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Abstract. The vortical structures in turbomachinery are crucial phenomena that significantly impact
the machine’s efficiency. Therefore, investigating them is essential for a better understanding of the
machine’s operation.

The presented paper focuses on an experimental investigation of entropy production in a linear blade
cascade composed of prismatic blades for two pitch-to-chord ratios, t/c = 0.6, and 0.9. The effects of
the inlet flow angle, α1 = −20°, 5°, 30°, and outlet isentropic Reynolds number, Re2,is = (0.8, 1.2, 2.5,
and 4.5) × 105, are examined based on pressure measurements.

Entropy production is evaluated as a balance of fluxes through the inlet and outlet boundaries
of the control volume. The paper provides a detailed discussion of the local distribution of entropy
production and vorticity in the flow field, as well as their evolution with the tested parameters. The
correlations between the integral values of entropy production and the tested parameters are also given.
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1. Introduction
To the author’s knowledge, Einstein’s pioneering
work [1] was the first present the evolution of sec-
ondary vorticity based on physical explanations. Since
then, several authors have studied this phenomenon
theoretically, for example, [2–9] or [10]. Initially, theo-
retical analysis required the curvature of the flow path
and viscous fluid flow for the generation of vorticity,
as shown by Dean [2]. Hawthorne [3] took a differ-
ent approach, using fluid kinematics to derive the
generation of secondary vorticity in curved channels.
Subsequent work by Hawtrhone [4] connected theo-
retical descriptions with blade cascades in a simple
manner.

Marris’s work showed that the curvature of the flow
path is not necessary for secondary vorticity genera-
tion (see [5]). Even a rotating reference frame has been
studied in [8]. Lastly, intrinsic coordinates were used
to describe this phenomenon in [10], where the impact
of the individual terms in the Navier-Stokes equation
on secondary vorticity was analysed, even for com-
pressible fluids. The important results of these works
for this study can be summarised as follows: Viscous
forces are connected with the generation of vorticity in
fluid flow in the end-wall boundary layers. This vortic-
ity is then responsible for the generation of secondary
vorticity in the curved channels and in their corners.
The more curved the channel, the higher the centrifu-
gal forces acting in the fluid, and therefore, stronger
secondary vorticity is expected. Another parameter
is the Reynolds number that causes vortex diffusion,
and consequently different velocity gradients.

Although the theoretical description is powerful, the
full picture of the vortices in blade cascades is beyond

the capability of theoretical predictions. The separa-
tion of the inlet boundary layer in front of the cascade
was observed in [11] as a place where the pressure at
the end wall reached its maximal value. In this place,
the so-called horseshoe vortex formed. Based on this
experimental data, Langston in [12] formulated his
secondary flow model, which was then modified several
times, see e.g. [13], where the wrapping of the vortices
was observed. Later, in [14], a more detailed model de-
veloped based on smoke visualisation experiments was
presented. Several unknown vortices were found, and
their interactions were studied in the cascade. This
research resulted in defining the newest secondary flow
model (according to the author’s knowledge).

The flow through a linear blade cascade is affected
by many variables.

The ideal case, when the blade worked under design
conditions, was investigated by [15] and by [16]. The
main goal of these works was to investigate the effect
of the inlet boundary layer on the development of
the secondary flow at the cascade outlet at different
distances from the trailing edges of the blades. It has
been shown that with increasing distance from the
trailing edges, vortical structures migrate from the end
wall towards the blade midspan. The effect of the inlet
boundary layer on the secondary flow was as follows:
With a thicker inlet boundary layer, stronger vortical
structures are generated, and as a consequence, the
kinetic energy dissipation at the cascade outlet is
larger. The effects of the blade geometry and the state
of the inlet boundary layer were investigated in [17].
This topic was studied in [18] from the unsteady point
of view, where the evolution of Reynolds stress at
the cascade outlet was measured at several positions
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and the mixing of wake with vortical structures was
described.

The effect of the inlet flow angle was investigated
in [19–21], where the increasing inlet flow angle re-
sulted in stronger vortical structures and their shifting
towards the blade mid-span due to the larger centrifu-
gal forces. Variation of Reynolds number and its
impact on the flow were explored as well in [19, 21].
It was shown in [18] that with increasing Mach num-
ber, the secondary losses decreased significantly. This
can be explained by the increasing ratio of inertial to
centrifugal forces in the cascade, where the inertial
forces acted against the generation of vortical struc-
tures. Moreover, the interaction between the vortical
structures and the shock waves affected the results in
the cases where the wave was present.

