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Abstract. Due to the robustness of the deep learning tools used to design these applications, fakes are
becoming increasingly common as these applications become more widely available and accessible to the
general public. These fakes are typically fake faces or even fake people, which are difficult to distinguish
from real individuals. Therefore, we need more efficient applications for fraud detection. In this work, we
propose a new multi-discriminator architecture to distinguish fake faces from real ones. The architecture
consists of three deep networks (discriminators) competing with each other, each trained differently.
The final decision is made by voting based on the decisions of the three discriminators. The core element
of our architecture is the proposed new adversarial deep network discriminator (NDGAN), which is
trained in three different ways, resulting in three distinct discriminators. Discriminator 1 undergoes
adversarial training, discriminator 2 is trained using transfer learning, and the third discriminator
undergoes supervised training with a standard CNN using examples and counterexamples. Training and
testing were performed on 70 000 real faces from the Flickr-Face-HQ (FFHQ) dataset, while 70 000 fake
faces were generated using Nvidia’s StyleGAN. The tests conducted on the three networks produced
significant results, with accuracy ranging from 79 % to 98 % for fake faces, and from 80 % to 98 % for
real faces. The reliability of the discriminators contributes significantly to the overall performance of
the multi-discriminator system, achieving an accuracy of 96 % for fake faces and 98 % for real faces.

Keywords: Fake face, real face, discriminator, MDD-CNN architecture adversarial training, transfer
learning, deep learning.

1. Introduction
False images have become a major problem in recent
years. They can easily deceive people and inevitably
lead to serious social risks, such as false evidence and
false information. They can also damage reputations
and harm people. Today, fake faces can be generated
with minimal effort and by anyone with sufficient
equipment. Detecting deppfakes is tberefore becoming
increasingly important.

The act of image forgery is not new, in 1997 [1], a
project called “Video Rewrite” altered existing video
footage of people to make them appear to be saying
words that appeared on an altered audio track: essen-
tially, putting words in their mouths. The early 2000s
were relatively quiet as computer development moved
deeper into the world of facial recognition. Develop-
ments in this field led to dramatic improvements in
motion tracking that makes today’s deepfakes more
convincing. In 2001 [2], the active appearance models
algorithm made its debut. Using a thorough statis-
tical model to match a shape to an image proved to
be a big step forward. This made face matching and
tracking much more efficient.

Face manipulation is generally divided into two cat-
egories, faceswap (facial change), and facial expression
reconstruction. Faceswap and DeepFakes belong to
the same category: a target face replaces the face in
the source image (see Figure 1). Faceswap is a graph-
ical approach, while DeepFakes is based on GANs.

Mainly the Face2face and Neural Textures methods
transfer facial expressions from the target image to
the source image. The Face2Face method transfers
the expression from the source video to the target
video using blend shape coefficients. In contrast, the
Neural Textures approach uses GANs to learn the
texture of the target person [3]. New technological
advances made it easier to create Deepfakes, which
are hyper-realistic videos or images using face swaps
that leave little trace of manipulation (see Figure 2).
These Deepfakes are the result of artificial intelligence
(AI) applications that mix and match images and
video clips to create fake videos that appear real and
natural. This technology can generate, for example, a
humorous or political video of a person without the
consent or permission of the person whose image and
voice are involved. Deepfakes can now be created
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Figure 1. Example of facial reconstitution.

(a). Real face images.

(b). Fake face images.

Figure 2. Deepfake example [12].

using consumer-grade hardware as demonstrated by
two papers published in 2016 and 2017 [4, 5]. The
Face2Face project from the Technical University of
Munich and the Synthesizing Obama project from the
University of Washington established the feasibility
of generating deepfakes. They have improved com-
puting and rendering times while updating graphical
fidelity for a photorealistic look. The game-changing
factors for forgeries are the scope, scale, and complex-
ity of the technology involved, as today anyone with
a computer can create fake videos that are almost
indistinguishable from real videos [6].

The GAN and Autoencoder networks have become
very famous for their ability to produce forgeries of
remarkable quality and undetectable by human beings.
Recently, many architectures have been developed to
generate fakes. A severe competition between these
architectures was measured by the quality of the false
images generated by each one. Several fake datasets
consisting mainly of fake faces have been developed,
such as the GAN collection [7], FaceForensics++ [8],
Celeb-DF [9], DEFACTO [10], FaceSwap [11].

In this paper, we introduce a new architecture called
NDCGAN, which stands for “Neural Discriminator-
Generator Confrontation Generative Adversarial Net-
work”. This architecture consists of three discrimina-
tor modules that work together to distinguish between

real and fake faces.
The first module, Discriminator 1, is trained against

its opponent, the generator, to outperform it and
accurately identify the fake faces generated by the
generator. The second module, Discriminator 2, is
the NDCGAN discriminator (Discriminator 1) trained
using transfer learning techniques. This module lever-
ages the pre-trained knowledge of Discriminator 1 to
enhance its ability to distinguish between real and
fake faces.

