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Abstract. This paper reproduces the result of Elliot, namely that the irreducible finite dimensional
representation of the Lie algebra su(3) of highest weight (m, n) is decomposed according to the
embedding so(3) ⊂ su(3). First, a realisation (a representation in terms of vector fields) of the Lie
algebra su(3) is constructed on a space of polynomials of three variables. The special polynomial
basis of the representation space is given. In this basis, we find the highest weight vectors of the
representation of the Lie subalgebra so(3) and in this way the representation space is decomposed to
the direct sum of invariant subspaces. The process is illustrated by the example of the decomposition
of the representation of highest weight (2, 2). As an additional result, the generating function of the
decomposition is given.
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1. Introduction
In the article by Elliot [1], the plethsym method is used
to decompose the irreducible finite dimensional repre-
sentation of Lie algebra su(3), the Lie algebra of anti-
Hermitian 3 × 3-matrices with vanishing trace, with
the highest weight (m, n), where m, n are non-negative
integers, into the direct sum of irreducible representa-
tions of so(3), the Lie algebra of 3×3 skew-symmetric
matrices, according to the embedding so(3) ⊂ su(3).
The embedding SO(3) ⊂ SU(3) is widely used in the-
oretical physics and corresponding irreducible bases,
both non-orthogonal and orthogonal ones, have been
intensively studied (see [2–5]). The formula (14) in [1]
states that the representations (λ) of so(3) with the
highest weight λ, which occur in the representation
(m, n) of su(3), are given by:

λ = K, K + 1, K + 2, ..., K + max{m, n},

where the integer:

K = min{m, n}, min{m, n} − 2, ..., 1 or 0, (1)

with the exception that if K = 0:

λ = max{m, n}, max{m, n} − 2, ..., 1 or 0.

In this paper, we reproduce this result using differ-
ential operator realisations, which act on a space of
polynomials of three independent variables. This tool
is used in various contexts, namely in a modern group
analysis of differential equations [6–9], in classification
of gravity fields [10], in geometric control theory [11],
in difference schemes for numerical solutions of differ-
ential equations [12], etc.

2. Realisation of su(3)
We make use of the realisation of the Lie algebra
gl(3,C), which is a complex Lie algebra of elements

Eij , i, j = 1, 2, 3 satisfying commutation relations:

[Eij , Ekl] = δjkEil − δliEkj ,

on a space of polynomials of three variables
C[x1, x2, x3]. (For an extensive list of realisations
of low dimensional Lie algebras see [13]. See [14] how
to obtain all irreducible representations of classical
Lie algebras in terms of polynomial vector fields.) The
realisation ρ is given by the formulas [15]:

ρ(E11) = x1∂1 + x3∂3 + iα1 + 1,

ρ(E12) = x1∂2 + x2
3∂3 + (1 + i(α1 − α2))x3,

ρ(E13) = x2
1∂1 + x1x2∂2 + x3(x1 + x2x3)∂3+
(2 + i(α1 − α3))x1 + x2x3(1 + i(α1 − α2)),

ρ(E21) = x2∂1 − ∂3,

ρ(E22) = x2∂2 − x3∂3 + iα2,

ρ(E23) = x1x2∂1 + x2
2∂2 − (x1 + x2x3)∂3

+ (1 + i(α2 − α3))x2,

ρ(E31) = −∂1,

ρ(E32) = −∂2,

ρ(E33) = −x1∂1 − x2∂2 + iα3 − 1,

(2)

where α1, α2, α3 are arbitrary complex parameters.
Introducing the generators:

H1 = E11 − E22,

H2 = E22 − E33,

and the operators:

ρ(H1) = ρ(E11) − ρ(E22) = x1∂1 − x2∂2 + 2x3∂3+
i(α1 − α2) + 1,

ρ(H2) = ρ(E22) − ρ(E33) = x1∂1 + 2x2∂2 − x3∂3+
i(α2 − α3) + 1,

we obtain a realisation of the Lie algebra
sl(3,C) ≃ su(3)C, given by the generators E12, E13,
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E23, E21, E31, E32, H1, and H2 and commutation
relations:

