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Abstract. In the presence of a porous material and a magnetic field, the authors of this work must
evaluate the combined effects of chemical reaction and thermal radiation on a Casson-nanofluid flow
in three dimensions towards a linearly stretched sheet. Using the Roseland approximation, which
integrates the effect of thermal radiation into the energy equation, thermal radiation is included in
this study. The governing equation with initial and boundary conditions is converted to dimensionless
form by adding pertinent non-dimensional variables and parameters, and then numerically solved using
the finite element method. The effects of key variables on velocity, temperature, and concentration
are shown graphically, followed by tabular representations of the effect of these parameters on skin
friction, Nusselt, and Sherwood numbers and an in-depth explanation. This is essential for several
technological applications, such as oil heat recovery, termite welding, transpiration cooling, and drag
reduction. A comparison of our numerical results with previously published data reveals a high degree
of agreement between the two sets of information. This new research has implications for energy
systems, biomedical engineering and aeronautics, and has significant implications for the food industry.

Keywords: MHD chemical reaction, three-dimensional Casson fluid, nanofluid, linear stretching sheet
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1. Introduction
Flow through stretched films is critical to several
engineering and industrial processes, such as metal
spinning, plastic film stretching, glass blowing, crys-
tal development, and filament cooling. The speed
at which the plate is stretched has a significant in-
fluence on the quality of the final product. The
problem of 2-dimensional boundary layer flow over
elongated surfaces was first identified by Crane [1].
A study by Waini et al. [2] on hybrid nanofluid flow
induced by exponential expansion and contraction
of radiation and Magneto hydrodynamics sensitive
layers. The effect of exponentially expanding sur-
faces on nanoliquid flow via viscous dissipation has
been reviewed in [3, 4]. The effect of the suction
parameter on the negative velocity profile of microp-
olar liquid flow through non-isothermally exponen-
tially expanding layers was demonstrated by Mandal
and Mukhopadhyay [5]. In a study [6], Subhani and
Nadeem investigated normal and hybrid nanofluidic
flows generated by exponentially growing surface the-
ory. Radiative magneto-hydrodynamic flux through
a permeable stretched surface absorbed in a porous
medium was observed by Agrawal et. al. [7] using
the fourth-order Runga-Kutta technique. The im-
pact of repetitive sliding and angular magnetic fields
on the flow of hybrid nanofluids across nonlinearly

stretched sheets was reported by Abbas et al. [8]. Aly
and Pop [9] compared their hybrid nanofluids with
conventional nanofluids in terms of stagnation point
MHD flow occurring in expanding/contracting mem-
branes.

Chaudhary and Kanika [10] studied how thermal
radiation and heat generation/absorption affect the
contraction/expansion flux of permeable nanoliquids
on heated foils at MHD stagnation points. Poldanjani
et al. [11] studied how thermal radiation and mag-
netic fields affect entropy enhancement when heat is
transferred from a nanoliquid moving inside a cav-
ity. Sheikholeslami [12] studied how magnetic fields
and heat from the environment affect the thermal
convection between two layers of flowing nanoliquids.
Mahantesh et al. [13] studied a magnetohydrodynamic
nanofluid flow with a nonlinear strain foil-induced slip
in three dimensions within the existence of thermal
radiation and mixed convection. Sedki et al. [14] stud-
ied the effect of radiative heat of boundary layer flow
on unstable mixed convection of nanoliquids across
permeable and stretchable surfaces in porous media
under exothermic conditions. Xenos et al. [15] stud-
ied how changes in radiation and pressure affect the
fluid flow in a nonlinear boundary layer on a flat
plate. Aly and Ebaid [16] studied the boundary layer
Marangoni MHD problem used for nanofluidic hybrids
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with radiant heat. Sankaran et al. [17] considered
how thermal radiation affects the pressure flow of
nanofluidic copper water between comparable plates.
Ramesh et al. [18] studied Casson’s nanofluidic flow
and Maxwellian fluid flow that occur when a surface
is stretched.

The emergence of new species during chemical re-
actions in nanofluidic flows will greatly affect the
motion of objects, resulting in changing production
requirements. Eid, Chamkha and Makinde [19, 20]
used Joule heating and species reactions to study the
impact of solar radiation based on the convection of
MHD nanofluids across stretched sheets in porous me-
dia. M.D. Shamshuddin et al. [21] studied the thermal
and solutal performance of Cu/CuO nanoparticles on
a non-linear radially stretching surface.