The third module, Discriminator 3, is a separate
discriminator trained from scratch on both real and
fake faces. It is designed to work independently of
its associated generator, focusing solely on accurately
classifying faces. In the final decision-making process,
the three discriminators vote together on whether a
given face belongs to the real face class or the fake face
class. This voting mechanism ensures a more robust
and reliable determination of a face’s authenticity.
Through the utilisation of NDCGAN and the col-
laboration of these three discriminator modules, our
proposed architecture offers improved performance
and accuracy in distinguishing between real and fake
faces.

The rest of the paper is organised as follows: Sec-
tion 2 presents existing work regarding fake detection
based on deep neural networks. Section 3 provides
an overview of the proposed architecture, along with
a brief explanation of the baseline modules. In Sec-
tion 4, we present the proposed model, along with
the training parameters, implementation details, clas-
sification results, and discussions. Finally, Section 5
presents the conclusions and discusses future work.

2. Related work
Although deepfakes were initially created for entertain-
ment purposes, such as allowing people to experience
things that no longer exist or to attract extraordinary
attention from online audiences, making a website pop-
ular in search engines. Later, their applications were
exploited for counterfeiting and spreading misinforma-
tion, including the creation of false news and deceptive
advertising, as well as the malicious use of video Deep-
fakes for blackmail. Faced with the emergence of
fakes in our environment that are undetectable by
humans, the interest of researchers has subsequently
been directed towards finding robust algorithms for
the detection of fake images and videos [13, 14] based
on various deep-learning approaches, such as long
short-term memory (LSTM), recurrent neural net-
work (RNN), Convolutional Neural Network (CNN),
and even the hybrid approaches have been proposed.

Guera and Delp [15] proposed a video Deepfake
detection system that uses a recurrent convolutional
neural network to extract features from each frame,
which are then concatenated and sent to the LSTM for
analysis. They produce an estimate of the probability
that the sequence is a Deepfake or an unmanipulated
video. The authors collected 600 video Deepfakes,
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including 300 videos from various websites and an-
other 300 videos from the HOHA database [16]. They
presented the performance of their system in terms
of accuracy using sub-sequences with lengths of 20,
40, and 80 frames. They achieved 96.7 % accuracy
for 20 frames, 97.1 % for 40 frames, and 97.1 % for 80
frames.

Liu et al. [17], showed that CNN models are strongly
texture-based rather than shape-based. They found
that these models are focus predominantly on texture
regions, such as skin and hair, while giving less impor-
tance to other regions. To investigate this further, the
researchers conducted experiments specifically target-
ing skin regions, which are rich in texture information,
but relatively poor in structural information. Based
on their findings, they concluded that the texture of
fake faces differs from that of real faces. Based on
these observations, Liu et al. [17] introduced a novel
architecture called Gram-Net, which improves the ro-
bustness and generalisation capabilities of CNNs in
the detection of fake faces. The evaluation of their
approach using styleGan [18] and CelebA-HQ [19]
databases during the test phase yielded an estimated
accuracy of 80.72 % in fake face detection. These re-
sults show a promising and encouraging direction for
understanding false images from GANs.

The detection of the source of deepfake videos was
performed by analysing the “heartbeat” of deep fakes
and spatial and temporal feature analysis. For the de-
tection of deepfake images, a hybrid approach was in-
troduced, which uses a pairwise-learning; the approach
first uses GANs to create and generate a fake image.
Then, on the popular fake feature network (CFFN)
generated by GANs, a pairwise learning model is used
to capture the discriminative information between the
fake and real images.

A. Deshmukh and S. B. Wankhade [20] conducted a
study on the tools and algorithms used to create and
detect deepfakes and the strategies associated with
them. They also present the ideologies of deepfake
algorithms and how deep learning has been used to
enable such technologies. According to their findings,
the most commonly used deepface tools are dfaker,
FaceSwap-GAN, Faceswap, deepfakerlab, DeepFaker-
tk.

Deepfake detection methods are divided into two
dominant classes. The first class comprises false image
detection approaches that rely on deep learning tech-
niques such as CNN, SVM, random forest, multilayer
perceptron, and GAN [21]. These methods gener-
ate images that are noticeable as fake. The second
class, known as the False Video Detection Approach,
can also be divided into two groups. The first group
uses chronological features to identify deepfake videos,
while the second group focuses on exploring visual art-
facts. The researchers have proposed a pipeline tech-
nique that uses CNN and LSTM to detect deepfake
videos from blinking eyes. The authors verified the
proposed techniques on the following datasets: Foren-

sics++ dataset, the UADFV, and DeepfakeTIMIT
datasets. During the tests conducted, the authors
found that general facial recognition systems, such
as VGG and Facenet, are unable to successfully de-
tect deepfakes. In addition, the use of SVM to assess
image quality and lip synchronisation resulted in a
significantly high error rate.