[E12, E23] = E13, [E12, E21] = H1,
[E31, E12] = E32, [H1, E12] = 2E12,
[E12, H2] = E12, [E21, E13] = E23,
[E13, E31] = H1 + H2, [E13, E32] = E12,
[H1, E13] = E13, [H2, E13] = E13,
[E23, E31] = E21, [E23, E32] = H2,
[E23, H1] = E23, [H2, E23] = 2E23,
[E32, E21] = E31, [E21, H1] = 2E21,
[H2, E21] = E21, [E31, H1] = E31,
[E31, H2] = E31, [H1, E32] = E32,
[E32, H2] = 2E32,

(other commutation relations are zero).
For any m, n non-negative integers, let us take:

α1 = 0, α2 = −i(n + 1), α3 = −i(m + n + 2).

This way (2) becomes a realisation of su(3)C, and also
of the real form su(3), which turns out to be reducible
(see Theorem 1). (We denote this realisation by the
same symbol ρ.)

From now on, we suppose, for technical reasons,
m, n to be even integers such that m ≥ n. (The
process would differ slightly for the case of m, n being
odd, we omit details here for brevity.)

Let us now denote:

y = x1 + x2x3,

and let us take the polynomials from the representa-
tion space C[x1, x2, x3] which are given in Table 1. Let
us define the subspace P ⊂ C[x1, x2, x3] as a linear
span of all these polynomials. This turns out to be
an invariant subspace of ρ (see Lemma 2). To show
this, we start with a finding of a suitable set of su(3)C
algebra generators.

Lemma 1. su(3)C is generated (as a Lie algebra) by
the generators:

E12, E23, E31.

Proof. First, using E12 and E23, we obtain the gener-
ator E13, because:

[E12, E23] = E13.

Then, using E23 and E31, we obtain E21:

[E23, E31] = E21.

Similarly, we get H1 by:

[E12, E21] = H1,

and E32 by:
[E31, E12] = E32.

Finally, we obtain H2 using:

[E23, E32] = H2.

1) xm−j
1 xn−b−j

3 ybxk
1(x2x3)j−k,

0 ≤ b ≤ n, 0 ≤ j ≤ n − b, 0 ≤ k ≤ j,

2) xm−j
1 x

j−(n−b)
2 ybxk

1(x2x3)n−b−k,
0 ≤ b ≤ n, n − b + 1 ≤ j ≤ m, 0 ≤ k ≤ n − b,

3)
x

j−(n−b)
2 ybxk

1(x2x3)m+n−b−j−k,
0 ≤ b ≤ n, m + 1 ≤ j ≤ m + n − b,

0 ≤ k ≤ m + (n − b) − j,

4) xm−j
1 xn−k

3 xl
1(x2x3)k−l,

1 ≤ j ≤ n, 0 ≤ k ≤ j − 1, 0 ≤ l ≤ k,

5) xm−j
1 xn−k

3 xl
1(x2x3)k−l,

n + 1 ≤ j ≤ m, 0 ≤ k ≤ n, 0 ≤ l ≤ k,

6) xm−j
1 xk−n

2 xl
1(x2x3)n−l,

n + 2 ≤ j ≤ m, n + 1 ≤ k ≤ j − 1, 0 ≤ l ≤ n,

7) xm−j
2 xl

1(x2x3)k−l,
1 ≤ j ≤ n, 0 ≤ k ≤ j − 1, 0 ≤ l ≤ k,

8) xm−j
2 xl

1(x2x3)k−l,
n + 1 ≤ j ≤ m, 0 ≤ k ≤ n − 1, 0 ≤ l ≤ k,

9) xn−j
3 xl

1(x2x3)k−l,
1 ≤ j ≤ n − 1, 0 ≤ k ≤ j − 1, 0 ≤ l ≤ k.