The comprehensive review of the topic was then
published in [22] and more recently the newer findings
were summarised in [23].

Note that the theoretical works focused on the mech-
anisms responsible for the generation of the vortical
structures, and experimental works cited above fo-
cused on the evaluation of the dissipation of kinetic
energy in the cascades. Although there are some pa-
pers where the entropy production in the cascade has
been mentioned, see e.g. [24, 25], a comprehensive
study of the entropy production due to the vortical
structures in the blade cascade has, to the best of the
authors’ knowledge, not yet been carried out. There-
fore, this work aims to perform this type of research
to fill such a gap in the present literature.

2. Experimental apparatus, setup,
and methods

2.1. Apparatus
2.1.1. Wind tunnel
The experiments were conducted in the VZLU Lab-
oratory of High-Speed Aerodynamics, using a low-
pressure, closed-loop wind tunnel (WT). The airflow
was driven by a twelve-stage radial compressor, pro-
pelled by a 1.3 MW electric DC motor. The Mach
number and Reynolds number can be set indepen-
dently. Mach number can be changed by the rota-
tional speed of the compressor, while the Reynolds
number can be set by the change of the pressure in
the tunnel by a set of vacuum pumps. To reduce air
humidity, a condensation dryer was positioned behind
the compressor, followed by a settling chamber in
front of the test section. The latter was equipped
with a screen to minimise fluctuation components of
the velocity.

At the test section inlet, a pair of semi-shaped
nozzles was placed in front of the cascade, determining
the inlet flow angle. The cascade itself was mounted
between two acrylic windows within the WT. The
test section’s width was 100 mm. Two tailboards were
positioned behind the first and the last blade of the

(a). Preston probe used for the measurement of the inlet
flow field.

(b). Pyramid five-hole pressure probe.

Figure 1. Pressure probes.

cascade. The pressure in the WT was regulated by
a set of vacuum pumps located at the cascade outlet.

2.1.2. Pressure probes
The inlet flow field was measured using the Preston
probe positioned 30 mm upstream of the cascade, with
the outer diameter of the pressure tap dp = 0.4 mm
and a ratio of inner to outer diameter of the probe
d/dp = 0.5. The probe was designed to measure
the entire inlet flow field and was equipped with two
identical pressure taps, as shown in Figure 1a.

The outlet flow field was measured by the pyramid
five-hole pressure probe positioned 10 mm behind the
cascade. The probe was manufactured from the tubes
of the same diameter as the Preston tube, i.e. dp = 0.4
with a ratio of d/dp = 0.5. The geometry of the probe
is shown in Figure 1b.

2.1.3. Blade cascade
Two cascade configurations defined by different pitch
to chord ratios (t/c = 0.6 and 0.9), were investigated.
These pitches modelled both the hub and tip sections
of the real turbine wheel of the high-pressure part
of the machine. The cascade schematic, including
the definition of a coordinate system and the entire
control volume, is shown in Figure 2. The cascades
were assembled from prismatic blades with the same
geometry for both configurations. Individual blades
were assembled between two acrylic WT windows.
The blade chord was c = 50 mm, the axial chord was
cax = 36 mm, and the blade height was the same as
the width of the WT test section, i.e. h = 100 mm.
The thickness of the blade trailing edges was ε = 1 mm.
The periodicity of the flow was ensured by a large
number of blades in cascades (11 for t/c = 0.9 and
14 for t/c = 0.6) and by the presence of tailboards.
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Figure 2. Control volume, with the cascade coordi-
nate system definition.

2.1.4. Data acquisition and measurement
uncertainty

Individual pressure signals were measured by the dif-
ferential pressure transducers Druck with a reading ac-
curacy of 0.1 % (rdg). These analogue voltage signals
were then conditioned by the DEWETRON system
and sampled by the A/D card (National Instruments
PCI-6259 A/D card: 16-Bit, 1 MS s−1 (Multichannel),
1.25 MS s−1 (1-Channel), 32 Analogue Inputs). One
measured point takes 3 seconds with a sampling rate
of 1000 Hz. The low-pass filter of 100 Hz was used.
The obtained data were then averaged.