The aim of the work by Jung et al. [22] is to de-
tect deepfakes generated by generative adversarial
networks (GANs) using blink analysis. The authors
propose a method called DeepVision that incorpo-
rates machine learning techniques. The DeepVision
architecture has a pre-processor that receives input in-
formation. This input data includes parameters such
as gender, age, activity, and time, which play a crucial
role in assessing changes in the human eye blink. To
perform the detection process, DeepVision uses the
Target Detector algorithm for face detection and then
uses the Eye Tracker algorithm to track and measure
the number of blink repetitions and their duration.
These measurements are then compared to a database
of natural movement to determine whether the blink
is natural. Deepvision achieves 87.5 % accuracy in
detecting deepfake videos. It should be noted, how-
ever, this method may be less effective for people with
mental illness, as abnormal blinking is often observed
in such cases.

Korshunov and Marcel [23] presented two sets
of Deepfake videos generated from the VidTIMIT
database. First, they generated videos of different
resolution qualities: (64 × 64) and (128 × 128). Then,
they evaluated two neural network based systems,
namely VGG [24] and facenet 6 [25], to distinguish
between Deepfake and real videos. However, both
systems showed a high error rate of 95 %, indicating
their inability to effectively distinguish between the
two.

To overcome this limitation, the authors investi-
gated an audiovisual approach to detecting inconsis-
tencies between lip movements and speech in the au-
dio track. They found that lip-synchronisation-based
methods failed to detect inconsistencies between lip
movements and speech, while pure image-based ap-
proaches proved effective in detecting video Deepfakes.
By using IQM techniques together with an SVM clas-
sifier, they achieved a significantly lower error rate of
8.97 % in detecting Deepfakes.

Li and Lyu [26] aimed to describe a new method
based on deep learning that can effectively distinguish
Deepfake videos from real ones. Due to computa-
tional resources and production time limitations, the
Deepfake algorithm cannot distinguish between real
and fake videos. The images undergo an affine de-
formation corresponding to the facial configuration
of the source. Therefore, the authors proposed a
convolutional neural network (CNN) model to detect
the presence of artifacts from the face regions and
surrounding areas. The CNN training is based on
images collected from the internet (24442 JPEG face

307



Ch. E. Bencheriet, H. Abdelmoumène, A. Sebbagh et al. Acta Polytechnica

images). To increase the diversity of the training, the
authors modified the colour information, brightness,
contrast, and sharpness for all training examples; they
validated their work on the Deepfake UADFV video
dataset [12]. This dataset contains 98 videos (32752
frames), including 49 real and 49 fake videos. The
tests performed on the Deepfake videos demonstrate
the effectiveness of the proposed method in practice
with an accuracy rate of up to 97 %.

Yang et al. [27] introduced a pre-processing module
called AMTEN, which uses the convolutional layer
as a predictor to detect image manipulation. This
module can be integrated into CNN-based models to
improve their ability to detect image manipulation.
By applying some post-processing operations, (includ-
ing lossy compression), the authors simulated a real
analysis of face images in various complex scenarios.

To demonstrate the effectiveness of the AMTENnet
project, a series of experiments were conducted to
achieve a higher detection rate. Yang et al. [27] used a
large HFF database of 116 000 face images for training
including real images of different resolutions and five
types of false images. The dataset was divided into
three subsets: 75 % for training, 5 % for validation,
and 20 % for testing. As a result, AMTENnet achieved
an accuracy of 95.17 %.

In their work, Chintha et al. [28] proposed an
XcepTemporal convolutional recurrent neural network
for Deepfake detection. They used a face detector
called dlib to determine the main face in each frame of
the video. The faces were encoded using the xception-
Net architecture [29]. The spatial features extracted
from xceptionNet were fed into a first bidirectional
LSTM layer and the outputs from this layer were fed
to a second bidirectional LSTM layer to produce sec-
ondary features. The feature vector obtained from
the last LSTM unit in the second bidirectional layer
was then fed through a fully connected layer and
a classification layer. A dropout was added to the
fully connected layer to improve regularisation. The
model was trained using the traditional cross-entropy
and KL divergence loss functions. In addition, the re-
searchers introduced a complementary architecture for
audio analysis by using multiple convolution modules
to obtain audio feature representations. These au-
dio embeddings were also fed through a bidirectional
recursive layer. Training the model on the FaceForen-
sics++ [9] and Celeb-DF [10] databases resulted in
visual detection accuracies ranging from 84.8 % to
100 %. For audio detection, the authors demonstrated
the robustness of their method, achieving a t-DCF
(tandem detection cost function) of 0.1424. This indi-
cates the generalisability of their approach to different
types of attacks.