Table 1. P .

Note 1. Similarly, one can show that su(3)C is gener-
ated by the triplet:

E13, E21, E32.

Lemma 2. P is an invariant subspace of the realisa-
tion ρ of su(3)C given by (2).

Proof. Due to Lemma 1, it is sufficient to show that
P is invariant with respect to ρ(E12), ρ(E23), and
ρ(E31).

Let us start with ρ(E31) = −∂1.
First, let us apply ρ(E31) to polynomial of type 1)

from Table 1. We obtain:

ρ(E31)(xm−j
1 xn−b−j

3 ybxk
1(x2x3)j−k) =

− bxm−j
1 xn−b−j

3 xk
1(x2x3)j−kyb−1−

(m − j + k)xm−j−1
1 xn−b−j

3 xk
1(x2x3)j−kyb.

When b > 0, this result falls into the group 1) in
Table 1.

When b > 0 and j < n, this result falls into the
group 4).

Finally, when b > 0 and j = n, this result falls into
the group 5).

For other types 2)–9), we get similar results.
For the operators ρ(E23) and ρ(E31), we proceed

similarly.

We will denote the restriction of ρ on the subspace
P by the same symbol ρ. In this way, ρ becomes finite
dimensional representation on P .

Theorem 1. The polynomials in Table 1 form a basis
of P .
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Proof. The group 1) in Table 1 contains a polynomial:

v = xm
1 yn. (3)

This vector v satisfies:

ρ(H1)v = mv, ρ(E12)v = 0,

ρ(H2)v = nv, ρ(E23)v = 0,

i. e. it is the highest weight vector of the representa-
tion ρ. Therefore, ρ contains, as a subrepresentation,
the representation of the highest weight (m, n) and
the dimension of P has to be greater or equal to:

1
2(m + 1)(n + 1)(m + n + 2), (4)

(for what is a well-known formula for the dimension
of the representation of the highest weight (m, n),
see [16], § 24.3). The numbers of vectors given in
Table 1 are given in Table 2. Because their total count
agrees with (4), the dimension of P is equal to (4)
and the vectors in Table 1 are linearly independent
and form a basis of P .

Example 1. An example of the space P together
with the weights of the 27 basis vectors for the case
of the highest weight (2, 2) is shown in Figure 1.

Let us denote:

I0 = i(E21 − E12),
I± = i(E31 − E13) ± (E23 − E32).

Then:

[I0, I±] = ±I±, [I+, I−] = 2I0,

i. e. the generators I0, I+, and I− form a su(2) ≃ so(3)
subalgebra of su(3).
Let us now denote:

z = 1 + ix3,

χ = x2 − ix1,

r = 2z − z2 + y2,

w = z + iyχ,

ξ = 1 + x2
1 + x2

2,

and consider the polynomials given in the Table 3 (we
call them “maximal vectors”).

Lemma 3. Maximal vectors sab and tka belong to
P .

Proof. This fact can be directly verified from the ex-
panded form of the maximal vectors.

Lemma 4. Maximal vectors sab and tka are the high-
est weight vectors for the so(3) triple (I0, I±), i. e.

ρ(I0)sab = (b + m)sab, ρ(I+)sab = 0,

ρ(I0)tka = (m − 2k + a mod 2)tak, ρ(I+)tka = 0.

1) 1
6 (n + 1)(n2 + 5n + 6),

2) 1
6 (n + 1)(n + 2)(3m − 2n),

3) 1
6 n(n + 1)(n + 2),

4) 1
6 n(n + 1)(n + 2),

5) 1
2 (n + 1)(n + 2)(m − n),

6) 1
2 (n + 1)(m − n − 1)(m − n),

7) 1
6 n(n + 1)(n + 2),

8) 1
2 n(n + 1)(m − n),

9) 1
6 (n − 1)n(n + 1),

Total 1
2 (m + 1)(n + 1)(m + n + 2).