The barometric pressure was measured by the Druck
DPI 145 digital pressure transducer with the precision
of pb = (pb ± 15) Pa.

The stagnation temperature, as well as air humidity,
was measured at the settling chamber by means of
Sensorika Humistar HTP-1 hygrometer with accuracy
T = T ± 0.3 K and RH = RH ± 2 %.

Uncertainties of measured quantities were evaluated
with respect to the measurement chain and according
to [26]. The outlet isentropic Mach number was set
with the uncertainty of M2,is = 0.40±0.01. The outlet
isentropic Reynolds number was set with the uncer-
tainty of Re2,is = (4.500 ± 0.225)×105. Local entropy
production was then evaluated with the uncertainty of
p = (132.134 ± 21.046) J (K s m2)−1. Note, that all
of these values represent the worst cases. Uncertain-
ties were based on 95 % confidence level (±2 standard
deviation).

2.2. Setup
2.2.1. Inlet flow field measurement
The inlet flow fields were measured for constant in-
let flow angle α1 = 5° because the inlet bound-
ary layers were insensitive to the variation of this
parameter. The measurements were performed for

four levels of isentropic Reynolds number (Reis =
(0.80, 1.25, 2.50 and 4.50) × 105) and for a constant
value of outlet isentropic Mach number M2,is = 0.4.
The inlet boundary layers were then measured at three
positions z (at the blade channel centre and in front of
the leading edges of the neighboring blades) to provide
a better understanding of the inlet flow field. These
measurements were subsequently averaged.

2.2.2. Outlet flow field measurement
The outlet flow fields were measured for the same val-
ues of isentropic Reynolds number and Mach number
as in the case of the inlet flow fields. The effect of the
inlet flow angle was studied for α1 = −20°, 5° and 30°,
with nominal inlet flow angle α1 = 5°.

2.3. Used methods
The air was considered a perfect gas, and heat transfer
was not taken into account; thus, an adiabatic flow
approach was used to evaluate the measured data.

2.3.1. Measurements in the Shear Flow and
the Boundary Layers

Measurements with the pressure probes in shear flows
and close to the wall were corrected for the virtual
shift of the probe position and blockage effects. The
correction for the probe positions, originally proposed
by [27] and later modified by [28], was extended in
a subsequent work by [29]. This final correction was
employed in the following form:

∆z = ϵdp = 0.15 tanh
(

4
√

β
)

− ϵw, (1)

where
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(

z

dp
− 3

)
+ B

(
z

dp
− 3

) [
0.15 tanh

(
4
√

β
)]

, (2)

and where:
β = dp

2u

du

dz
. (3)

Here, u is the velocity and A = 0.174 and B = −1.25
are constants. Near wall correction was used up to
y/δ = 3, as was suggested by [29].

2.3.2. Outlet flow field evaluation
The velocity vector field was obtained from the mea-
sured pressures thanks to the calibration of the five-
hole pressure probe. The y components of the vorticity
vector were then directly calculated from the velocity
as:

ωy = u
(i+1),j
x − u

(i−1),j
x

z(i+1),j − z(i−1),j
− u

i,(j+1)
z − u

i,(j−1)
z

xi,(j+1) − xi,(j−1) , (4)

where ux and uz are the velocity components in the
x and z direction, respectively. The rest of the com-
ponents of the vorticity vector were calculated from
Crocco’s theorem written in the form:

ϵijkujωk = 1
ϱ

∂ip0, (5)
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t/c Re2,is × 10−5 Rey × 10−5 δ∗ θ
H1,2[mm] [mm]

0.6

4.50 13.2 1.3 0.5 2.43
2.50 7.4 1.0 0.4 2.32
1.25 3.5 0.7 0.5 1.35
0.80 2.6 0.5 0.4 1.42

0.9

4.50 14.8 1.2 0.5 2.51
2.50 8.3 1.0 0.4 2.48
1.25 4.1 0.8 0.6 1.32
0.80 2.7 0.7 0.5 1.43

Table 1. Inlet boundary layers parameters

where ϵijk is the Levi-Civita alternating tensor and
p0 is the stagnation pressure. The local distribution
of the entropy production is obtained as a difference
between the entropy flux through the inlet and outlet
control volume boundaries:

p = Jout − Jin = ϱ2u2ys2 − ϱ1u1ys1, (6)

where s stands for the entropy and ϱ is the fluid
density. The density upstream of the cascade was
considered constant, as the flow Mach number was
lower than M < 0.09. However, at the cascade outlet,
the flow Mach number was M2,is = 0.4. Therefore,
the density distribution was calculated at individual
measurement points using the perfect gas law and
known static pressure and temperature. Note, that
the fluxes across the boundaries ∂A and ∂B give no
contribution to the entropy production thanks to the
periodic boundary conditions.

