/978-94-007-6573-3_28

[59] S. E. Hosseini. Numerical investigation on pattern of
stress/pore water pressure variation inside imper-vious
core of embankment dams during earthquakes [Title
translated from Persian]. Master’s thesis, International
Institute of Earthquake Engineering and Seismology
(IIEES), 2017.

[60] A. Lashgari, A. Soroushian, H. Zafarani. Assessment
of a technique for faster time integration in application
to seismic wave propagation analysis. Wave Motion p.
103320, 2024. [In print].
https://doi.org/10.1016/j.wavemoti.2024.103320

[61] A. A. Hadad. Reducing computational costs in time
integration analyses of buildings with irregularities in
height because of mass [Title translated from Persian].
Master’s thesis, International Institute of Earthquake
Engineering and Seismology (IIEES), 2015.

176

https://doi.org/10.7712/120121.8574.19609
https://doi.org/10.1002/cnm.1097
https://doi.org/10.7712/120113.4667.C1670
https://doi.org/10.12989/sem.2002.13.5.569
https://doi.org/10.1016/j.soildyn.2023.108247
https://doi.org/10.1007/s40996-021-00666-z
https://doi.org/10.54338/27382656-2023.4-001
https://doi.org/10.1007/s40999-021-00661-5
https://doi.org/10.1002/nme.1019
https://doi.org/10.1002/nme.1620211102
https://doi.org/10.1007/978-94-007-6573-3_28
https://doi.org/10.1016/j.wavemoti.2024.103320


vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

[62] A. Soroushian, A. J. Mehrnoosh, Y. Zarabimanesh,
et al. On the performance of a computational cost
reduction technique when applied to cooling towers
transient analysis. In Proceedings of the 7th European
Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS VII), pp. 1421–1431. 2016.
https://doi.org/10.7712/100016.1896.11470

[63] F. Nateghi, M. Yakhchalian. On less computational
costs for analysis of silos seismic behavior by time
integration. In Proceedings of 3rd ECCOMAS Thematic
Conference on Computational Methods in Structural
Dynamics and Earthquake Engineering (COMPDYN
2011), p. 364. 2011.

[64] A. Soroushian, P. Farshadmanesh, S. Azad. On the
essentiality of techniques to enlarge integration steps in
transient analysis against digitized excitations. Journal
of Seismology and Earthquake Engineering 17(1):43–60,
2015.

[65] M. Bastami. A technique for more efficient time
integration applied to seismic analysis of power
sub-station equipment. In Proceedings of 11th World
Congress on Computational Mechanics (WCCM2014),
pp. 1319–1329. 2014.

[66] A. Sabzei. On the performance of a recent technique
for seismic analyses computational cost reduction when
applied to buildings structural systems [Title translated
from Persian]. Master’s thesis, International Institute of
Earthquake Engineering and Seismology (IIEES), 2013.

[67] A. Soroushian. On practical performance of
a technique recently proposed for time integration
analysis with less computational cost. In Proceedings of
The 17th International Conference on Sound and
Vibration (ICSV 17), p. 325. 2010.

[68] A. Baiani, A. Soroushian, S. Amiri. On the
performance of a time integration computational cost
reduction technique in implementation in the analysis of
buildings with irregularity in plan. In Proceedings of
11th International Congress on Civil Engineering
(11th ICCE), pp. 1–8. 2018.

[69] A. Soroushian, E. M. Farahani. Efficient static
analysis of assemblies of beam-columns subjected to
continuous loadings available as digitized records.
Frontiers in Built Environment 4:215–229, 2019.
https://doi.org/10.3389/fbuil.2018.00083

[70] A. Soroushian, S. Amiri. Reduction in space for
dynamic finite element analysis of assemblies of
beam-columns when the mass is available in digitized
format. Journal of Applied and Computational
Mechanics 8(1):71–83, 2022.
https://doi.org/10.22055/jacm.2019.31603.1898

[71] A. Soroushian, S. Amiri. Simultaneous reduction in
time and space for dynamic finite element models of
beam–column assemblies. Iranian Journal of Science
and Technology, Transactions of Civil Engineering
45(2):1265–1279, 2021.
https://doi.org/10.1007/s40996-020-00377-x

[72] O. Bahar, S. Ramezani. Faster time integration
analysis for building structures subjected to
3-component earthquakes. In Proceedings of
3rd ECCOMAS Thematic Conference on Computational
Methods in Structural Dynamics and Earthquake
Engineering (COMPDYN 2011), p. 695. 2011.

