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Abstract. For more than two decades, High Friction Surfacing Treatments (HFST) have been used
worldwide to improve road safety at critical locations, such as sharp curves and intersections. However,
the costs associated with HFST installation and the rapid deterioration observed on pavements with
poor structural conditions cannot be overlooked. To address these concerns, this research study sought
a reliable and accurate method for assessing the suitability of applying HFST to pavements. The
main focus was on using machine learning techniques and incorporating International Roughness Index
(IRI) and Pavement Condition Index (PCI) data to predict and provide informed recommendations
for HFST application. To achieve this, ensemble models were employed, of which the decision tree
and extreme gradient boosting showed robust performance, achieving an impressive R-squared value
of 0.90, indicating a high level of accuracy in predicting PCI. These models were further assessed for
HFST application using the LTPP dataset, with sections classified as suitable and categorised them
as good, fair, or poor. The suggestions from these models were particularly reliable in determining
the appropriate area for HFST application. The research results clearly demonstrated the efficacy of
the ensemble models in accurately predicting PCI and providing informed recommendations for HFST
application.

Keywords: High friction surface treatment (HFST), ensemble machine learning models, pavement
condition index (PCI), international roughness index (IRI).

1. Introduction
High Friction Surface Treatment (HFST) consists of
a thin layer of high-quality, polish-resistant aggregate
bonded to the pavement surface with a polymer resin
binder. Over the past twenty years, HFST has been
used worldwide, significantly reducing accidents on lo-
cations with high friction demand. HFST offers a level
of friction that conventional paving materials cannot
achieve and maintains this high level of friction over
time. It is primarily used as a spot treatment to ad-
dress specific locations with high friction requirements,
such as horizontal curves, steep grades, intersection
approaches, and other critical areas, rather than being
applied to longer sections of pavement. This system is
designed to markedly improve the friction properties
of both asphalt and concrete pavements. However,
it is important to note that HFST installation can
be costly, and there have been instances where the
treatment experienced a rapid deterioration [1].
HFST is a safety treatment that aims to enhance

the skid resistance of pavement surfaces. It is im-
portant to note that HFST should only be installed
on pavements that are structurally sound, in good
condition, and functionally adequate. Pavements that
are scheduled for preventive maintenance, resurfac-

ing, rehabilitation, or reconstruction should not be
selected for HFST installation without proper coordi-
nation to optimise funding allocation. It is crucial to
understand that HFST does not address underlying
structural deficiencies or pavement maintenance issues.
To ensure the effectiveness of HFST, the pavement
should be in a good structural condition before apply-
ing the treatment. The structural integrity of HFST
is considered acceptable when the HFST-pavement
system can perform its intended function for a speci-
fied duration of use. An appropriately installed HFST
on a stable pavement surface is expected to remain
functional for a minimum of 7 to 10 years, or possibly
longer, depending on the amount of traffic level [2].
However, premature distresses, such as aggregate loss,
cracking, debonding, and delamination can cause the
HFST to lose its efficiency earlier than expected. Sev-
eral factors contribute to early distresses in HFST,
with the epoxy resin binder and existing pavement
condition being significant factors. Only pavements
that meet specific criteria should be considered for
HFST. These criteria include being structurally sound,
having a smooth surface, having good surface condi-
tion (or functional sufficiency), and having minimal
to no surface distress. In addition, if the site is to be
repaved within 1 to 2 years of HFST installation, it is
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advised that the treatment be delayed until after the
repaving.

Applying HFST to pavements that are in poor struc-
tural condition can result in early failure of the treat-
ment and may pose safety risks. HFST is not intended
as a maintenance or rehabilitation solution, it is es-
sential to carry out a comprehensive evaluation of the
pavement condition to detect any underlying prob-
lems like cracks, potholes, or drainage issues that
could impact the effectiveness of the HFST treatment.
The current condition of the pavement may require
addressing minor distresses, performing minor rehabil-
itation, or complete repaving before HFST installation.
Thus, the condition of the pavement before the HFST
installation plays a vital role in ensuring the long-term
efficiency and safety of the treatment. A thorough
assessment of the pavement condition and appropriate
preparation of the pavement surface are essential steps
to ensure the success of the HFST treatment [3].

The Federal Highway Administration (FHWA) rec-
ommends that agencies establish specific criteria for
pavement distress that need to be resolved before
applying HFST, based on their experience and exper-
tise. While agencies often carry out annual pavement
condition surveys for major roads, which can assist
with the initial assessment of the pavement condition,
access to up-to-date pavement condition data is not
always be possible, particularly for minor and local
roads [4]. Some agencies acknowledge facing the com-
plexity of evaluating pavement conditions for HFST
application. Crucial factors, such as distress, skid
resistance, and age, guide informed decisions. For ex-
ample, the New Jersey Department of Transportation
(NJDOT) emphasises the importance of a thorough
assessment prior to HFST application to optimise
effectiveness and cost. Suitable candidates include
structurally sound, smooth pavements with minimal
distress, paved within two years prior to the HFST
application [5].
Various approaches exist for assessing pavement