The averaged outlet flow field was evaluated based
on the data reduction method briefly described in [21].
The averaged entropy productions in the individual z
positions were evaluated as:

⟨p⟩ = ⟨Jout⟩ − Jin = ⟨ϱ2⟩
〈
u2y

〉
⟨s2⟩ − ϱ1u1ys1. (7)

Supposing the superposition of the two-dimensional
flow at the cascade mid-span (z = h/2) and the end-
wall flows, the entropy production caused by these
end-wall flows was obtained as:

⟨pew⟩z = ⟨p⟩z

⟨p⟩z= h
2

. (8)

The total entropy production in the outlet flow
field was then obtained by integration over the entire
cascade outlet:

P = h

2t

h/2∫
0

2t∫
0

pdxdz, (9)

where t stands for the blade pitch. The overall entropy
production in the end-wall region was calculated as:

Pnw = P − Pms. (10)

Figure 3. Normalised Local distribution of the en-
tropy production for t/c = 0.9.

Figure 4. Integral entropy production for both stud-
ied cascades.

3. Results and discussion
3.1. Inlet flow field
The inlet flow field was investigated in detail in [30].
It was found that the inlet boundary layers behaved
as boundary layers evolved on the flat plate and were
laminar for Re2,is = (0.8 and 1.2) × 105 and turbulent
for Re2,is = (2.5 and 4.5) × 105. The parameters of
the inlet boundary layers are summarised in Table 1.

Normalised local distribution of the entropy produc-
tion across the WT test section for t/c = 0.9 is shown
in Figure 3 and normalised integral values of the en-
tropy productions for all studied cases are then given
in Figure 4. The normalisation was performed using
the maximal value of entropy production obtained
from all tested cases.

As expected, an increase in Reynolds number led
to a higher entropy production in the inlet bound-
ary layers, attributed to the growing boundary layer
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Figure 5. Pressure coefficient distribution for t/c =
0.6 and α1 = 5°.

thickness. Moreover, in the turbulent boundary layers,
higher velocity gradients were observed in this region.

The dependency of the integral entropy production
on the Reynolds number Rey was approximated by
the second order polynomial function with coefficients:
a = 0.3640, b = 0.0993, and c = −0.0038. These data
suggest a potential universal relationship between the
entropy production in the boundary layer on a flat
plate and Reynolds number Rey, a topic to be inves-
tigated in future studies.

This basic evaluation of the inlet flow field gave the
inlet boundary condition for the calculation of the
balance Equation (6).

3.2. Blade pressure distribution
Figure 5 illustrates an example of the pressure coeffi-
cient distribution on the blade surfaces for t/c = 0.6
with the nominal inlet flow angle. Flow separation be-
came evident from s/c ≈ 0.65 up to the trailing edge
of the blade. While this phenomenon was consistently
observed for all tested inlet flow angles of the cascade
with a pitch-to-chord ratio t/c = 0.6, it was not found
in the other tested cascade with t/c = 0.9. This result
will be further discussed in Section 3.3.

The distribution of the pressure coefficient on the
blade surface for t/c = 0.9 is depicted in Figure 6.
Surprisingly, no separation occurred in this case, de-
spite the larger diffusion factor for this pitch-to-chord
ratio.

3.3. Outlet flow field
3.3.1. Local entropy production
To illustrate the local distribution of entropy pro-
duction at the cascade outlet for the tested case
t/c = 0.9, inlet flow angle α1 = 30°, and Reynolds
number Re2,is = 2.5 × 105, refer to Figure 7. The
contour lines depict the distribution of the stream-
wise vorticity, while the colours illustrate the nor-

Figure 6. Pressure coefficient distribution for
t/c = 0.9 and α1 = 5°.