[73] A. Soroushian. On the accuracy of accelerations in
general implementation of a recently proposed seismic
analysis computational cost reduction technique. In
Proceedings of 5th International Conference from
“Scientific Computing to Computational Engineering”
(5th IC-SCCE), pp. 376–383. 2012.

[74] S. Azad. A study on accelerating time history
analysis of bridges [Title translated from Persian].
Master’s thesis, International Institute of Earthquake
Engineering and Seismology (IIEES), 2015.

[75] O. C. Zienkiewicz, R. L. Taylor. The Finite Element
Method for Solid and Structural Mechanics. Sixth ed.
Elsevier, Oxford, UK, 2005.

[76] R. J. Leveque. Finite Volume Methods for Hyperbolic
Problems. Vol. 31. Cambridge University Press,
Cambridge, UK, 2002.

[77] A. Soroushian, A. Garakaninezhad, A. Yahyapour,
A. A. Hadad. Performance of a computational cost
reduction technique in lengthy time interval analyses. In
Proceedings of 11th World Congress on Computational
Mechanics (WCCM2014), pp. 2054–2063. 2014.

[78] S. Azad, A. A. Hadad, S. Amiri, A. Soroushian. Case
studies on the performance of a transient analysis
computational cost reduction technique when applied to
analyses with integration methods of order one two and
four. In Proceedings of 6th International Conference
from “Scientific Computing to Computational
Engineering” (6th IC-SCCE), pp. 85–94. 2014.

[79] A. Garakaninezhad, A. Yahyapour, A. Asgarihadad,
A. Soroushian. A comparison between linear and
nonlinear time history analysis after implementing
a recent computational cost reduction technique. In
Proceedings of 11th World Congress on Computational
Mechanics (WCCM2014), pp. 1–2. 2014.

[80] A. Zakizadeh. Investigation on the role of the
parameter representing the influence of the eliminated
excitation stations in the performance of a transient
analysis computational cost reduction technique [Title
translated from Persian]. Master’s thesis, International
Institute of Earthquake Engineering and Seismology
(IIEES), Iran, 2017.

[81] P. Fajfar. Analysis in seismic provisions for buildings:
past, present and future. Bulletin of Earthquake
Engineering 16(7):2567–2608, 2018.
https://doi.org/10.1007/s10518-017-0290-8

[82] M. Fragiadakis, M. Papadrakakis. Modeling, analysis
and reliability of seismically excited structures:
Computational issues. International Journal of
Computational Methods 05(04):483–511, 2008.
https://doi.org/10.1142/S0219876208001674

[83] H. Kazemi, M. Ghafory-Ashtiany, A. Azarbakht.
Development of fragility curves by incorporating new
spectral shape indicators and a weighted damage index:
case study of steel braced frames in the city of
Mashhad, Iran. Earthquake Engineering and
Engineering Vibration 16(2):383–395, 2017.
https://doi.org/10.1007/s11803-017-0388-7

[84] N. D. Lagaros, V. Plevris, N. A. Kallioras. The
mosaic of metaheuristic algorithms in structural
optimization. Archives of Computational Methods in
Engineering 29(7):5457–5492, 2022.
https://doi.org/10.1007/s11831-022-09773-0

177

https://doi.org/10.7712/100016.1896.11470
https://doi.org/10.3389/fbuil.2018.00083
https://doi.org/10.22055/jacm.2019.31603.1898
https://doi.org/10.1007/s40996-020-00377-x
https://doi.org/10.1007/s10518-017-0290-8
https://doi.org/10.1142/S0219876208001674
https://doi.org/10.1007/s11803-017-0388-7
https://doi.org/10.1007/s11831-022-09773-0