Lee et al. [30] aimed to detect a new manually
produced facial manipulation by introducing a new
dataset containing photoshopped face images created
with tools such as Adobe Photoshop to detect both
human-manipulated and machine-generated images.

This dataset contains 1527 images developed with
several levels of editing complexity and 621 original
images used to create the fake faces. To address this
challenge, the researchers developed a CNN-based
model called Shallow-FakeFace (SFFN). This model
shows promising results in detecting human-created
fake images, achieving a 72.52 % OCR using less than
2500 fake images for training. The effectiveness of
the SFFN model was alos evaluated on other GAN-
generated fake faces, demonstrating a recognition rate
of 93.99 % for low-resolution images. These results
highlight the model’s ability to generalise well against
potential attackers.

In this study, we propose a new multi-discriminator
architecture for distinguishing fake faces from real
ones. The proposed architecture is a competition
between three deep networks (discriminators), each
having been trained differently. The final decision is
made by voting on the decisions of the three discrimi-
nators. In summary, the paper presents the following
contributions:
• Proposes a new architecture of DCGAN called ND-

CGAN where the Discriminator 1 trains with its
opponent (the generator) to get an advantage and
recognise the fake faces generated by the latter with
a considerable rate.

• Presents a Multi Discriminator Deep CNN (MDD-
CNN) architecture based on three competing dis-
criminators. The main advantage is that the three
networks are involved in the final decision by voting
on the predictions made by each. This significantly
minimises prediction errors.

3. Proposed system architecture
The multi-discriminator architecture proposed in this
work is based on the Deep Convolutional Generative
Adversarial Network (DCGAN), which is a direct ex-
tension of the GAN. Using the same distribution of
training data, GANs are used to train deep learning
models to produce new data. Created in 2014 by Ian
Goodfellow [31] and published in the paper Generative
Adversarial Nets. These networks consist of two differ-
ent models: the generator and the discriminator. The
generator creates artificial or synthetic visuals that
resemble training images. The discriminator examines
an image and the output to determine whether it is
authentic or fraudulent. During the training process,
the discriminator strives to get better at detecting
and categorising whether an image is real or fake by
learning to create better fake images that trick the
discriminator into categorising them as real images.

3.1. Deep convolutional generative
adversarial network (DCGAN)

As an extension, DCGAN incorporates convolutional
and convolutional-transposed layers explicitly in both
the discriminator and the generator components. Con-
volutional layers preserve the spatial structure of an
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Figure 3. Deep convolutional GAN network.

image, which means that the most accurate and de-
tailed features are extracted from an image. The
generator and discriminator will, therefore, have more
advanced spatial reasoning capabilities about the out-
put they will generate and how to distinguish between
the features of the real images and the fake images.

Improving the extracted features’ quality is usually
the reason why DCGANs are used for image process-
ing [32]. Like all GANs, the DCGAN consists of a
generator and a discriminator (Figure 3).

3.2. Multi discriminator deep CNN
architecture (MDD-CNN)

Our proposed architecture is based on three discrim-
inators. The architecture is described in Figure 4.
Where the main modules are:
• A new DCGAN architecture called NDCGAN,

where the Discriminator 1 trains with its opponent
(the generator) to overtake it and recognise the fake
faces generated by the latter with a significant rate.

• The second module of our architecture is the Dis-
criminator 2: this is the NDCGAN discriminator
(Discriminator 1) trained by transfer learning.

• The third module is the Discriminator 3: which
is the discriminator of the NDCGAN trained from
scratch on faces and fake faces, without its genera-
tor.
The final decision of whether the face belongs to

the real face class or the fake face class is the voting
result of the three discriminators.

3.2.1. New DCGAN architecture
In the following, we describe the DCGAN architec-
ture that consists of a generator network and a dis-

criminator network, which are the main parts of the
MDD-CNN architecture.

A. Architecture of generator network The gen-
erator consists of transposed convolutional layers that
allow the noise vector to be unsampled and trans-
formed into an image. In a classical CNN network,
the convolutional layers will try to extract smaller
and smaller features which are then be classified. In
a generator, the transposed convolutional layers are
designed to reverse the operations of the convolutional
layer. This upsampling process enlarges the image
and adds details to the final result. This is the part
of the generator that “draws” the actual image. The
transposed convolution layers of the generator will
decompress the noise so that it becomes a 128 × 128
image with all the details in the right place in the
image. The details of each layer are shown in Figure 5
and Table 1. Note that the activation of all layers is
LeakyReLU (given by Equation (1)), except for the
output layer which uses tanh (Equation (2)).