Figure 7. Distribution of the normalised local en-
tropy production at the cascade outlet with con-
tours of the vorticity for t/c = 0.9, α1 = 30°, and
Re2,is = 2.5 × 105.

malised local entropy production1. Individual vor-
tices were identified and highlighted behind one blade.
Wakes are evident at the cascade midspan, where
the entropy generation is higher. However, the
majority of the entropy is generated in the end-
wall region between the individual vortices. This

1The highest value of local entropy production from all
tested cases was taken as the normalisation factor. Since the
presented case did not reach this extreme, the value p = 1 is
not included in Figure 7.
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observation is attributed to the highest velocity
gradients in this region, as evident from the en-
tropy production equation (the derivation is pro-
vided in [31] or, in general curvilinear coordinates,
in [32]):

p = −∂ip + λ (∂iui)2 + 2µ∂iuj∂jui, (11)

where the pressure gradients as well as the com-
pressibility effects represented by the velocity diver-
gence were negligible compared to velocity gradi-
ents.

3.3.2. Averaged entropy production caused
by the end-wall flows

Averaged entropy productions for different inlet flow
angles and the cascade configuration t/c = 0.9 are
presented in Figures 8–10. These values were nor-
malised by the entropy production at the cascade
mid-span to assess the impact of the end-wall flows.
It is important to note that, in the case of α1 = −20°,
entropy production peaks were not identified due to
their occurrence in regions where the probe was unable
to perform measurements.

The increase in the inlet flow angle resulted in the
shift of the entropy production peak from the end-wall
region towards the blade midspan, from the precisely
unknown position for α1 = −20° up to z/h ≈ 0.12
for α1 = 30°. This is caused by the larger centrifugal
forces acting in the cascade due to the higher flow turn-
ing. This larger force generates the higher secondary
vorticity in the blade channel, as was theoretically
shown by [4], which moves with the vortices. In ad-
dition, there is also a clear increase in the entropy
production with increasing α1. The reason for this
observation is the same as for the peak shift, i.e., the
higher centrifugal forces that are responsible for the
generation of the stronger vortices.

Focusing on the evolution with Reynolds number
shows that with increasing Re2,is, the entropy produc-
tion grows as well. This is caused by the topology
of the vortical structures. The higher inertial forces
were responsible for smaller vortices diffusion, there-
fore, larger velocity gradients occurred between the
vortices, which is in agreement with the theoretical
prediction of Equation (11).

3.3.3. Integral entropy production in the
blade cascade

Figure 11 shows the normalised integral entropy pro-
ductions for both studied cases as a function of
Reynolds number. The maximal value of the entropy
production from all cases was chosen to normalise
the evaluated data. It can be concluded, that the
maximum entropy was observed for the case with
t/c = 0.6, α1 = 30°, and Re2,is = 4.5 × 105. The
occurrence of maximum entropy in this case was ex-
pected. The small differences between individual cases
on this pitch-to-chord ratio t/c = 0.6 were interesting
and not expected. These little variances were caused

Figure 8. Averaged normalised entropy production
in the end-wall region for t/c = 0.9 and α1 = −20°.

Figure 9. Averaged normalised entropy production
in the end-wall region for t/c = 0.9 and α1 = 5°.

Figure 10. Averaged normalised entropy production
in the end-wall region for t/c = 0.9 and α1 = 30°.
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Figure 11. Integral entropy production for both
tested cases plotted as a function of Reynolds num-
ber.

Cascade t/c a b × 105

0.6
0.114 0.186
0.112 0.197
0.109 0.197

0.9
0.069 0.093
0.090 0.100
0.095 0.137

Table 2. Constants for approximation of integral
entropy production in linear blade cascade.

by the boundary layer separation on the suction sur-
faces for all studied inlet flow angles. The majority
of the entropy was generated in the separation region,
overshadowing the effects of vortices in the end wall
region.

Significant variations between individual inlet flow
angles were observed in the case of t/c = 0.9, where
entropy production increases with increasing α1. En-
tropy production for this case was considerably lower
compared to the case of t/c = 0.6.

In general, a linear dependency between the entropy
production and this similarity criterion exists within
the studied range of Reynolds numbers. The correla-
tion parameters for the linear fits are summarised in
Table 2. The normalised entropy production caused
by vortical structures in the blade cascades was eval-
uated using Equation (10). Specifically, the mid-span
value of the overall entropy production was subtracted

(a). Normalised near-wall entropy production for t/c = 0.6.