Aram Soroushian Acta Polytechnica

[85] K. Deng, P. Pan, A. Lam, Y. Xue. A simplified
model for analysis of high-rise buildings equipped with
hysteresis damped outriggers. The Structural Design of
Tall and Special Buildings 23(15):1158–1170, 2014.
https://doi.org/10.1002/tal.1113

[86] Y. M. Xie, G. P. Steven. Instability, chaos, and
growth and decay of energy of time-stepping schemes
for non-linear dynamic equations. Communications in
Numerical Methods in Engineering 10(5):393–401, 1994.
https://doi.org/10.1002/cnm.1640100505

[87] T. Belytschko, D. F. Schoeberle. On the unconditional
stability of an implicit algorithm for nonlinear structural
dynamics. Journal of Applied Mechanics 42(4):865–869,
1975. https://doi.org/10.1115/1.3423721

[88] A. Cardona, M. Geradin. Time integration of the
equations of motion in mechanism analysis. Computers
& Structures 33(3):801–820, 1989.
https://doi.org/10.1016/0045-7949(89)90255-1

[89] S. Rashidi, M. A. Saadeghvaziri. Seismic modeling of
multi-span simply-supported bridges using ADINA.
Computers & Structures 64(5-6):1025–1039, 1997.
Proceedings of the 11th ADINA Conference.
https://doi.org/10.1016/S0045-7949(97)00016-3

[90] K. H. Low. Convergence of the numerical methods
for problems of structural dynamics. Journal of Sound
and Vibration 150(2):342–349, 1991.
https://doi.org/10.1016/0022-460X(91)90628-W

[91] E. Hairer, G. Wanner, S. P. Nørsett. Solving
Ordinary Differential Equations I: Non-Stiff Problems.
Springer, Berlin, Germany, 1993.
https://doi.org/10.1007/978-3-540-78862-1

[92] NZS 1170. (2004) Structural design actions, Part 5:
Earthquake actions – New Zealand, 2004. New Zealand.

[93] A. F. D’Souza, V. K. Garg. Advanced Dynamics
Modeling and Analysis. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1984.

[94] T. J. R. Hughes. The Finite Element Method: Linear
Static and Dynamic Finite Element Analysis.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1987.

[95] A. Soroushian. Test of an idea for setting the
nonlinearity tolerance in nonlinear response history
analyses according to procedures originated in the seismic
code of New Zealand NZS 1170.5:2004. In Proceedings
of 9th ECCOMAS thematic conference on computational
methods in structural dynamics and earthquake
engineering (COMPDYN 2023), pp. 4375–4390. 2023.

[96] A. Soroushian, P. Wriggers. Elimination of the stops
because of failure of nonlinear solutions in nonlinear
seismic time history analysis. Journal of Vibration
Engineering & Technologies 11(6):2831–2849, 2023.
https://doi.org/10.1007/s42417-023-00968-8

[97] A. Soroushian, P. Wriggers, J. Farjoodi. On practical
integration of semi-discretized nonlinear equations of
motion. Part 1: reasons for probable instability and
improper convergence. Journal of Sound and Vibration
284(3):705–731, 2005.
https://doi.org/10.1016/j.jsv.2004.07.008

[98] J. M. Nau. Computation of inelastic response spectra.
Journal of Engineering Mechanics 109(1):279–288, 1983.
https://doi.org/10.1061/(ASCE)0733-
9399(1983)109:1(279)

[99] S. A. Mahin, J. Lin. Construction of inelastic
response spectra for single degree-of-freedom systems.
Technical report no. UCB/EERC-83/17, Earthquake
Engineering Research Center (EERC), University of
California, CA, USA, 1983.