∅(x) =
{

αx if x ≤ 0
x if x > 0

, (1)

tanh(x) = 2
1 + e−2x

− 1 . (2)

B. Discriminator network architecture The dis-
criminator is composed of strided convolutional layers
and LeakyReLU activations (Table 2, Figure 6). The
input is a 128 × 128 × 3 image, and the output is a
probability between 0 and 1.

3.2.2. Stability conditions
To have a stable network, the following is necessary:
• Replacing pooling by stride convolution. This al-

lows the network to learn its own spatial downsam-
pling (by changing the size of the input). CNNs use
pooling layers to reduce dimensions. For example,
a 2 × 2 max pooling layer would take a 2 × 2 array
of pixels and map it to a number that is the maxi-
mum among them. Stride convolution can reduce
the dimension by skipping several pixels between
convolutions instead of dragging the kernel one by
one. It can also increase the dimension by adding
empty pixels between the actual pixels.

• No fully connected layer at the end of the CNN.
The generator is not a classifier, so this part is not
needed.

• Use leakyReLU (Figure 7) in the generator except
for the output, which uses tanh. The symmetry of
the tanh function allows the model to learn faster
and leakyReLU for the discriminator.
The output of the Leaky ReLU activation function

is positive if the input is positive, and a controlled neg-
ative value if the input is negative. The negative value
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Figure 4. Architecture of the proposed system.

Figure 5. Architecture of the proposed NDCGAN generator.
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Layer type Dimension Kernel size Stride Activation
Input 32 – – –
Dense – – – LeakyReLU

Conv2D (16, 16, 256) 5 1 LeakyReLU
Conv2DTranspose (32, 32, 256) 4 2 LeakyReLU
Conv2DTranspose (64, 64, 256) 4 2 LeakyReLU
Conv2DTranspose (128, 128, 256) 4 2 LeakyReLU

Conv2D (128, 128, 512) 5 1 LeakyReLU
Conv2D (128, 128, 512) 5 1 LeakyReLU
Conv2D (128, 128, 3) 7 1 tanh

Table 1. Architecture of the generator.

Layer type Dimension Kernel size Stride Activation
Input (128,128,3) – – –

Conv2D (126, 126, 256) 3 1 LeakyReLU
Conv2D (62, 62, 256) 4 2 LeakyReLU
Conv2D (30, 30, 256) 4 2 LeakyReLU
Conv2D (14, 14, 256) 4 2 LeakyReLU
Conv2D (6, 6, 256) 4 2 LeakyReLU
Dense 1 – – sigmoid

Table 2. Architecture of Discriminator 1.

Figure 6. Architecture of the proposed NDCGAN discriminator.
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(a). ReLU. (b). leakyReLU.

Figure 7. Activation function.

is controlled by a parameter called alpha, which intro-
duces network tolerance by allowing certain negative
values to pass.

4. Experimental results
In this section, we provide an overview of the network
training and testing process. For our purposes, we
chose to use Kaggle [33] rather than Google Colab [34].
We made this choice because of Kaggle’s extensive
collection of importable datasets and the availability
of up to forty GPU/TPU hours per week, all provided
free of charge. In contrast, Google Colab does not offer
the same level of resource availability at no additional
cost.

To train our model, we used the TESLA P100 GPUs
available on Kaggle as our training environment, along
with Tensorflow; these GPUs are useful for training
deep learning models and can speed up training 13
times faster than traditional training on a CPU.

The specifications of CPU runtime provided by Kag-
gle are Intel Xeon Processor with two cores @2.30 GHz
and 16 GB RAM, and 17 GPU RAM. Python was used
as the programming language and PyCharm was used
as the IDE for coding and development.

After network training and validation, the trained
model is imported to run all the tests on a laptop
with an Intel Core i7 and 16 Go RAM.

4.1. Dataset
In the training phase, we used a database of 70,000
real faces from the Flickr-Faces-HQ dataset [18] (Fig-
ure 8), collected by Nvidia, and 70 000 fake faces
(Figure 9), generated using Nvidia’s StyleGAN [19].
In this dataset, all images have a dimension of 256 px
and are divided into training, validation, and test sets.

4.2. Evaluation metrics
We have implemented the discriminators of our pro-
posed system to compare the overall accuracy and
loss. Additionally, to evaluate the effectiveness of
our proposed architecture (MDD-CNN), the following
conventional evaluation metrics were used:

True Positives (TP), which refer to examples cor-
rectly labelled as positive;
True Negatives (TN), which refer to negative ex-
amples correctly labelled as negative
False Positives (FP), which refer to negative exam-
ples mislabelled as positive;

Figure 8. Flickr-Face-HQ (FFHQ) dataset.