conditions, such as visual inspection, manual surveys,
and automated data collection methods, for example,
ARAN video. These methods can be used individually
or in combination to offer a comprehensive evaluation
of the pavement’s condition. Several pavement con-
dition indicators are often used, such as the PCI,
Present Serviceability Rating (PSR), Pavement Qual-
ity Index (PQI), and IRI. These indicators play an
essential role in Pavement Management Systems. It
is essential to choose an impartial and consistent sur-
vey method, preferably one that is straightforward
to comprehend and relatively easy to execute in the
field. The widely used PCI procedure, created by
the United States Army Corps of Engineers in the
1970s, is commonly used for the evaluation of flexible
pavements. This procedure follows the Micro Paver
distress guide methodology [6, 7]. The calculation
of PCI incorporates different distinct distress types,
taking into consideration their extent and severity.

This approach is widely acknowledged as a standard
ASTM Test Method, specifically known as ASTM
D6433-11 “Standard Practice for Roads and Parking
Lots Pavement Condition Index Surveys”. PCI values
range from 0 to 100, with a score of zero indicating
inadequate or failed pavements, and a score of 100
representing outstanding performance with no visible
distresses. The use of a composite index provides an
assessment of both surface condition and ride quality.
The IRI provides valuable information about the sur-
face roughness experienced by vehicles travelling on
the road. Originally developed by the World Bank in
1986, the IRI is determined by dividing the cumulative
vibrations or vertical movements by the profile length.
It is measured using a laser profiler and reported
as a non-dimensional index, typically expressed as
mkm−1 or inmi−1 [8]. Previous research has showed
that different approaches were taken by researchers
when selecting the pavement condition variable or
pavement performance measure. Some researchers
chose to adopt the IRI for this purpose. Conversely,
other researchers used the PCI technique as their
preferred pavement performance measure [9, 10]. In
a separate research endeavour, a study was carried
out to investigate the relationship between the IRI
and pavement damage on a selected highway section
in Saudi Arabia. The results of the research showed
a significant correlation between the IRI values and
cracking and IRI values and raveling, at the 95%
confidence level. However, the study did not find
a significant relationship between the IRI values and
rutting [11].
Multiple studies have demonstrated the influence

of the IRI on PCI. While the IRI is measured using
profiling equipment to record surface roughness, the
PCI calculation relies on a subjective assessment of
various pavement distresses. The existing literature
suggests a correlation between these two pavement
indices, which has led to the development of predic-
tive models aimed at estimating one index based on
the other. For example, a research study aimed to
establish parametric models between the PCI and
the IRI using a database encompassing nine states
in the North Atlantic region. They proposed an em-
pirical model, which is presented as Equation (1), to
describe the relationship between PCI and IRI. The
model achieved an accuracy with an R-squared value
of 0.55, indicating a moderate level of predictive ca-
pability [12].

log PCI = 2 − 0.436(log IRI). (1)

In another study, the objective was to develop re-
gression models that could predict PCI from IRI using
data obtained from the District of Columbia (DC) De-
partment of Transportation (DOT) over three years.
The model developed specifically for asphalt concrete
(AC) pavements, using the ordinary least squares
method, is described in Equation (2). Due to the
low accuracy of the model, the authors extended the
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relationship between PCI and IRI based on highway
classifications or pavement types, and they developed
a new model for AC pavements, which is shown in
Equation (3). The first analysis yielded a poor level
of accuracy, with an R-squared value of 0.013. How-
ever, the developed model outperformed the regres-
sion model, demonstrating improved accuracy with
an R-squared value of 0.82 [13, 14].

log PCI = −0.115(log IRI) + 2.131, (2)

PCI = −0.224IRI + 120.02. (3)

In another research, regression and Artificial Neu-
ral Networks (ANNs) models were proposed to pre-
dict IRI using a comprehensive Long-Term Pavement
Performance (LTPP) database [15]. The regression
analysis yielded a moderate level of accuracy, with an
R-squared value of 0.57. However, the ANNs model
outperformed the regression model, demonstrating
improved accuracy with an R-squared value of 0.75.
These findings indicate that the ANNs model provided
more reliable predictions of IRI based on the specified
distress parameters, offering potential improvements
in assessing pavement conditions.