[100] J. Chung, G. M. Hulbert. A time integration
algorithm for structural dynamics with improved
numerical dissipation: The generalized-α method.
Journal of Applied Mechanics 60(2):371–375, 1993.
https://doi.org/10.1115/1.2900803

[101] H. M. Hilber, T. J. R. Hughes, R. L. Taylor.
Improved numerical dissipation for time integration
algorithms in structural dynamics. Earthquake
Engineering & Structural Dynamics 5(3):283–292, 1977.
https://doi.org/10.1002/eqe.4290050306

[102] N. I. Basöz, A. S. Kiremidjian, S. A. King, K. H.
Law. Statistical analysis of bridge damage data from
the 1994 Northridge, CA, Earthquake. Earthquake
Spectra 15(1):25–54, 1999.
https://doi.org/10.1193/1.1586027

[103] V. Jeng, W. L. Tzeng. Assessment of seismic
pounding hazard for Taipei City. Engineering
Structures 22(5):459–471, 2000.
https://doi.org/10.1016/S0141-0296(98)00123-0

[104] V. I. Babitsky, V. L. Krupenin. Vibration of Strongly
Nonlinear Discontinuous Systems. Springer, Germany,
2001. https://doi.org/10.1007/978-3-540-44488-6

[105] M. Miari, R. Jankowski. Analysis of pounding
between adjacent buildings founded on different soil
types. Soil Dynamics and Earthquake Engineering
154:107156, 2022.
https://doi.org/10.1016/j.soildyn.2022.107156

[106] N. M. Newmark. A method of computation for
structural dynamics. Journal of the Engineering
Mechanics Division 85(3):67–94, 1959.
https://doi.org/10.1061/JMCEA3.0000098

[107] A. Soroushian, P. Wriggers, J. Farjoodi. Practical
integration of semidiscretized nonlinear equations of
motion: Proper convergence for systems with piecewise
linear behavior. Journal of Engineering Mechanics
139(2):114–145, 2013. https:
//doi.org/10.1061/(ASCE)EM.1943-7889.0000434

[108] A. Soroushian. New Methods to maintain responses’
convergence and control responses’ errors in the analysis
of nonlinear dynamic models of structural systems [Title
translated from Persian]. Ph.D. thesis, University of
Tehran, Tehran, Iran, 2003.

[109] R. W. Clough. Numerical integration of equations
of motion. Lectures on finite element methods in
continuum mechanics, University of Alabama,
Tuscaloosa, AL, 525–533, 1973.

[110] D. Cohen, T. Jahnke, K. Lorenz, C. Lubich.
Numerical integrators for highly oscillatory Hamiltonian
systems: A review. In A. Mielke (ed.), Analysis,
Modeling and Simulation of Multiscale Problems, pp.
553–576. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. https://doi.org/10.1007/3-540-35657-6_20

[111] X. Wu, B. Wang, L. Mei. Oscillation-preserving
algorithms for efficiently solving highly oscillatory second-
order ODEs. Numerical Algorithms 86(2):693–727,
2021. https://doi.org/10.1007/s11075-020-00908-7

178

https://doi.org/10.1002/tal.1113
https://doi.org/10.1002/cnm.1640100505
https://doi.org/10.1115/1.3423721
https://doi.org/10.1016/0045-7949(89)90255-1
https://doi.org/10.1016/S0045-7949(97)00016-3
https://doi.org/10.1016/0022-460X(91)90628-W
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/s42417-023-00968-8
https://doi.org/10.1016/j.jsv.2004.07.008
https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(279)
https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(279)
https://doi.org/10.1115/1.2900803
https://doi.org/10.1002/eqe.4290050306
https://doi.org/10.1193/1.1586027
https://doi.org/10.1016/S0141-0296(98)00123-0
https://doi.org/10.1007/978-3-540-44488-6
https://doi.org/10.1016/j.soildyn.2022.107156
https://doi.org/10.1061/JMCEA3.0000098
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000434
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000434
https://doi.org/10.1007/3-540-35657-6_20
https://doi.org/10.1007/s11075-020-00908-7


vol. 64 no. 2/2024 A Practical Way to Apply a Technique That Accelerates . . .

[112] E. Hairer, G. Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential-Algebraic Problems.
Springer, Berlin, Germany, 1996.
https://doi.org/10.1007/978-3-642-05221-7

[113] C. Lubich, D. Weiss. Numerical integrators for
motion under a strong constraining force. Multiscale
Modeling & Simulation 12(4):1592–1606, 2014.
https://doi.org/10.1137/14096092X

[114] K. J. Bathe, A. P. Cimento. Some practical
procedures for the solution of nonlinear finite element
equations. Computer Methods in Applied Mechanics
and Engineering 22(1):59–85, 1980.
https://doi.org/10.1016/0045-7825(80)90051-1

[115] G. Dahlquist, A. Bjorck. Numerical Methods. Dover,
USA, 2003.

