
1 Introduction

1.1 The metric operator in the Schrödinger
formulation of pseudo-Hermitian quantum
mechanics

The recent interest in non-Hermitian Hamiltonians stems
from the work of Bender and Boettcher [1], who showed nu-
merically that the class of Hamiltonians

H p g ix N� �
1
2

2 ( ) (1)

has a completely real spectrum for N �2. They attributed this
property to an unbroken ��-symmetry, whereby

x x� � , i i� � . (2)

A rigorous proof [2] of the reality came a few years later
by exploiting the ODE-IM correspondence, i.e. the corre-
spondence between ordinary differential equations in their
different Stokes sectors and integrable models.

In such cases there exists a similarity transformation from the
non-Hermitian H to a Hermitian h:

h H� �� � 1. (3)

Here � is a positive-definite Hermitian operator (re)in-
troduced by Mostafazadeh [3].

It is related to the Q operator [4], which provides a posi-
tive-definite metric for the quantum mechanics governed by
H, according to

� �
�

e
Q

1
2 . (4)

It is also useful to introduce its square

� �� � �2 e Q (5)

From Eq. (3)

� � � �� �� � �1 1H h h H† † .

So

H H H† � �� �� � � �2 2 1. (6)

This replaces the usual Hermiticity requirement on the
Hamiltonian. H is said to be quasi-Hermitian [5], or pseudo-
-Hermitian(1), with respect to �.

The operator � � �e Q is in fact precisely the metric opera-
tor occurring in

� � � � �, ,A A� , (7)

because the similarity transformation � � �A A� � 1, � �� � �

gives

� � � � �� � � � � � � �A A† 1 .

Here � � � �† � �2 , rather than 1, as would be the case if �

were unitary rather than Hermitian, so
� � � �� � � � �A A . (8)

If the operator �A is Hermitian then A is pseudo-Her-
mitian: A A† � �� � 1, and is an observable, with real eigen-
values (the same as those of �A ).

1.2 Functional integral formalism of quantum
mechanics

In the functional integral formulation of standard Her-
mitian quantum mechanics, the basic object of interest is the
vacuum generating functional

Z j D t V j t[ ] [ ]exp � ( ) ( )� � � �	

�

�

�
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�
�
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�
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2

2 , (9)

from which Green functions can be obtained by functional
differentiation with respect to j(t).

The fundamental question we are asking here is, what is
the corresponding expression in pseudo-Hermitian quantum
mechanics? One might perhaps expect something like

Z j D t V j t[ ] [ ] exp � ( ) ( )� � � �	

�

�

�

�
�
�

�
�
��� � � � � �d

1
2

2 , (10)

but this is not what happens. In fact � does not appear ex-
plicitly in the expression for Z[j]. Rather, depending on the
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metric chosen in the operator formalism, j will appear differ-
ently in the Lagrangian.

The method we will use to find the correct expression
for Z is to use the similarity transformation between our
pseudo-Hermitian theory and the equivalent Hermitian the-
ory, where we know how Z should be written. In this paper
we will limit ourselves to a particular soluble model, the
Swanson model, which can be formulated as a viable quantum
theory in a variety of ways (in fact there is a one-parameter
family [6] of �s), of which we will pick the three simplest. In [7]
we treated the two cases Q Q x� ( ) and Q Q p� ( ), and in addi-
tion the pseudo-Hermitian “wrong-sign“ quartic oscillator,
i.e. Eq. (1) for N � 4.

2 Z for various versions of the
Swanson model
The Hamiltonian for this model, first introduced in [8], is

H a a a a� � �� � 	† †2 2

where a and a† are standard lowering and raising operators
for a simple harmonic oscillator with unit frequency, and �, �

and 	 are real parameters. H is non-Hermitian for � 	� . In
terms of x and p,

H ax bp c x p� � � �
2 2 { , } , (11)

where a � � �1
2 ( )� � 	 , b � � �1

2 ( )� � 	 , c i� �1
2 ( )� 	 .

2.1 Q Q x� ( )
H can be written as

H x p a
c
b

x b p
c
b

x a X bP h X( , ) ~ ( ,� �
�
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2
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2
2 2 P) (12)

This is a simple harmonic oscillator with frequency
 �2 ~a b.