Figure 9. Example of Fake Face dataset.

False Negatives (FN), which refer to positive exam-
ples mislabelled as negative.
Accuracy (precision) given by Equation (3): is

the proportion of observations correctly predicted to
the total number of observations.

Accuracy = TP + TN

TP + FP + TN + FN
. (3)

Loss of discriminator: is the difference between the
predicted output and the actual output. It measures
the mistakes made by the network in predicting the
output.

TruePositiveRate/Recall/Sensitivity: is the
proportion of actual positive results that were cor-
rectly identified given by Formula (4):

TPR = Recall = TP

TP + FN
. (4)

Receiver Operating Characteristic Curve
(ROC curve) is a graph that shows the performance
of a classification model at all classification thresholds.

312



vol. 63 no. 5/2023 Fake face detection based on a multi discriminator deep CNN architecture

The curve represents two parameters: True Positive
Rate (TPR) (Equation (4)) and False Positive Rate
(FPR):

FPR = FP

FP + V N
. (5)

4.3. Training and validation
The proposed multi-discriminator architecture (MDD-
CNN) requires training in three steps, with each dis-
criminator undergoing a different training. Discrimi-
nator 1 undergoes adversarial training, Discriminator
2 undergoes training by transfer learning, and Dis-
criminator 3 undergoes a standard training of a CNN
with examples and counterexamples.

During training, certain parameters that are crucial
for convergence to the optimal solution were fixed
after a series of tests. These parameters include the
batch size and the number of epochs.

Batch Size: The batch size refers to the number
of training examples presented to the model in each
iteration. It has a significant influence on the training
process.
• Computational Efficiency: A larger batch size en-

ables parallelism and can better utilise hardware
acceleration such as GPUs. Training with larger
batch sizes can speed up the training process.

• Generalisation: Smaller batch sizes often lead to
better generalisation but may require more itera-
tions to converge.

• Memory Constraints: The batch size must fit within
the available memory of the training hardware. Us-
ing excessively large batch sizes can exceed the
memory capacity and result in out-of-memory er-
rors.

Number of Epochs: An epoch signifies a complete
pass through the entire training dataset. The number
of epochs determines how many times the model will
go through the entire dataset during training. The
number of epochs can influence training in various
ways:
• Underfitting vs. Overfitting: Training for too few

epochs can result in underfitting, where the model
fails to learn enough from the data. However, train-
ing for too many epochs can lead to overfitting,
where the model becomes overly specialised to the
training data and fails to generalise well to new
data.

• Training Time: Increasing the number of epochs
increases the overall training time. Training deep
learning models can be time consuming, so there
is typically a trade-off between computational re-
sources and achieving the optimal performance.

• Learning Rate Schedule: The number of epochs can
also impact the learning rate schedule. Certain
training strategies, such as learning rate decay or

Figure 10. Training of Discriminator 1.

Class Training Test
Real Faces 50 000 10 000
Fake Faces – 10 000

Table 3. Separation of training and test data sets.

learning rate warm-up, adjust the learning rate as
the number of epochs progresses.

Determining the optimal batch size and number
of epochs often requires experimentation and tuning
based on the specific dataset, model architecture, and
problem domain. It is common to begin with de-
fault values and iteratively adjust them based on the
observed performance.

4.3.1. Training of Discriminator 1
To develop the model of Discriminator 1, we used
adversarial learning between generator and discrim-
inator networks (Figure 10). Where the real faces
used (60 000) are from the Flickr dataset [18] and the
Fake faces are from the StyleGAN dataset [19]. The
datasets are divided into training and test as shown
in Table 3.

During the training of this network, we kept the
following configuration:
• Optimiser = RMSProp which generates more real-

istic fake images compared to Adam.
• Batch size = 128.
• Number of iterations = 10 000.

During the training, the discriminator tries to max-
imise the logarithmic probability that the data is real
or false. Conversely, the generator tries to minimise
the logarithmic probability that the discriminator is
correct.

It is therefore considered a min-max game.
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The standard GAN loss function, also called the
min-max loss function, is given by the following For-
mula (6) [31]:

Ex[log(D(x))] + Ez[log(1 − D(G(z)))] , (6)
where:
D(x) is an estimate of the probability that the actual

data image x is real.
Ex is the expected value over all actual data instances.
G(z) is the output of the generator when it receives a

value of z for the noise.
D(G(z)) is the estimate of the probability that a false

instance is real.
Ez is the expected value over all random inputs of the

generator (in fact, it is the expected value over all
generated false instances, G(z)).
The standard GAN loss function can be further

divided into two parts: Discriminator loss and
Generator loss.