In another research paper, a Gene Expression Pro-
gramming (GEP) model was developed to predict PCI
values based on IRI values specifically for asphalt con-
crete (AC) pavements. The results revealed that the
GEP model achieved a maximum R-squared value of
0.82 for the complete dataset [16].
As stated, the assessment of pavement condition

presents a complex task, which often relies on vary-
ing levels of expertise to determine the suitability of
a pavement for HFST application. It is crucial to
consider several factors, such as pavement distress,
skid resistance, and roughness, in order to make in-
formed decisions about HFST application. To address
this challenge, machine learning techniques were em-
ployed to predict the PCI for evaluating the suitability
of pavements for HFST application in this research.
By using previous IRI and PCI data, the evaluation
process was streamlined, eliminating the need for ex-
tensive assessment of distress extent and severity. This
approach not only saves costs and man-hours but also
allows a number of factors to be taken into account
when determining whether a pavement is suitable for
HFST application. Previous research attempted to
predict the PCI using simple models that rely on
IRI. However, these models yielded low accuracy. Ad-
ditionally, there is a lack of research on evaluating
the suitability of HFST application based on available
data and predicting pavement condition using IRI and
previous PCI [17]. These limitations were addressed
in this study by using powerful machine learning en-
semble models to predict PCI with a high level of
accuracy. By incorporating IRI into the prediction
process and considering various recommendations, the
suitability of a pavement for HFST application could
be suggested. In line with this prevailing approach,

the research capitalised on the potential of ensem-
ble models to achieve accurate PCI predictions, with
a particular focus on incorporating IRI as a critical
parameter. PCI evaluation relies on several factors,
such as crack type and severity. By integrating IRI
and historical PCI data, a machine learning model was
built to assess the updated PCI using the latest IRI
value for a specific pavement section. Subsequently,
the model was used to evaluate both the PCI and the
suitability of installing HFST on selected case study
sections. Comparing the conditions of these sections
with the predicted PCI values provided insight into the
accuracy of the ML models and the recommendations
for HFST installation.

2. Materials and methods
Pavement condition data typically include metrics
such as the PCI, IRI, and skid resistance. The PCI
assesses different types of distress or combines them to
provide an overall assessment of pavement condition.
It begins with a score of 100, indicating a pavement in
perfect condition, with deductions made from this ini-
tial value based on the observed quantities of distress.
The IRI is a key indicator of ride quality, with values
ranging from 0 to 95 inmi−1 (1.50mkm−1) for good
condition, 95 to 170 inmi−1 (1.51 to 2.68mkm−1) for
fair condition, and above 170 inmi−1 (2.68mkm−1)
for poor pavement condition.
The use of machine learning (ML) techniques in

civil engineering proved advantageous by delivering
rapid and precise outcomes, thereby minimising er-
ror rates to negligible levels. The diverse range of
ML methods empowers civil engineering researchers
to improve efficiency and accuracy in their analyses
and decision-making processes. Following this trend,
this research used ensemble models to achieve precise
predictions of the PCI, incorporating IRI as a cru-
cial factor. Embracing these advanced ML techniques
significantly improved the evaluation process and en-
abled more reliable recommendations regarding the
suitability of HFST application on pavements. Using
the ensemble models played a pivotal role in improving
the accuracy and effectiveness of the analysis, leading
to valuable contributions to informed decision-making
in the field of pavement engineering [18].

2.1. Ensemble learning methods
There are three distinct categories of ensemble learning
methods,: bagging, boosting, and stacking. In this
study, as shown in Figure 1, bagging and boosting
techniques were used based on data visualisation and
observed relationships between IRI and PCI. These
ensemble learning methods were chosen to improve
the accuracy and robustness of the predictive models.
By integrating these powerful ensemble methods, the
goal was to improve the prediction of PCI and allow
for more dependable evaluations of HFST suitability
on pavements.

573



Alireza Roshan, Magdy Abdelrahman Acta Polytechnica

Figure 1. Flowchart of ensemble methods.

2.1.1. Decision tree
Decision trees build regression or classification models
in the form of tree structures. The data set is broken
down into smaller and smaller subsets as the associ-
ated decision tree grows. The result is a tree with
decision nodes and leaf nodes. One of the machine
learning methods that simulates the brain’s inductive
learning process is the decision tree method. This
method compares well to other methods. Soft com-
puting is considered to be a newer approach [19].

2.1.2. Random forest
Random forest regression is a supervised learning algo-
rithm that uses set learning for regression. Compound
learning is a technique that combines predictions from
multiple machine learning algorithms to make pre-
dictions that are more accurate than a single model.
Random Forest Regression (RFR) is a bagging-based
ensemble learning method used for both regression
and classification tasks. In RFR, multiple individual
binary decision trees are constructed, each incorpo-
rating an element of randomness. This randomness
encourages the trees to provide independent estimates,
even though they are built using a deterministic algo-
rithm and a calibration dataset [20].

2.1.3. Gradient boosting machine (GBM)
The Gradient Boosting Machine (GBM) was intro-
duced by Friedman. It adopts a stage-wise approach
to building and updating models to minimise loss
functions. By using the gradient descent approach,
GBM constructs models based on the negative partial
derivatives of the loss function. The initial model is
modified to fit the original data and then adjusted to
account for the residuals to address the limitations of
the previous model. This iterative process continues
until a convergence criterion is satisfied [21].

2.1.4. Extreme gradient boosting (XGBoost)

XGBoost is a prominent boosting method that serves
as an extension to GBM. Its key concept involves se-
quentially building regression trees, where each subse-
quent tree is trained using the residuals of the previous
tree. This approach prevents overfitting and optimises
the use of computational resources. XGBoost adopts
a level-wise learning strategy, selecting splits that re-
sult in the greatest reduction in loss at each leaf [22].