Recall that H x p e h x p eQ Q( , ) ( , )� �1
2

1
2 . So Q has to satisfy

X x e x e

P p
c
b

x e p e

Q Q

Q Q

� �

� � �

�

�

1
2

1
2

1
2

1
2

,

,
(13)

which can be achieved by

Q
ic
b

x� � 2. (14)

Note that Eq. (13) represents a (complex) canonical trans-
formation between the pairs (x, p) and (X, P). Classically Q
appears as the active part of the generator

F x P xP iQ x2
1
2

( , ) ( )� �

of this canonical transformation, according to which

X
F
P

x� �
�

�
2 , p

F
x

P iQ� � � �
�

�
2 1

2
. (15)

It is also worth noting that to construct the classical La-
grangian corresponding to Eq. (11) we have

L xp H
x
b

a x
c
b

xx� � � � ��
� ~ �

2
2

4
. (16)

which differs from a normal (scaled) Lagrangian for the har-
monic oscillator with frequency 
 only by the total derivative
( ) � �c b xx iQ� 1

2 .

Our approach will be to start with the naive form for the
Euclidean Z[0] corresponding to H, verify that this is correct
by transforming to its Hermitian equivalent, then insert the
external source j(t) coupled to the Hermitian observable, and
finally transform back to obtain the form of Z[j] for the
non-Hermitian Hamiltonian H. In this spirit we suppose that

� �Z D D t i a b c[ ] [ ][ ]exp �0 22 2� � � � ��
�
�

�
�
��� � � �� � � ��d , (17)

in which we have H written in terms of � and �.

We then complete the square in exactly the same way as in
Eq. (12), to obtain

Z D D t i
c
b

a b[ ] [ ][ ]exp � ~0 2 2� � � � �	

�

�

�

�
�
�

�
��� �
 �� �� � �d
�� , (18)

with � � �� �c
b . Here the term �i c

b
��� in the exponent is

precisely 1
2

�Q, which can be neglected under the t integration.

This is the only place that Q makes its appearance in this pro-
cedure.

So
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(19)

(to be compared with the non-Euclidean Eq. (16)).

Now let us couple j to the observable � � � in Eq. (19) and
work backwards, to obtain

Z j D t
b

a j

D

[ ] [ ]exp
� ~

[

� � � �
	



�

�
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d
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4

][ ]exp [ � ] .D t i a b c j� �� � � �� �� � � � ��
�
�

�
�
��� d 2 2 2

(20)

Thus functional derivatives � �j bring down factors of the
observable �, and Q does not appear at all!

2.2 Q Q p� ( )
H can equally be written as

H x p a x
c
a

p b
c
a

p

aX b P h X

( , )

~ ( ,

� ��
�
�

�
�
� � �

�

�
�
�

�

�
�
�

� � �

2 2
2

2 2 P).

(21)

This is again a simple harmonic oscillator with the same
frequency 
, since ab a b~ ~� . In this case Q has to satisfy

P p e p e

X x
c
a

p e x e

Q Q

Q Q

� �
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2
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1
2 ,

(22)

which can be achieved by
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Q
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a

p� 2. (23)

The corresponding classical generating function is
F x P xP iQ P2

1
2( , ) ( )� � ,

giving

p
F
x

P X
F
P

x iQ� � � � � �
�

�

�

�
2 2 1

2
. (24)

We now mimic this procedure in the functional integral,
starting again with

� �Z D D t i a b c[ ] [ ][ ]exp �0 22 2� � � � ����
����� � � �� � � ��d , (25)

and completing the square in the manner of Eq. (21) rather
than (12). Then

Z D D t i
c
a

a b[ ] [ ][ ]exp ( � �
~

0 2 2� � � �	

�

�

�

�
�
�

�
�� � � � ��� � �d �

�� , (26)

where � � �� �c
a . Again the term i c

a ��� in the exponent is
just 1

2
�Q, and can be dropped under the t integration. So
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(27)

Now we restore j, coupled to the observable � in this
Hermitian version and work backwards:

� �Z j D D t i a b j[ ] [ ][ ]exp �
~

� � � � ��
�
�

�
�
��� � �� �� � �d 2 2 . (28)

Rewriting this in terms of the original field � �� �� c
a ,

the square bracket in the exponent becomes (up to total
derivatives)
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(29)

Integrating over � and rescaling � �� 2b, the final re-
sult corresponding to the operator theory with metric given
by Q(p) is (note that had we coupled j to � in (28), we would
have simply reproduced (20))
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Again Q does not appear explicitly, but now the source j
appears in an unfamiliar way, with terms in j�� and j2.