M. C. Krishna Reddy et al. [22] studied heat and
mass transfer effects on unsteady MHD free convec-
tion flow past a vertical permeable moving plate with
radiation. G. Murali et al. [23] analysed Heat and
mass transfer effects on an unsteady hydromagnetic
free convective flow over an infinite vertical plate em-
bedded in a porous medium with heat absorption.
Deepa Gadipally et al. [24] carried out an analysis of
Soret and Dufour effects on unsteady MHD flow past
a semi-infinite vertical porous plate using finite differ-
ence method. Murali et al. [25] found the impact of
chemical reaction effects on unsteady MHD fluid flow
past an infinite vertical plate embedded in a porous
medium with a variable suction. N. V. N. Babu et
al. [26] analysed Soret and Dufour effects on unsteady
hydromagnetic free convective fluid flow past an infi-
nite vertical porous plate in the presence of a chemical
reaction. The finite element solutions for MHD-driven
problem solving system were given by [27, 28]. The
works mentioned in the literature [29–35] had a sig-
nificant impact on understanding the nature of this
study, which is a continuation of Nadeem et al. [36].

Calculated flow variables, such as velocity, tempera-
ture, and concentration profiles are displayed in tables
and graphs for various physical components. This new
research has implications for energy systems, biomed-
ical engineering, and aeronautics, and has significant
implications for the food industry.

2. Mathematical formulation
This article presents the steady, conductive, incom-
pressible, magnetohydrodynamic three-dimensional
flow of Casson nanofluids in the presence of ther-
mophoresis, Brownian motion, thermal radiation,
chemical reactions, porous media, and chemical reac-
tion effects. Figure 1 shows the physical coordinate
system and the geometry of this problem for this flow.

(1.) Define the velocity component along the (x, y, z)
direction as (u, v, w).

(2.) The flow is generated by an ever-expanding sur-
face.

Figure 1. Geometrical illustration of Nano-Casson
fluid flow.

(3.) A uniform magnetic field of strength B0 is to be
relevant in the direction of Z.

(4.) The magnetic Reynolds number is supposed to be
very low and the induced magnetic field is derelict.

(5.) Brownian motion and thermophoresis are taken
into account.

(6.) The rheological equation for non-Newtonian fluids
is described as:

τ = τ0 + µα∗. (1)

For Casson fluid, Equation (1) may be extended as:

τij = 2
(

µB + py√
2π

)
eij ,

π > πc & 2
(

µB + py√
2πc

)
eij ,

π < πc,

(2)

where
π = eijeji with eij is the (i, j)th component of the

fluid deformation rate,

py = µB

√
2π

β is the yield stress of the Casson fluid.
For this flow, the governing boundary layer equa-

tions can be written as:
• Equation of continuity:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (3)

• Momentum equation:
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(5)
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• Equation of thermal energy:

u
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(6)

• Equation of species concentration:

u

(
∂φ

∂x

)
+ v

(
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(
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)
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)2
− Kr(φ − φw) .

(7)

The boundary conditions for this flow are:
u = uw(x) = ax, v = vw(y) = by,

T = Tw, φ = φw

at z = 0,

u → 0, v → 0, T → T∞,

φ → φ∞
as z → ∞.

(8)

We have used the Rosseland approximation for radia-
tion:

qr = −22σ∗

3K∗

(
∂T 4

∂z

)
. (9)

Suppose there is a temperature difference in the flow,
we expand T 4 in a Taylor series on T∞, as given below:

T 4 = T 4
∞ + 4 (T − T∞) T 3

∞

+ 6 (T − T∞)2
T 2

∞ + . . . .
(10)

If the terms of higher order are ignored, we obtain:

T 4 ∼= 22TT 3
∞ − 3T 3

∞. (11)

Thus replacing Equation (11) in Equation (9), we find:
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)
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Using (8), Equation (3) can be written as:

u

(
∂T

∂x

)
+ v

(
∂T

∂y

)
+ w

(
∂T

∂z

)
= α

(
∂2T

∂z2

)
+ τ1

{
DB

(
∂T

∂z

)(
∂φ

∂z

)
+ DT

T∞

(
∂T

∂z

)2
}

+ 1
ρCp

(
16T 3

∞σ∗

3K∗

)(
∂2T

∂z2

)
.

(13)

Let us introduce these similarity transformations:

u = a (x + y) f ′(η),
v = b(x + y)g′(η), w = −

√
aν{f(η) + Cg(η)},

η =
(√

a

ν

)
z, θ = T − T∞

Tw − T∞
, ϕ = φ − φ∞

φw − φ∞
.