2.1.5. Adaptive boosting (AdaBoost)

AdaBoost, introduced by Freund and Schapire, is one
of the pioneering boosting methods. It uses multiple
decision tree regressors as weak learners, which learn
from various attributes of the dataset. The essence of
AdaBoost lies in the sequential update of parameters
associated with a specific family of functions. By iter-
atively incorporating new trees, the learning process
gradually constructs a strong learner with enhanced
predictive capabilities [23].

2.1.6. Categorical gradient boosting
(CatBoost)

CatBoost, introduced by Dorogush et al., is a novel
gradient boosting method designed to address overfit-
ting and optimise model efficiency. It employs a bal-
anced level-wise tree growth approach, which leads to
faster training times and improved performance. Cat-
Boost uses the entire dataset for training and employs
random permutations for each example. It introduces
a new schema for calculating leaf values during the
tree structure selection, effectively overcoming biased
gradient issues typically encountered in traditional
boosting algorithms [24].
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3. Data collection and processing
The specific focus of this research was on the appli-
cation of ensemble methods to predict the PCI based
on IRI and to evaluate the suitability of the pavement
for HFST. A total of 202 data samples were used to
construct the initial database and the statistical anal-
ysis of the dataset is shown in Tables 1 and 2. These
data samples were obtained from various literature
sources, specifically chosen for training and evaluating
machine learning models. The violin and joint grid
graphs of the data points are shown in Figure 2 and 3.
Data visualisation can be a valuable tool for un-

derstanding qualitative data. This tool can be used
to extract information from datasets and to iden-
tify patterns, corrupted data, and other anomalies.
The violin plots revealed interesting patterns in the
data distribution of the IRI and PCI variables. For
the IRI, the plot showcased a multimodal distribu-
tion, suggesting the presence of different road con-
ditions within the dataset. Additionally, the vio-
lin plot for the PCI demonstrated a relatively nor-
mal distribution, indicating a more consistent range
of pavement conditions. These findings highlighted
the inherent variability in road roughness and pave-
ment condition across the studied locations. The
joint grid plot provided valuable insights into the
relationship between IRI and PCI. The scatterplot
in the joint grid plot displayed the individual data
points, illustrating the varying combinations of road
roughness and pavement condition. Interestingly,
a visible trend emerged, indicating a moderate pos-
itive correlation between the IRI and PCI variables.
There is a dense cluster of points towards the lower
end of the IRI values (around 1 to 3) and higher
PCI values (around 80 to 100). As the IRI val-
ues increase beyond 3, the PCI values decrease and
the data points become sparser. This finding sug-
gested that higher road roughness tends to be asso-
ciated with lower pavement condition scores. Such
information can aid decision-makers in prioritising
maintenance and rehabilitation efforts for road net-
works.

Data splitting strategies were adopted to build and
evaluate ML models. The dataset was divided into two
parts: the training sample, which comprised 80% of
the data, and the test sample, which comprised the
remaining 20%. Various ensemble methods were used
during this phase, leveraging the training data to learn
the underlying patterns and relationships between the
input feature IRI and the PCI. Once the model was
built, the performance was evaluated using the test
sample, which was kept separate during the training
phase. The test sample was subjected to the applica-
tion of the trained model to assess its ability to accu-
rately predict PCI based on the input data provided.
To further validate the practical application of the
developed models, a case study was conducted. The
models were employed to predict the PCI of a specific
section, using the corresponding input data. Prede-

ID IRI PCI Ref
1 2.17 61 Park et al. [12]
2 1.2 89 Park et al. [12]
3 1.43 61 Park et al. [12]
4 2.38 71.87 Hasibuan [25]
5 5.45 75.29 Hasibuan [25]
6 1.07 92 L. Girardi Omar [26]
7 1.05 93 L. Girardi Omar [26]
8 5.45 75.29 Arhin and Noel [13]
9 3.6 60.86 Arhin and Noel [13]
10 3.36 32 Ali et al. [27]
11 4.35 34.5 Ali et al. [27]
12 0.89 76.82 Dewan and Smith [28]

Table 1. Selected dataset.

IRI PCI
Count 202 202
Mean 1.77 77.56
Std 1.20 14.24
Min 0.72 31
25% 1 69
50% 1.29 76.01
75% 2.03 88.53
Max 5.86 100

Table 2. Statistical properties of dataset.

fined thresholds for IRI and PCI, as mentioned in
the literature, were used for comparing the predicted
PCI values. This comparison allowed to ascertain the
suitability of the section for the application of HFST.

4. Results and discussion
Accurate prediction models were trained using
a dataset of continuous input and labelled output
data. The focus was on supervised machine learning
algorithms, with specific attention given to ensemble
models. Six ensemble models, namely the decision
tree, random forest, GBM, XGBoost, AdaBoost and
CatBoost, were used. The implementation of these
models was achieved using the scikit-learn library in
Python [29]. The PCI was predicted based on the IRI.
The labelled dataset served as the basis for training
each model, allowing them to understand the intri-
cate relationships between input features and their
corresponding PCI values.