Table 2. Vector counts.

Proof. This is verified by the direct computation.

Lemma 5. Maximal vectors sab and tka are linearly
independent.

Proof. As the linear independence of maximal vectors
having different eigenvalues of ρ(I0) is clear, it remans
to check the linear independence of maximal vectors
having the same eigenvalues. But this is clear from
the form of the maximal vectors.

We are now ready to formulate the main theorem.

Theorem 2. The representation space P is a direct
sum of linear spans of mutually linearly independent
vectors

ρ(I−)jsab, 0 ≤ j ≤ 2(b + m), (5)

and

ρ(I−)jtka, 0 ≤ j ≤ 2(m − 2k + a mod 2), (6)

where sab and tka and indices a, b, k are given in the
Table 3. The linear spans (5) and (6) are minimal
invariant subspaces of representation ρ of su(3) of high-
est weight (m, n) viewed as a (completely reducible)
representation of so(3), having highest weights (b + n)
resp. (n − 2k + a mod 2).

Proof. The linear independence of vectors (5) resp. (6)
is clear from the linear independence of vectors sab

and tka, because we can make use of the operator
ρ(I+)j to “come back” from ρ(I−)jsab to the scalar
multiple of the highest weight vector sab. The proof is
thus reduced to verifying the fact that the number of
vectors is equal to the dimension of P , namely (4).

Corollary 1. Elliot’s result (1) is a direct conse-
quence of the Theorem 2.

Example 2. The list of maximal vectors for the case
of highest weigth (2, 2) (i. e. m = 2, n = 2, see the
Figure 1 contains the vectors:

z2χ2, wzχ, w2, rχ2, rξ,
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1

2

3

Figure 1. An example of P .

of highest weights

4, 3, 2, 2, 0.

This indicates the following decomposition of the rep-
resentation (2, 2):

(2, 2) ≃ (4) ⊕ (3) ⊕ 2(2) ⊕ (0), (7)

or, in the dimensions of individual representations:

27 = 9 + 7 + 2 × 5 + 1.

Note 2. Using the explicit decomposition formula (1),
it is easy to obtain the generating function F (P, Q, x)
for the so(3) ⊂ su(3) decomposition. It reads

1 + PQx

(1 − P 2)(1 − Q2)(1 − Px)(1 − Qx) . (8)

For example, the result (7) can be quickly rediscovered
using the generating function (8) by computing:

1
2!

1
2!

d2

dP 2
d2

dQ2 F (P, Q, x)
∣∣∣∣P =0
Q=0

= x4 + x3 + 2x2 + 1.

3. Conclusion
The differential realisation method for obtaining the
decomposition of a finite dimensional representation
of the Lie algebra su(3) according to the embedding

1) sab = wazbχm−ar
n−(b+a)

2 ,
0 ≤ a ≤ m, 0 ≤ b ≤ n − a, a + b even,

2) tka = r[ n−a
2 ]ξ[ a

2 ]+kwa mod 2zaχm−2k−a,
1 ≤ k ≤ m

2 , 0 ≤ a ≤ m − 2k, a ≤ n.

Table 3. Maximal vectors.

so(3) ⊂ su(3) was presented. The parametrisation of
the submodules is a convenient for the application in
particle physics and in general for systems with the
appropriate symmetries. The realisation way is shown
to be convenient tool for constructing such decompo-
sitions and leads to the decomposition result using
only basic, appropriate classical tools from representa-
tion theory. This makes the method approachable for
a broad audience within mathematics and physics and
it can be useful for obtaining similar decompositions
based on other subalgebra–algebra pairs. The generat-
ing function provides a quick algorithm to determine
the multiplicities for so(3) irreducible representations
occurring in the decomposition of su(3) representa-
tions.
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