As a check of these results let us calculate the expectation
values � and � �1 2 from the expression (30).

The first is rather trivial:

�



� � � �
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1 1
2 2

0
0

2

Z
Z
j b a

ic
aj

�

�
� �� , (31)

as expected. However, the second check is more interesting:
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giving
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b
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~
, (34)

which is indeed the result to be expected from Eq. (27).

2.3 Q Q x p� �( )2 2

This was in fact the original similarity transformation

found by Geyer et al. [9], according to whichQ x p� � ��( )2 2 ,

with � �
	

� ln . In this case the result of the similarity transfor-

mation e e
Q Q�

1
2

1
2� is

X x ip
P p ix

� �

� �

cosh sinh
cosh sinh

� �

� ��
(35)

resulting in H x p h X P X P( , ) ( , )� � �� �2 2 , where
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(36)
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In the functional integral formalism we start from the Hermitian form, and couple j to �, to obtain
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In this case, the total derivative dropped under dt� was
not a multiple of �Q. It turns out that this was a special case
when Q was a quadratic in either x or p. The more general
result is that the two Lagrangians differ by the time derivative
of

1
2

x Q x P
x

P Q x P
P

�

�

�

�

( , ) ( , )
�

�

�
�

�

�
� .

We have again checked that we correctly obtain � and
� �1 2 from functional derivatives of � �Z j .

3 Discussion
The essential formula is

� ��  Z D D t i H

D D t i

[ ] [ ][ ]exp � ( , )

[ ][ ]exp �

0 � � �

� �

�� � � �� � �

� �

d

d� � ��  � ���� h( , ) .�

(38)

Here we must write i��� in terms of � and �. Then, if pos-
sible, we write Z[ ]0 in Lagrangian form, either in � or in �:

�  

�  

Z D t

Z D t

[ ] [ ]exp ( )

[ ] [ ]exp ( ) .

0

0

� �

� �

��

��

� �

� �

d
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d

�

�

(39)

Finally we add �j� or �j� to � and try to work backwards.
In this paper we have only used the first option in Eq. (39),

thinking of quantum fields rather than their conjugate
momenta as the relevant objects. However, we could have
used the second option in Section 2.2, in which case we would
have finished with a simple formula like Eq. (20) for � �Z j , but
with the roles of � and � reversed. For the case of the
wrong-sign quartic oscillator treated in [7], an equivalent con-
ventional Hermitian theory, with a standard kinetic term, is
only possible if � �Z 0 is expressed in terms of �.

In any case we have shown that Q does not appear explic-
itly in the functional integral formalism, on the lines of
Eq. (10), as might have been naively supposed. Instead the
choice of metric in the operator formalism is reflected in the j
dependence of � �Z j .

It is interesting to note that in their work on the
V x igx� �1

2
2 3 model [10], Bender et al. implicitly made the

assumption that Q does not appear in the functional integral
formalism, since their Feynman rules, for both the original
theory and its Hermitian equivalent, were effectively derived
from standard functional integrals. In that case Q is only
known perturbatively, and the series for � involves compli-
cated derivative couplings.

The successful construction of the equivalent Hermitian
theory to that with a �gz4 potential raises hopes that a similar
construction, within the functional integral framework, might
be possible for the corresponding �g�4 field theory. Some
tentative steps were made in this direction in [11], but the
generalization seems far from straightforward.

Remarks
(1) In this context, where � is a positive-definite operator,
the first term may be preferable. The �� invariance of the
original class of Hamiltonians (1) can be expressed as pseu-
do-Hermiticity with respect to the indefinite operator P.
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