The accuracy and effectiveness of these ML models
were assessed using three commonly employed metrics:
the Mean Absolute Error (MAE), the Root Mean
Square Error (RMSE), and the R-squared. These
metrics provided insights into the models’ performance
in accurately predicting the PCI values and capturing
the underlying patterns within the data.

MAE is the mean error in predictions, derived from
the absolute difference between the actual and pre-
dicted values. RMSE gauges the prediction devia-
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Figure 2. Violin plot of dataset.

Figure 3. Joingrid graph of dataset.

tion from actual values, while R-squared quantifies
an independent variable’s explanatory power on data
variability in a dependent variable [30].

In Table 3 and Figure 4, the performance of various
ensemble models is evaluated based on the metrics
of MAE, RMSE, and R-squared value. Among these
models, the decision tree and XGBoost showed bet-
ter performance in predicting the PCI based on IRI.
The high R-squared value, close to 0.90, indicates
the strong performance of these models in capturing
the underlying patterns in the data. Additionally, the
lower MAE and RMSE values further support the su-
perior performance of the decision tree and XGBoost
models compared to other models, such as Adaboost,
which exhibited a lower R-squared value. The accu-
racy results of all the models reinforce the notion that
transitioning from linear regression to ensemble mod-
els, specifically Boosting methods, allows to capture
the non-linear relationships present in the data. This,

Model MAE RMSE R-squared
Decision Tree 2.53 4.54 0.898
Random forest 4.24 5.68 0.844
XGBoost 2.65 4.55 0.898
CatBoost 4.25 5.63 0.844
Gradient Boosting 4.32 5.76 0.836
AdaBoost 7.46 8.02 0.672

Table 3. Ensemble models metrics.

in turn, leads to improved prediction accuracy for the
targeted problem.

Figure 4 shows that the decision tree and XGBoost
models exhibit the highest accuracy in predicting the
PCI, with an R-squared approaching 0.90. This find-
ing suggests that there is a minimal linear relationship
between the IRI and PCI due to the characteristics
of the dataset and the complex nature of their re-
lationship. The dataset contains abrupt changes in
some values, which can affect the accuracy of calcula-
tions for sensitive algorithms such as Adaboost. As
a result, this model produced a low R-squared and
high MSE and RMSE. Conversely, other algorithms
showed significantly more accurate predictions on the
test data, mainly due to their ability to capture the
non-linear nature of the dataset. The superior per-
formance of the decision tree and XGBoost models
can be attributed to their ability to capture complex
and non-linear relationships between IRI and PCI.
The lower MSE and RMSE values achieved by the
decision tree and XGBoost models further validate
their superior performance in capturing the complex
relationships between the IRI and the PCI.

In Figure 5, the relationship between the predicted
PCI values and the corresponding field-measured val-
ues for the entire dataset is showed. By examining
the distance between the points and the fitted line,
comparisons across different algorithms can be made.
It is notable that the decision tree and XGBoost mod-
els show a smaller number of points deviating sig-
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Figure 4. Ensemble models evaluation metrics.

Figure 5. Predicted vs Actual values of the PCI for the different models.
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Original value Ensemble models prediction
ID PCI Decision tree Random forest XGBoost CatBoost GBM AdaBoost
100 92 85.64 86.25 85.68 86.70 86.63 85.01
162 93 93 84.71 92.93 90.20 90.36 82.58
187 76 76 73.49 76.05 72.06 73.14 70.27
14 80.25 83.81 83.86 83.81 84.12 84.38 82.58
45 78.34 78.17 79.74 78.45 82.49 82.77 82.11
35 89.23 87.87 87.14 87.79 85.85 85.61 82

Table 4. Random selected prediction values.

Pavement FHWA [31] Sayer et al. [32] Goenaga et al. [33]condition
Good IRI < 1.5 2 < IRI < 3.5 2.8 < IRI < 3.5
Fair 1.5 < IRI < 2.68 3.5 < IRI < 6 3.5 < IRI < 4.3
Poor IRI > 2.68 IRI > 8 IRI > 4.3

Table 5. Literature recommendation for pavement conditions based on the IRI values.

State IRI LS∗ Alligator MS∗∗ Alligator HS∗∗∗ Alligator HS∗∗∗ Block HS∗∗∗ Edge Predicted
Crack(Area) Crack(Area) Crack(Area) Crack(Area) Crack PCI

Missouri 0.98 0 1 3 0 0 95.3
Kansas 3.39 9.199 88.69 63.79 394.29 106.80 75
Missouri 1.26 20.60 0.40 11.89 0 0 88.43
Nebraska 0.82 0 1 1 0 0 95.52

∗ Low severity.
∗∗ Medium severity.

∗∗∗ High severity.