Discriminator loss During training, the discrim-
inator classifies both the real face and the fake face
from the generator and penalises itself for misclassi-
fying a real face as fake, or a fake face as real, by
maximising the Function (7):

∇θd
1
m

m∑
i=1

[
log D(x(i)) + log(1 − D(G(z(i))))

]
, (7)

where:
• log(D(x)) refers to the probability that the genera-

tor is correctly classifying the real face,
• maximising log(1 − D(G(z))) would help it to cor-

rectly label the fake face that comes from the gen-
erator.

Generator loss The discriminator’s classification
is used to calculate the generator loss. If succeeds in
fooling the discriminator, it is rewarded; if not, it is
penalised.

Equation (8) is minimised to train the generator.

∇θg
1
m

m∑
i=1

log(1 − D(G(z(i)))) . (8)

Figure 11 shows the training results of the generator
and the discriminator. We can see that the discrimina-
tor network achieved a loss for real and fake samples
of around 47 % and the generator of around 96 %. The
discriminator achieved an accuracy of between 70 %
and 79 % for real and fake faces.

The learning results are acceptable because the final
decision is a contribution by voting of the decisions
of the three discriminators. Therefore, the decision of
Discriminator 1 is either confirmed or contradicted by
the other two discriminators, which form the overall
architecture of our MDD-CNN system.

Class Training Validation Test
Real Faces 50 000 10 000 10 000
Fake Faces 50 000 10 000 10 000

Total 100 000 20 000 20 000

Table 4. Discriminator 2 training and test data
separation.

4.3.2. Training of Discriminator 2
Discriminator 2 is the model of Discriminator 1, pre-
viously trained with its opponent, the generator, and
further trained by transfer learning on a dataset made
up of real and fake faces (Figure 12).

During the training of this network, we kept the
following configuration:

Optimizer = RMSProp.
Batch size = 128.
Number of epochs = 30.
Figure 12 shows the main training phases of the

discriminator. The distribution of the dataset for
training and test is described according to Table 4.

Figure 13 shows the training results of the discrim-
inator. We can see that the network achieved an
accuracy rate of 98 % during training and 94 % dur-
ing testing, with a loss of 0.05 % during training and
0.12 % during testing, which is considered as accept-
able for the detection of fake faces.

4.3.3. Training of Discriminator 3
The architecture of Discriminator 3 is the same as
that of Discriminator 1, trained from scratch on real
faces and fake faces without its generator.

During the training of this network, we kept the
following configuration:

Optimizer = RMSProp.
Batch size = 128.
Number of epochs = 45.
Figure 14 shows the main training phases of the Dis-

criminator 3. The distribution of the training dataset
is the same as for the Discriminator 2 (Table 4).

From the graphs in Figure 15, we can see that the
network achieved an accuracy rate of 97 % during
training and 94 % during testing, with a loss of 0.06 %
during training while the estimated test loss remained
within an acceptable range of 0.14 % for effective de-
tection of fake faces.

4.4. Test and analysis
The tests with the three discriminators were carried
out with datasets of 20 000 images (fake and real),
that had not been presented to the networks before.
The results obtained by each network are shown in
Tables 5.

Table 6 shows the true and false positive and nega-
tive examples. We observed that Discriminator 2 is
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Figure 11. Discriminator and generator Loss.

Figure 12. Training of Discriminator 2.

better at discriminating negative examples (fake face)
with a TN of 98 % than positive examples (real face)
with a TP of 92 %. Discriminator 3 is then better at
discriminating real faces, with a TP of 98 %, than fake
faces, with a TN of 93 %.

Table 7 shows the precision and recall of the three
networks obtained with real and fake faces datasets.

Figure 13. Accuracy and Loss during training and
validation of Discriminator 2.

The Discriminator 2 recognises the real faces with
an accuracy of 0.98, exceeding that of fake faces by
0.05. Conversely, for Discriminator 3, the recognition
accuracy of fake faces (0.98) exceeds that of the real
faces (0.05).

With the accuracies obtained, the discriminators of
our system manage to recognise more than 93 % of the
examples presented. It should be noted that 5 % of the
examples not recognised by one of the discriminators
are recognised by the others, which is advantageous
for our multi-discriminator because its final decision is
obtained by voting between the decisions of the three
discriminators, where the final result is obtained by a
majority vote which is not always possible in the case
of an even number of discriminators.

Figure 16 shows the ROC curves of the three dis-
criminators and the multi-discriminator (MDD-CNN)
allowing the performances of the four architectures to
be compared. We can see that the MDD-CNN curve
deviates slightly from Discriminator 2 (best discrim-
inator of fakes) and occupies the upper part of the
ROC space indicating the best classifier among the
four with a TPR around 97.8 %.
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Figure 14. Training of Discriminator 3.

