
1 Introduction
Customers have quickly become accustomed to the high

standard of today’s information technology, and their de-
mands continue to grow. For this reason, modern embedded
systems frequently resemble small computer systems. Just a
few examples are PDAs, smart and cell phones, set top boxes,
network and telecom systems. Systems like these require some
degree of configurability, so that new functionality may be
added at any time, even after production. This process is
usually known as a firmware update. Platforms based on
FPGAs have partially managed to address these issues.

Now is the right time to consider another degree of flexi-
bility – it is time to consider the need to use an embedded
operating system (OS). One of the key advantages of any OS is
easy software integration. In the case of embedded systems,
this allows an increasing amount of their functionality to be
moved to software, instead of designing it as a pure hardware
solution. The flexibility of software solutions and the lower
design times help on the one hand to reduce the economically
crucial time-to-market factor, and on the other hand to tune
the most time consuming tasks in hardware.

Hardware acceleration and reconfiguration for time-con-
suming and computationally heavy applications is much
more applicable in a fully configurable embedded system with
the help of some OS.

2 Motivation
Aiming to follow modern trends and to evaluate for our-

selves the real advantages of an embedded OS, we started a
project on experiments with some OS. Because of our interest
in configurable hardware, we chose the MicroBlaze processor
[1] as the basis of the project.

First, there was a very important and difficult decision on
which operating system would be the best for our platforms.
The fundamental criteria were source code availability and
support for a wide range of hardware devices (drivers) and
standard software components (file systems, networking, etc.).
Easy adaptability to a changing hardware platform was also
crucial for the configurable systems that we considered.

Among the OSes that supported MicroBlaze we finally
chose a Linux based system. Firstly, it matched up to our re-
quirements, and secondly our familiarity with Linux systems
was a decisive factor. Specifically, we used a distribution called
uClinux [2, 3] (pronounced “you see linux”).

3 Target system

3.1 MicroBlaze processor
MicroBlaze is a 32-bit embedded soft-core processor with

a reduced instruction set computer (RISC) architecture. It is
highly configurable and specifically optimized for synthesis
into Xilinx field programmable gate arrays (FPGAs).

The MicroBlaze configurability enables embedded devel-
opers to tune its performance to match the requirements of
target applications. For example, MicroBlaze may be config-
ured to use a hardware multiplier or a dedicated barrel shifter.
The current version even features an optional floating-point
unit that can accelerate system performance by as much as
120 times over software emulation. Xilinx claims that the core
can operate at frequencies up to 200 MHz.

3.2 Hardware platforms
Currently, we are using two development kits by Xilinx –

ML401 and ML310 [1]. The former is based on Virtex-4
FPGA, while the latter uses Virtex-II Pro. Both platforms offer
a wide range of industry standard peripherals – e.g. Ether-

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 37

Acta Polytechnica Vol. 46 No. 4/2006

Embedded Operating System for
MicroBlaze

M. Šimek

This paper presents a work in progress on experiments with embedded operating systems for the MicroBlaze processor. Modern embedded
systems based on a configurable platform incorporating a similar processor core are gaining importance with the ongoing effort to minimize
cost and development time. After an overview of the configurable platform based on this processor core, we devote our attention to uClinux
OS. This OS has been successfully ported for the MicroBlaze processor, and we present our current experience with it. At the end of the paper
we discuss several possible booting strategies and recommend further development of U-BOOT.

Keywords: Embedded systems, operating systems, configurable HW, MicroBlaze.

Fig. 1: Configurable system architecture

net controller, compact flash card controller, USB controller,
AC97 audio codec, etc. All of these may optionally connect
to MicroBlaze through configurable interfaces realized in
FPGA. An example of what the final system may look like is
shown in Fig. 1.

When using embedded OS, the Ethernet interface be-
comes of high importance, either as a standardized com-
munication interface or for better support for applications
development (i.e. debugging). The networking interface is
famous especially for Unix based operating systems, among
which uClinux may be classified. In addition, we use Ethernet
for downloading new drivers to a board via FTP protocol.

3.3 uClinux operating system
uClinux has features similar to those of standard Linux,

but its advantage is the optimization for embedded devices
and applications. It is especially optimized to minimize the
size of the code necessary for both applications and kernel.
Unlike “standard” Linux, uClinux may be used even for
embedded systems that have a main memory size as big as an
L2 cache in an ordinary personal computer.

Like any other Linux system, uClinux is composed of
a kernel and a distribution. Its kernel is derived from a
standard Linux kernel v 2.0 with memory management left
out. Today’s kernel version is 2.4.32-uc0 and version 2.6 is
planned for the near future. The kernel supports many pro-
cessor families, such as Alpha, ARM, Blackfin, i386, m68k,
MicroBlaze, MIPS, PPC, SH, SPARC, etc.

The main purpose of a distribution is in the first step cre-
ating the root file system and adding applications. The type of
root file system is elective for almost any available storage
device. We use two types of root file systems – ROMFS (ROM
File System) and CRAMFS (Compressed ROM File System)
[2]. CRAMFS is 20 % smaller than ROMFS. It is possible to
use a NFS (Network File System), which wasn’t fully tested yet.

The distribution extends the kernel for a number of pro-
grams. These include core applications (init, agetty, cron,
at), flash tools (netflash, mtd-utils), file system applications
(flatfsd), network applications (dhcpd, ftpd, inetd, ping, tel-
netd, thttpd, tftp, ifconfig, route), miscellaneous applications
(cat, cmp, cp, ln ls, mkdir, mv, rm, ps), MicroWindows (still not
tested), etc. A very useful tool is the Busybox package [4],
which contains programs for managing kernel modules (e.g.
mount, umount, insmod, lsmod, rmmod, modprobe).