Table 6. Specific sections with their crack’s information.

nificantly from the fitted line compared to the other
methods. This observation suggested that these mod-
els possessed a higher predictive power for the specific
dataset used in this research.
In Table 4, the comparison between the predicted

values of the PCI and their corresponding original
values is presented for different methods used in this
research. Upon examination, it is evident that the pre-
diction results were generally acceptable and closely
aligned with the actual values, particularly for the
decision tree and XGBoost models. For instance, in
ID number 162 and 187, the predicted values from the
decision tree and XGBoost models closely match the
original values. This close alignment can be attributed
to the accuracy and robustness of these algorithms in
capturing the underlying patterns and relationships
within the dataset.

4.1. Case study for evaluating the
application of HFST

In this section, the performance of the predicted mod-
els was assessed, and the feasibility of HFST instal-
lation was proposed. This evaluation involved incor-
porating the IRI data, crack types and severity from
specific sections retrieved from the Long-Term Pave-
ment Performance (LTPP) database. Four sections
from different states in the United States were selected
based on their IRI data. The ensemble models devel-

oped in this research were then applied to predict the
corresponding PCI for these sections based on their
current conditions and IRI values.
These sections were then categorised into levels of

suitability for HFST installation, including classifica-
tions such as good, fair, or poor, based on the criteria
given in various literature sources, as shown in Table 5.

According to the FHWA and other literature recom-
mendations, an IRI value of less than 1.5 is considered
to indicate good asphalt pavement condition, while
an IRI value between 1.5 and 2.68 suggests a fair con-
dition. These IRI thresholds can serve as criteria to
assess the suitability of HFST application, according
to recommendations from various authorities, consid-
ering the significant impact of IRI on PCI and its
consideration of pavement condition aspects, such as
crack type and severity [3–5]. The predicted PCI
values for the respective sections were examined and
a comparison was made to the corresponding IRI
thresholds to determine the recommended PCI status.
For instance, in the case where the predicted PCI
falls within the range associated with a good or fair
condition based on the IRI thresholds, it indicates the
suitability of HFST application for these sections.

Table 6 summarised these sections, providing valu-
able insights into their predicted PCI values, along
with comprehensive information about crack length,
type, and severity. The in-depth analysis of the pre-
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Figure 6. Pavement quality for the HFST application based on IRI and predicted PCI values.

dicted PCI based on IRI and subsequent HFST appli-
cation recommendations revealed a strong correlation
between the crack severity and the overall pavement
condition, validating the effectiveness of the evalu-
ation method. For instance, when examining the
Kansas section with its high IRI and varying crack
characteristics, the predicted and suggested model
indicated that it is not a suitable candidate for HFST.
Conversely, sections like Missouri, with lower IRI,
lower crack severity, and higher predicted PCI values,
exhibit promising attributes, making them excellent
candidates for the HFST application.
The installation of HFST in the selected sections

was suggested based on the Predicted PCI and HFST
installation recommendations, as depicted in Figure 6.
Both the Missouri and Nebraska sections emerged as
good candidates for the HFST installation. However,
the Kansas section was indicated as a poor candidate
for the HFST application.

5. Conclusion
HFST provides superior friction levels that does not
degrade over time. It is mainly used as a spot treat-
ment for specific high-risk locations such as sharp
curves and other critical areas, rather than for long
stretches of pavement [1]. The selection of HFST loca-
tions is usually driven by high accident rates, although
it can also be used as a systemic countermeasure. In
addition, a thorough pavement condition assessment
is essential to ensure that a location is suitable for
HFST application.

The assessment of pavement condition for the HFST
application is a complex task that requires considering
multiple factors, such as distress, skid resistance, and
roughness. This research aimed to address this chal-
lenge by using machine learning techniques to predict
the PCI and evaluate the suitability of pavements
for HFST applications. Incorporating IRI data and
previous PCI information streamlined the evaluation

process, eliminating the need for extensive distress
evaluation. This approach not only saved cost and
time, but also allowed for a comprehensive consider-
ation of factors in determining the suitability of the
HFST application. Previous research efforts have fo-
cused on predicting PCI using simple models based
on IRI, but these models have lacked the necessary
accuracy. In addition, there is a lack of research on
evaluating the suitability of HFST and predicting
pavement conditions using IRI and previous PCI. The
suitability of HFST application based on the predicted
PCI has been suggested through the use of ensemble
models and consideration of various recommendations.
This advanced approach improved the evaluation pro-
cess and resulted in more reliable recommendations
for the HFST application to pavements. It was ob-
served that the decision tree and XGBoost models
exhibited the highest accuracy in predicting the PCI,
with an R-squared value approaching 0.90. This find-
ing suggests that there is a minimal linear relationship
between the IRI and PCI due to the dataset’s charac-
teristics and the complex nature of their relationship.
In the evaluation of the predicted models’ perfor-

mance, the IRI data from the LTPP database were
incorporated. By comparing the predicted PCI values
to the corresponding IRI thresholds, the recommended
PCI status could be determined. If the predicted PCI
fell within the range associated with good conditions
based on the IRI thresholds, this indicated the suit-
ability of the HFST application.