Figure 15. Accuracy and Loss during training and
validation of Discriminator 3.

In order to test the performance of our MDD-CNN
architecture, we have carried out several tests on im-
ages of real faces and false faces randomly introduced
into the system, the results are shown in Figure 17
with an indication for each image of the prediction
and the ground truth class (true or false faces).

Thanks to the combination of the performance of
the three discriminators, the MDD-CNN architecture
has given high discrimination rates (97.8 %) thus ex-
ceeding the state of the art with a minimum deviation
of 0.8 % and a maximum of 17 % (Table 8).

5. Conclusion
In recent years, deepfake technologies have gained sig-
nificant popularity and pose a threat to our security
as they can be exploited by criminals for fraudulent
activities. Consequently, the detection of fake content
has become a crucial research area, given the prolif-
eration of manipulated or fabricated data in various
forms, such as images, videos, and sounds.

Distinguishing fake faces from real ones is both a
challenging and a delicate task. It requires a high-
performance discrimination system with considerable

Discriminator 1
TP FN TN FP

Image 8483 1517 7013 2987count
Ratio on 0.8483 0.1517 0.7013 0.2987total count

Percentage 84.8 % 15.2 % 70.1 % 29.9 %
Discriminator 2
TP FN TN FP

Image 9823 177 9205 795count
Ratio on 0.9823 0.0177 0.9205 0.0795total count

Percentage 98 % 2 % 92 % 8 %
Discriminator 3
TP FN TN FP

Image 9763 237 9277 723count
Ratio on 0.9763 0.02 0.9277 0.0723total count

Percentage 98 % 2 % 93 % 7 %

Table 5. Performance of Discriminators 1, 2 and 3.

TP TN FP FN
Discriminator 1 84.8 % 15.2 % 70.1 % 29.9 %
Discriminator 2 92 % 98 % 2 % 8 %
Discriminator 3 98 % 93 % 7 % 2 %

Table 6. Performance comparisons of the three dis-
criminators.

accuracy to distinguish fake faces from real ones. This
need led to the development of the multi-discriminator
architecture proposed in this study. This architecture
consists mainly of three discriminators whose main
task is to detect false faces. Each network provides a
decision weighted by the probability of belonging to
the class of real or fake faces. The decision of each
network represents a vote that will contribute to the
voting of all the networks to provide a final decision
(an opinion) on the class of the image.

The three discriminators have been trained differ-
ently, whith Discriminator 1 being part of the archi-
tecture that we have proposed for the new DCGAN
resulting from the transformation of a GAN network
from a generator of fake faces, with a generator that
manages to deceive its discriminator to a detector of
fakes, with a discriminator that manages to recognise
the fake faces of the generator. Although the discrim-
inator of the NDCGAN network gave good results
with a precision of 79 %, it is still insufficient as the
loss exceeds 40 %. The loss was significantly reduced
by transfer learning, which was used in the case of
Discriminator 2, resulting in the model having the
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Support Precision Recall

Discriminator 1 Fake 10 000 0.79 0.77
Real 10 000 0.80 0.82

Discriminator 2 Fake 10 000 0.93 0.98
Real 10 000 0.98 0.92

Discriminator 3 Fake 10 000 0.98 0.93
Real 10 000 0.93 0.98

Table 7. Precision and recall of the three discriminators.

Reference Dataset Accuracy

Z. Liu et al. [17] StyleGAN 80.72 %CelebA-HQ
T. Jung et al. [22] GAN DF 87.5 %

P. Korshunov & S. Marcel [23] Vid TIMIT 91.03 %
Y. Li & S. Lyu [26] Deep Fake UADFV 97 %
X. Yang et al. [27] HFF 95.17 %

A. Chintha et al. [28] Face forensics 84.8 %Celeb DF
S. Lee et al. [30] GAN DF 93.99 %

Our work (MDD-CNN) Flickr-Faces-HQ 97.8 %Nvidia Style GAN FF

Table 8. Comparison of MDD-CNN performance with state of the art.

Figure 16. ROC Curve of the four classifiers.

best fake face detection rate (98 %). For the detection
of real faces, the best rates were obtained by Discrim-
inator 3 (98 %), which underwent supervised training
with positive and negative examples.

The performance of the three discriminators com-
bined in the multi-discriminator architecture allowed
us to obtain remarkable detection rates (around 98 %)
for the two classes.

The results obtained with the proposed architecture
(MDD-CNN) outperform the state of the art by 0.8 %–
17 %. These results remain preliminary and need to
be deepened by testing our architecture on other fake
datasets.

In addition to this study, in the future we plan to
conduct various tests on more datasets of images and
videos containing fake faces in order to implement
a system for detecting fakes in images and videos
manipulated in social media.

Figure 17. Obtained results of our MDD-CNN.
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