4 Project status

4.1 Completed work
Operating systems such as Linux are very extensive, and

it is hardly possible for an individual to fully comprehend
them. However, a detailed knowledge of system internals is
crucial in the embedded field, where each system is specific in
some way.

Therefore, one of the most important objectives of the
project was to gain enough experience with uClinux to be able
to deploy the system on any HW platform. It was necessary to
understand the kernel source tree structure, to go through
kernel sources and discover all kinds of dependencies. Along-
side this tedious work, kernel configuration and building
seemed easy – though some problems had to be solved, too.

In this phase of the project, we took advantage of the fact
that a working uClinux demo was available for the ML401
platform [3]. This was especially helpful at the beginning
for purposes of testing the kernel and distribution configura-
tion. With increasing experience, we used our own derived
variants of this reference platform. Finally, to demonstrate
our full mastery, we successfully ported uClinux to the ML310
development kit [5].

4.2 Full-platform support
uClinux is well-known for offering broad support for vari-

ous hardware devices. However, one cannot expect this to
be true for specifically designed components, such as con-
figurable systems built within FPGAs.

Therefore, to get full support for our HW platforms, we
need to write our own device drivers. A VGA controller driver
is currently under development, and for the future, a driver
for the USB controller is planned.

4.3 Booting strategy
So far, we have been using a simple boot loader created as

a part of the project. Its only purpose is to initialize the neces-
sary peripherals (serial line, LCD display), perform a memory
test and, if successful, copy the kernel binary image into RAM
and execute it. This procedure is illustrated in Fig. 2.

Although this simple boot loader works satisfactorily, it
does not fully cover our needs. For higher configurability and
better debugging means, it would be better to have a more
sophisticated boot loader. This might for example allow us
to pass boot arguments to the uClinux kernel, or choose
between several pre-configured kernel images. With support
from the Ethernet interface, it would even enable remote ker-
nel updates. All these features and even more can be found
within U-BOOT [6] (Das U-BOOT – universal boot loader).

38 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 46 No. 4/2006

Fig. 2: Simple booting strategy

U-BOOT is an open source project and it has been
designed mainly for high flexibility. Its support for many
processor families is also advantageous – e.g. ARM, i386,
MIPS, Nios, PowerPC, Xscale, etc.

MicroBlaze is also supported, but the recent U-BOOT
port for this processor has very limited capabilities. It imple-
ments only a serial line interface and allows us to work with
RAM memory - listing, writing, modifying [7]. Therefore,
our recent plan is to focus on implementing the remaining
functions, e.g. remote file download, access to flash memory,
support for boot arguments, etc.

With help of U-BOOT, we can easily implement our so-
phisticated booting strategy (see Fig. 3). This enables us
to have three kinds of root file systems – standard ROMFS
in RAM, a read/write file system on an external storage de-
vice partition, and finally an alternative JFFS system (The
Journaled Flash File System) stored in a Flash memory. It
would then be possible to access both Flash and external
storage memory, and to choose a right root file system.

5 Summary
We give an overview of a project in progress that concen-

trates on adapting a uClinux embedded OS for the Micro-
Blaze soft-core processor. We have given a brief overview of
both uClinux and MicroBlaze. We have also presented some
of the HW platforms on which we have been carrying out our
experiments.

Although our position was simplified by the fact that a
uClinux port for MicroBlaze already existed, it was still quite
a tedious task to gain sufficient mastery of the system. How-
ever, this work has paid off because we are now able to adapt
uClinux according to our needs. This ability is essential for
configurable embedded systems, which are our main concern.

We are currently developing device drivers for unsup-
ported peripherals and for designing a sophisticated strategy
offering a convenient system boot procedure with unique
debug properties. Our final objective is to provide a precon-
figured uClinux distribution for the MicroBlaze processor
that will be complete and flexible in support of our develop-
ment platforms. Such a uClinux package would form the
basis for further projects, which might then concentrate on
some specific problems rather than dealing with the entire
complexity of the operating system.

6 Acknowledgments
I would like to thank Tomáš Brabec for his help in com-

pleting of this paper.

References
[1] Xilinx: The Programmable Logic Company, [online]

http://www.xilinx.com, 2006.
[2] Dionne, D. J., Albanowski, K., Durrant, M.: uClinux –

Embedded Linux/Microcontroller Project, web page available
at http://www.uclinux.org, 2006.

[3] Williams, J.: MicroBlaze uClinux Project Home Page,
[online]
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux,
2006.

[4] Landley, R.: Busybox: The Swiss Army Knife of Embedded
Linux, [online] http://www.busybox.net, 2006.

[5] Šimek, M.: Embedded Operating Systems for Microblaze, [on-
line] http://cs.felk.cvut.cz/~simekm2/uclinux, 2006.

[6] U-BOOT: Das U-Boot – Universal Bootloader, [online]
http://sourceforge.net/projects/u-boot.

[7] Shoji Yasushi: SUZAKU: Series of Embedded Devices Based
on the Combination of FPGA and Linux, [online]
http://suzaku-en.atmark-techno.com.

Michal Šimek
e-mail: simekm2@fel.cvut.cz

Dept. of Computer Science and Engineering

Czech Technical University in Prague
Faculty of Electrical Engineering
Karlovo náměstí 13
121 35 Praha 2, Czech Republic

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 39

Acta Polytechnica Vol. 46 No. 4/2006

Fig. 3: Sophisticated booting strategy