References
[1] A. Roshan, M. Abdelrahman. Influence of aggregate
properties on skid resistance of pavement surface
treatments. Coatings 14(8):1037, 2024.
https://doi.org/10.3390/coatings14081037

[2] Federal Highway Administration. FHWA high friction
surface treatments: Frequently asked questions – 2022
update (FHWA-SA-22-016), 2022.

579

https://doi.org/10.3390/coatings14081037


Alireza Roshan, Magdy Abdelrahman Acta Polytechnica

[3] J. F. Bledsoe, H. S. Lee, Applied Research
Associates, Inc. HFST before and after safety analysis,
2021.

[4] PennDOT. High friction surface treatment usage
guide. Pavement policy manual, May 2015 edition,
change No. 5 (publication 242, appendix I), 2019.

[5] T. Bennert, R. Blight, V. Ganji, et al. Development of
high friction surface treatment prescreening protocols
and an alternative friction application. Transportation
Research Record 2675(5):345–355, 2021.
https://doi.org/10.1177/0361198121990027

[6] M. Y. Shahin, J. A. Walther. Pavement maintenance
management for roads and streets using the PAVER
system. Tech. rep., US Army Corps of Engineers,
Construction Engineering Research Laboratory, 1990.

[7] M. Y. Shahin. Pavement management – MicroPAVER
update. In 5th International Conference on Managing
Pavements. 2001.

[8] J. Li, Z. Zhang, W. Wang. International roughness
index and a new solution for its calculation. Journal of
Transportation Engineering, Part B: Pavements
144(2):06018002, 2018.
https://doi.org/10.1061/JPEODX.0000052

[9] P. Herabat, A. Tangphaisankun. Multi-objective
optimization model using constraint-based genetic
algorithms for Thailand pavement management.
Journal of the Eastern Asia Society for Transportation
Studies 6:1137–1152, 2005.
https://doi.org/10.11175/easts.6.1137

[10] Y. Wang, D. Allen. Staged survival models for
overlay performance prediction. International Journal
of Pavement Engineering 9(1):33–44, 2008.
https://doi.org/10.1080/10298430601135469

[11] M. Mubaraki. Highway subsurface assessment using
pavement surface distress and roughness data.
International Journal of Pavement Research and
Technology 9(5):393–402, 2016.
https://doi.org/10.1016/j.ijprt.2016.10.001

[12] K. Park, N. E. Thomas, K. W. Lee. Applicability of
the international roughness index as a predictor of
asphalt pavement condition. Journal of Transportation
Engineering 133(12):706–709, 2007.
https://doi.org/10.1061/(ASCE)0733-
947X(2007)133:12(706)

[13] S. A. Arhin, E. C. Noel. Predicting pavement
condition index using international roughness index in
Washington DC (No. DDOT-RDT-14-03). Tech. rep.,
Howard University Transportation Research Center,
2014.

[14] S. A. Arhin, L. N. Williams, A. Ribbiso,
M. F. Anderson. Predicting pavement condition index
using international roughness index in a dense urban
area. Journal of Civil Engineering Research 5(1):10–17,
2015. https://doi.org/10.5923/j.jce.20150501.02

[15] S. M. E.-B. Nader Abdelaziz, Ragaa T. Abd
El-Hakim, H. A. Afify. International roughness index
prediction model for flexible pavements. International
Journal of Pavement Engineering 21(1):88–99, 2020.
https://doi.org/10.1080/10298436.2018.1441414

[16] R. Imam, Y. Murad, I. Asi, A. Shatnawi. Predicting
pavement condition index from international roughness
index using gene expression programming. Innovative
Infrastructure Solutions 6(3):139, 2021.
https://doi.org/10.1007/s41062-021-00504-1

[17] A. Roshan, M. Abdelrahman. Evaluating friction
characteristics of high friction surface treatment
application under varied polishing and slippery
conditions. Transportation Research Record p.
03611981241257505, 2024. First online.
https://doi.org/10.1177/03611981241257505

[18] K. Aghaee, A. Roshan. Predicting time to cracking
of concrete composites under restrained shrinkage:
A review with insights from statistical analysis and
ensemble machine learning approaches. Journal of
Building Engineering 97:110856, 2024.
https://doi.org/10.1016/j.jobe.2024.110856

[19] E. Pekel. Estimation of soil moisture using decision
tree regression. Theoretical and Applied Climatology
139(3):1111–1119, 2020.
https://doi.org/10.1007/s00704-019-03048-8

[20] A. Roshan, M. Abdelrahman. Predicting
flexural-creep stiffness in bending beam rheometer
(BBR) experiments using advanced super learner
machine learning techniques. Research on Engineering
Structures and Materials 10(3):1195–1208, 2024.
https://doi.org/10.17515/resm2024.58me1027rs

[21] J. H. Friedman. Greedy function approximation:
A gradient boosting machine. The Annals of Statistics
29(5):1189–1232, 2001.
https://doi.org/10.1214/aos/1013203451

[22] T. Chen, C. Guestrin. XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pp. 785–794.
Association for Computing Machinery, New York, USA,
2016. https://doi.org/10.1145/2939672.2939785

[23] Y. Freund, R. E. Schapire. Experiments with a new
boosting algorithm. In Machine Learning: Proceedings
of the 13th International Conference. 1996.