(b). Normalised near-wall entropy production for t/c = 0.9.

Figure 12. Normalised near-wall entropy production.

and then divided by the maximal entropy production
from all tested cases. Results of this approach are plot-
ted in Figures 12a and 12b, respectively. First-order
polynomial functions were used to approximate the
data for all cases under investigation. The coefficients
obtained from these approximations are summarided
in Table 3. In both cases, the entropy production
associated with vortical structures increased similarly
with the Reynolds number. In the case of the cascade
configuration with t/c = 0.6, the effect of the inlet flow
angle on the entropy production was influenced by flow
separation, as is evident from the points in Figure 12a.
In this case, the data could not be approximated as
effectively (using a linear approximation) compared
to the other tested cascades, primarily due to the
frequently mentioned flow separation. The interaction
of the vortical structures with this separation caused
that the assumption about the superposition of the
2D flow at the blade mid-span and the end wall flow
was not quite right.
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Cascade t/c a b

0.6
−0.006 0.021
−0.0398 0.0437
−0.0178 0.0321

0.9
0.0111 0.0033
0.0106 0.0181
0.0104 0.0372

Table 3. Coefficients for approximation of near-wall
entropy production in linear blade cascade.

4. Conclusion
The experimental research on entropy production in
a linear blade cascade was conducted for two dif-
ferent pitch-to-chord ratios under a constant out-
let isentropic Mach number of 0.4. The study
involved four different levels of Reynolds number
(0.8, 1.2, 2.5, and 4.5) × 105 and three inlet flow an-
gles: −20°, 5°, and 30°.

The inlet entropy flux was assessed as the boundary
condition at the inlet. It was demonstrated that a cor-
relation exists between the entropy production in the
boundary layer and the Reynolds number, modelled
by a second-order polynomial function.

The local distribution of parameters in the outlet
flow field revealed the relationship between the po-
sitions of the vortices and entropy production. The
majority of entropy production took place between
the vortices, where the velocity gradients were the
largest.

Increasing the inlet flow angle intensified the vor-
tical structures and caused their shift from the end
wall towards the blade mid-span, driven by the larger
centrifugal forces resulting from the higher flow turn-
ing.

While the variation in Reynolds number did not
significantly impact the distribution of vortical struc-
tures and entropy production, an increase in Reynolds
number led to the magnification of entropy produc-
tion. This effect resulted from less diffused vortical
structures, leading to larger velocity gradients within
the individual vortices and between them.

The pitch-to-chord ratio affected both the distribu-
tion and strength of the vortical structures, as well as
the amount of entropy production. For t/c = 0.6, the
vortices were more shifted toward the blade mid-span
and exhibited greater strength due to the larger cen-
trifugal forces, resulting from the narrower channel.

Finally, correlations were established between the
overall entropy productions in the outlet flow field, as
well as the relationships between the entropy produc-
tion caused by the vortical structures and Reynolds
number. These correlations take the form of first-order
polynomial functions.

Future work should focus on investigating the effects
of flow separation on the suction side of the blade and
its impact on the data evaluation procedure. It has

been demonstrated that in cases where the separation
did not occur (t/c = 0.9), the assumption of superpo-
sition of the 2D flow at the blade midspan and the
vortical motion in the end wall region is valid. How-
ever, in cases where separation occurred (t/c = 0.6),
this approach was not entirely appropriate for the
evaluation. Therefore, a more suitable method should
be developed to ensure an accurate data evaluation.

List of symbols
A, B empirical constants
c blade chord [mm]
cax axial blade chord [mm]
cp pressure coefficient
d probe diameter
h blade height [mm]
H1,2 shape parameter
J flux through the boundary of the control volume
M Mach number
p pressure
p local entropy production
P integral entropy production
Re Reynolds number
t cascade pitch [mm]
u flow velocity [m s−1]
V control volume [m3]
x, y, z Cartesian coordinates [m]
α inlet flow angle [°]
δ∗ displacement boundary layer thickness [mm]
ε trailing edge thickness [mm]
θ momentum boundary layer thickness [mm]
⟨•⟩ averaged parameter
rdg reading value
fs full scale

Subscripts:
1 cascade inlet
2 cascade outlet
b barometric
ew cascade end-wall
is isentropic
ms mid-span
nw end-wall
x, y, z in the circumferential, axial, and radial directions
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