[116] S. Mazzoni, F. McKenna, M. H. Scott, G. L. Fenves.
OpenSees Manual. Pacific Earthquake Engineering
Research, USA, 2005.

[117] SAP2000. User’s Guide: A Structural Analysis
Program for Static of Linear Systems (Educational
Version). Computers & Structures Inc., USA, 1999.

[118] P. Krysl. Confidence intervals for Richardson
extrapolation in solid mechanics. Journal of Verification,
Validation and Uncertainty Quantification 7(3):031005,
2022. https://doi.org/10.1115/1.4055728

[119] P. Wriggers. Nonlinear Finite Element Methods.
Springer, Berlin, 2008.

[120] A. Neuenhofer, F. C. Filippou. Evaluation of
nonlinear frame finite-element models. Journal of
Structural Engineering 123(7):958–966, 1997.
https://doi.org/10.1061/(ASCE)0733-
9445(1997)123:7(958)

[121] K.-J. Bathe. Conserving energy and momentum in
nonlinear dynamics: A simple implicit time integration
scheme. Computers & Structures 85(7):437–445, 2007.
https://doi.org/10.1016/j.compstruc.2006.09.004

[122] M. Rezaiee-Pajand, M. Hashemian, A. Bohluly.
A novel time integration formulation for nonlinear
dynamic analysis. Aerospace Science and Technology
69:625–635, 2017.
https://doi.org/10.1016/j.ast.2017.07.032

[123] W. Kim, J. H. Lee. An improved explicit time
integration method for linear and nonlinear structural
dynamics. Computers & Structures 206:42–53, 2018.
https://doi.org/10.1016/j.compstruc.2018.06.005

[124] R. K. Kapania, S. Park. Nonlinear transient
response and its sensitivity using finite elements in time.
Computational Mechanics 17(5):306–317, 1996.
https://doi.org/10.1007/BF00368553

[125] Y. M. Xie. An assessment of time integration
schemes for non-linear dynamic equations. Journal of
Sound and Vibration 192(1):321–331, 1996.
https://doi.org/10.1006/jsvi.1996.0190

[126] E. L. Wilson, I. Farhoomand, K. J. Bathe. Nonlinear
dynamic analysis of complex structures. Earthquake
Engineering & Structural Dynamics 1(3):241–252, 1972.
https://doi.org/10.1002/eqe.4290010305

[127] A. R. M. Rao, K. Loganathan, N. V. Raman.
Nonlinear transient dynamic analysis on parallel
processors. Computer-Aided Civil and Infrastructure
Engineering 10(6):443–454, 1995. https:
//doi.org/10.1111/j.1467-8667.1995.tb00304.x

[128] B. Li, W.-C. Chuang, S. M. Spence. An adaptive
fast nonlinear analysis (AFNA) algorithm for rapid time
history analysis. In Proceedings of 8th ECCOMAS
Thematic Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering
(COMPDYN 2021), pp. 1426–1436. 2021.
https://doi.org/10.7712/120121.8570.19399

[129] B. Li, W.-C. Chuang, S. M. J. Spence. Reliability of
inelastic wind excited structures by dynamic shakedown
and adaptive fast nonlinear analysis (AFNA).
Engineering Structures 296:116869, 2023.
https://doi.org/10.1016/j.engstruct.2023.116869

[130] CSI Analysis Reference Manual For SAP2000,
ETABS, SAFE and CSiBridge. Computers &
Structures, USA, 2017.

[131] A. Quarteroni, R. Sacco, F. Saleri. Numerical
Mathematics (Vol. 37). Springer, USA, 2000.

[132] J. Havskov, G. Alguacil. Instrumentation in
Earthquake Seismology (Modern Approaches in
Geophysics). Springer, Amsterdam, Netherlands, 2004.
https://doi.org/10.1007/978-1-4020-2969-1

[133] A. K. Chopra. Dynamics of Structures: Theory and
Application to Earthquake Engineering. Prentice-Hall,
USA, 2012.