[24] F. Zhang, H. Fleyeh. Short term electricity spot price
forecasting using CatBoost and bidirectional long short
term memory neural network. In 2019 16th International
Conference on the European Energy Market (EEM), pp. 1–
6. 2019. https://doi.org/10.1109/EEM.2019.8916412

[25] R. Psalmen Hasibuan, M. Sejahtera Surbakti. Study
of pavement condition index (PCI) relationship with
international roughness index (IRI) on flexible pavement.
MATEC Web of Conferences 258:03019, 2019.
https://doi.org/10.1051/matecconf/201925803019

[26] L. Girardi Omar. Investigation of the influence of the
condition of asphalt pavement surface on road safety of
rural Ontario highways. Ph.D. thesis, Carleton
University, 2019.
https://doi.org/10.22215/etd/2019-13559

[27] A. Ali, K. Hossain, A. Hussein, et al. Towards
development of PCI and IRI models for road networks
in the city of St. John’s. In International Airfield and
Highway Pavements Conference 2019, pp. 335–342.
American Society of Civil Engineers, 2019.
https://doi.org/10.1061/9780784482452.033

580

https://doi.org/10.1177/0361198121990027
https://doi.org/10.1061/JPEODX.0000052
https://doi.org/10.11175/easts.6.1137
https://doi.org/10.1080/10298430601135469
https://doi.org/10.1016/j.ijprt.2016.10.001
https://doi.org/10.1061/(ASCE)0733-947X(2007)133:12(706)
https://doi.org/10.1061/(ASCE)0733-947X(2007)133:12(706)
https://doi.org/10.5923/j.jce.20150501.02
https://doi.org/10.1080/10298436.2018.1441414
https://doi.org/10.1007/s41062-021-00504-1
https://doi.org/10.1177/03611981241257505
https://doi.org/10.1016/j.jobe.2024.110856
https://doi.org/10.1007/s00704-019-03048-8
https://doi.org/10.17515/resm2024.58me1027rs
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/EEM.2019.8916412
https://doi.org/10.1051/matecconf/201925803019
https://doi.org/10.22215/etd/2019-13559
https://doi.org/10.1061/9780784482452.033


vol. 64 no. 6/2024 Developing an effective approach to assess pavement condition . . .

[28] S. A. Dewan, R. E. Smith. Estimating international
roughness index from pavement distresses to calculate
vehicle operating costs for the San Francisco bay area.
Transportation Research Record 1816(1):65–72, 2002.
https://doi.org/10.3141/1816-08

[29] S. K. Rajamani, R. S. Iyer. Designing and developing
innovative mobile applications, chap. Machine
Learning-Based Mobile Applications Using Python and
Scikit-Learn, pp. 282–306. IGI Global, 2023. https:
//doi.org/10.4018/978-1-6684-8582-8.ch016

[30] A. Roshan, M. Abdelrahman. Improving aggregate
abrasion resistance prediction via micro-Deval test
using ensemble machine learning techniques.
Engineering Journal 28(3):15–24, 2024.
https://doi.org/10.4186/ej.2024.28.3.15

[31] M. Grogg. Overview of performance measures:

Pavement condition to assess the national highway
performance program. Highway information seminar.
Federal Highway Administration, FHWA Office of
Infrastructure, 2017.

[32] M. W. Sayers, T. D. Gillespie, W. D. O. Paterson.
Guidelines for conducting and calibrating road roughness
measurements. The International Bank for
Reconstruction and development, Washington D. C.,
USA, 1986.

[33] B. J. Goenaga, L. G. Fuentes Pumarejo, O. A. Mora
Lerma. Evaluation of the methodologies used to
generate random pavement profiles based on the power
spectral density: An approach based on the
international roughness index.
Ingeniería e Investigación 37(1):49–57, 2017. https:
//doi.org/10.15446/ing.investig.v37n1.57277

581

https://doi.org/10.3141/1816-08
https://doi.org/10.4018/978-1-6684-8582-8.ch016
https://doi.org/10.4018/978-1-6684-8582-8.ch016
https://doi.org/10.4186/ej.2024.28.3.15
https://doi.org/10.15446/ing.investig.v37n1.57277
https://doi.org/10.15446/ing.investig.v37n1.57277

	Acta Polytechnica 64(6):571–581, 2024
	1 Introduction
	2 Materials and methods
	2.1 Ensemble learning methods
	2.1.1 Decision tree
	2.1.2 Random forest
	2.1.3 Gradient boosting machine (GBM)
	2.1.4 Extreme gradient boosting (XGBoost)
	2.1.5 Adaptive boosting (AdaBoost)
	2.1.6 Categorical gradient boosting (CatBoost)


	3 Data collection and processing
	4 Results and discussion
	4.1 Case study for evaluating the application of HFST

	5 Conclusion
	References