[134] N. D. Lagaros, A. T. Garavelas, M. Papadrakakis.
Innovative seismic design optimization with reliability
constraints. Computer Methods in Applied Mechanics
and Engineering 198(1):28–41, 2008. Computational
Methods in Optimization Considering Uncertainties.
https://doi.org/10.1016/j.cma.2007.12.025

[135] Z.-L. Zhao, S. Zhou, K. Cai, Y. Min Xie. A direct
approach to controlling the topology in structural
optimization. Computers & Structures 227:106141, 2020.
https://doi.org/10.1016/j.compstruc.2019.106141

[136] I. Chamatidis, M. Stoumpos, G. Kazakis, et al.
Overview on machine learning assisted topology
optimization methodologies. In T. Rabczuk, K.-J.
Bathe (eds.), Machine Learning in Modeling and
Simulation: Methods and Applications, pp. 373–394.
Springer International Publishing, Cham, 2023.
https://doi.org/10.1007/978-3-031-36644-4_10

[137] Q. M. Hu, R. Yang. Mechanical properties of
structural materials from first-principles. Current
Opinion in Solid State and Materials Science
10(1):19–25, 2006.
https://doi.org/10.1016/j.cossms.2006.02.002

[138] J. A. P. S. Elorz, D. F. González, L. F. Verdeja.
Structural Materials: Properties and Selection. Springer,
Switzerland, 2019.

[139] A. Soroushian, P. Wriggers, J. Farjoodi.
A statement for the convergence of approximate
responses and its application in structural dynamics. In
Proceedings of 2nd International Conference from
Scientific Computing to Computational Engineering
(2nd IC-SCCE), pp. 131–137. 2006.

179

https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1137/14096092X
https://doi.org/10.1016/0045-7825(80)90051-1
https://doi.org/10.1115/1.4055728
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
https://doi.org/10.1016/j.compstruc.2006.09.004
https://doi.org/10.1016/j.ast.2017.07.032
https://doi.org/10.1016/j.compstruc.2018.06.005
https://doi.org/10.1007/BF00368553
https://doi.org/10.1006/jsvi.1996.0190
https://doi.org/10.1002/eqe.4290010305
https://doi.org/10.1111/j.1467-8667.1995.tb00304.x
https://doi.org/10.1111/j.1467-8667.1995.tb00304.x
https://doi.org/10.7712/120121.8570.19399
https://doi.org/10.1016/j.engstruct.2023.116869
https://doi.org/10.1007/978-1-4020-2969-1
https://doi.org/10.1016/j.cma.2007.12.025
https://doi.org/10.1016/j.compstruc.2019.106141
https://doi.org/10.1007/978-3-031-36644-4_10
https://doi.org/10.1016/j.cossms.2006.02.002


Aram Soroushian Acta Polytechnica

Appendix A.
A proof of Equation (23) is given in this appendix. In time history analyses equipped with accuracy control
(e.g. as addressed in the New Zealand Seismic Code [35, 92]), it is common to repeat the first time integration
computation with another time integration computation using half steps. Then, the absolute relative difference
between the two peaks (i.e. |P1−P2|

P2
) is compared with 0.05. If the relative difference is larger than 0.05, the last

time integration computation and the comparison of the two peaks are repeated until the difference becomes
equal or smaller than 0.05, i.e. the 0.05 criterion is satisfied.

From the other side, a proper convergence of the response implies that the log-log plot of the error versus the
integration step is a line with positive slope (the positive slope is generally referred to as the convergence rate
and is almost equal to the order of accuracy) [51]; see Figure 2. Therefore, when the response obtained from
a time integration computation converges properly, by repeating the computation with half integration steps,
the error of the computation decreases 2q-fold (q is the integration method’s order of accuracy). In addition,
close to the exact response, responses converge properly [51] and the approach to the exact response is from one
side [139]. Accordingly, from simple mathematics [55], and under the assumption of sufficiently small integration
steps (equivalent to the assumption of sufficient closeness to the exact response), comparing the absolute relative
difference, i.e. |P1−P2|

P2
, with 0.05, implies comparing the relative error of P1 [52], i.e.:

Er1 =
∣∣∣∣P1 − Pexact

Pexact

∣∣∣∣ , (34)

with 0.05(2q − 1)−12q (where, Pexact is the exact peak response), which is the same as comparing the relative
error of P2 (the peak response of the analysis carried out with the smaller steps ∆t2), i.e.:

Er2 =
∣∣∣∣P2 − Pexact

Pexact

∣∣∣∣ , (35)

with 0.05(2q − 1)−1. In other words:

Er2 ≤ 1
2q − 10.05. (36)

Equation (36) can be considered as the basis of the accuracy-control addressed in [35, 92]. Consequently, to
arrive at Equation (23), we can estimate Er2, taking into account the step changes in Table 2, and substitute
the estimation in Equation (36).

When the step in the second time integration computation is not half the step in the first computation (i.e.
∆t2 ̸= 0.5∆t1), from the definition of proper convergence or Figure 2 (considering Points 1 and 2 on the properly
converging section of Figure 2; Point 1 on the right of Point 2):

log (Er1) − log (Er2)
log (∆t1) − log (∆t2) = q for sufficiently small integration steps, (37)

which is equivalent to:
Er2

∆t2
q = Er1

∆t1
q . (38)

From simple mathematics [55] and the fact that ∆t2 ̸= ∆t1, Equation (38) leads to:

Er2

∆t2
q = Er1

∆t1
q = Er1 − Er2

∆t1
q − ∆t2

q . (39)

From Equation (39), and that close to the exact response, properly converging responses are either all more or
all less than the exact response [139]:

Er2

∆t2
q =

∣∣∣∣P1 − P2

Pexact

∣∣∣∣
∆t1

q − ∆t2
q . (40)

Substituting the indices 1 and 2 in Equation (40), with j − 1 and j, respectively, and using Equation (22),
results in:

Erj =

∣∣∣∣Pj−1 − Pj

Pexact

∣∣∣∣(
∆tj−1

∆tj

)q

− 1
=

∣∣∣∣Pj−1 − Pj

Pexact

∣∣∣∣(
4nj−1

nj−1 + 1

)q

− 1
. (41)
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Repeating the replacement of indices for Equation (36) leads to:

Erj ≤ 1
2q − 10.05. (42)

Substituting Equation (41) in Equation (42) leads to:∣∣∣∣Pj−1 − Pj

Pexact

∣∣∣∣(
4nj−1

nj−1 + 1

)q

− 1
≤ 0.05

2q − 1 . (43)

Since nj−1 is larger than one and q is not smaller than one, Equation (43) can be re-written as:∣∣∣∣Pj−1 − Pj

Pexact

∣∣∣∣ ≤ 0.05
2q − 1

[(
4nj−1

nj−1 + 1

)q

− 1
]

. (44)

In practice, Pexact is unavailable, and its closest substitute when convergence occurs properly is Pj (implied in
Figure 2). Meanwhile, the order of accuracy is recommended not to be less than two and is generally equal to
two [2, 23, 91]. Accordingly, Equation (44) can change form to:∣∣∣∣Pj−1 − Pj

Pj

∣∣∣∣ ≤ 0.05
3

[(
4nj−1

nj−1 + 1

)2
− 1

]
, (45)

which is identical to Equation (23) (the same result can be obtained, by concentrating on the control of Er1
instead of Er2). This makes the proof complete. Additionally, after each two sequential time integration
computations, the following relation:

Erj = 3
∣∣∣∣Pj−1 − Pj

Pj

∣∣∣∣
[(

4nj−1

nj−1 + 1

)2
− 1

]−1

, (46)

presents a measure for the accuracy of the final target response, not only for the ordinary time history analyses
according to NZS 1170.5:2004 [35, 92], but also when the SEB THAAT is applied to the time history analyses
according to the proposed procedure; for the former nj = nj−1 = 1 (given Figure 2, the “3” in the right hand
side seems to have a safety factor role).
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