 (14)

Using Equation (14), the equation of continuity is iden-
tically contented and Equations (4), (5), (7), and (13)
become:(

1 + 1
β

)
f ′′′ +f ′′f +f ′′g −f ′2 −f ′(λ+M) = 0, (15)

(
1 + 1

β

)
g′′′ + fg′′ + gg′′ − g′2 − (M + λ)g′ = 0, (16)(

1 + 4R

3

)
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+ PrNtθ′2 = 0,

(17)

Nb ϕ′′ + Nb Scfϕ′ + Nb Scgϕ′ + Nt θ′′

− Sc Nb γϕ = 0,
(18)

the corresponding boundary conditions (8) become:

f(0) = 0, g(0) = 0, f ′(0) = 1,

g′(0) = C, θ(0) = 1, ϕ(0) = 1,

f ′(∞) → 0, g′(∞) → 0,

θ(∞) → 0, ϕ(∞) → 0.

 (19)

The following are the physical parameters:
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∞
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α
,
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, C = b

a
,
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(20)

The quantities of physical interest, the physical pa-
rameters of the skin friction coefficient Cf, along the
X and Y directions, and the local Nusselt number are
listed below:
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ρu2
w

⇒
(√
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)
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x
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Rex=ux(x)x
ν

, (25)

Rey=vw(y)y
ν

. (26)

On the basis of the stretching velocities, above local
Reynolds numbers (25) and (26) are shown.
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Figure 2. FEM flow chart.

3. Method of solution
The finite element method employed in the current
study can be used in future research since it is a highly
useful approach to solving linear and nonlinear partial
and ordinary differential equations in physics, mechan-
ical engineering, and other related fields. This was
the most adaptable numerical technique available at
the time this article was written for carrying out an
engineering analysis. Numerous numerical techniques,
including the LU decomposition approach, the Gauss
elimination method, and others, can be used to solve
the equations.

The idea that the problem domain can be segmented
into smaller, more manageable chunks that also have
limited dimensions and are referred to as “finite ele-
ments” is the driving idea behind the finite element
approach. This idea was inspired by the fact that
these chunks can be broken down into smaller, more
manageable chunks. It has been put to use in the
attempt to provide an explanation for a broad variety
of occurrences, including the transmission of heat, the
mechanics of fluids and solids, the dynamics of rigid
bodies, the mechanics of solids, chemical processes,
electrical systems, and acoustics. The use of the finite
element approach is shown in Figure 2, which also
serves as an example.

Before one can carry out a finite element analysis,
it is required to finish the phases that are listed below,
which are as follows:
• discretisation of the domain into elements,
• elementation of the domain,

• constructing equations and determining the answers
to those equations,

• imposing boundary conditions.

The solution of differential equations is one of the
most popular uses for these approaches. When work-
ing with real numbers, it is necessary to bear in mind
that the form functions can be used to provide a close
approximation of real functions. If you follow this tech-
nique step by step, you can be certain that your calcu-
lations will be accurate. The flow domain has a total of
20 001 nodes and is divided into 10 000 quadratic com-
ponents that are of the same size and shape. The flow
domain consists of 10 000 quadratic components, all of
which are of the same magnitude as their counterparts
in the other components. After the element equations
were developed, there were a total of 80 004 nonlinear
equations that could be investigated. These equations
were made accessible for the study.

After the boundary conditions have been applied,
the Gauss approach is applied to remove the remain-
ing system of nonlinear equations, and then the Gauss
technique is used to arrive at a numerical solution
that is accurate to 0.00001 degrees. The use of Gaus-
sian quadrature is done to help with the challenges
associated with integration.

The method’s custom software was run on a desk-
top computer within the context of a suitable pro-
gramming environment. The software was developed
specifically for the method. MATHEMATICA is the
name of the programming language that was used to
create the software application for the computer.
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λ
Present Nadeem et al. [36] Present Nadeem et al. [36](

1 + 1
β

)
f ′′(0)

(
1 + 1

β

)
f ′′(0)

(
1 + 1

β

)
g′′(0)

(
1 + 1

β

)
g′′(0)

0.0 1.5309316847983463 1.5459 0.6367890798398319 0.6579
0.5 1.8088818378637911 1.8361 0.8097718346039391 0.8228
1.0 2.0696782733471607 2.0884 0.9478196983091393 0.9614

Table 1. Assessment of obtained skin-friction results with published results of Nadeem et al. [36] when R = Nb =
Nt = Pr = Sc = γ = 0, C = 0.5 and β = 1.0.

Figure 3. Impact of β on f ′(η).

Figure 4. Behaviour of β on g′(η).

Program code validation In the absence of ther-
mal radiation, Prandtl number, thermophoresis, Brow-
nian motion, Schmidt number, and chemical reac-
tion effects, the authors have compared the obtained
skin friction results with the published results of
Nadeem et. al. [29] used for the variations of perme-
ability parameter at C = 0.5 and β = 1.0 in Table 1,
which shows a good agreement.

4. Results and discussion
Figures 3 and 4 illustrate the influence of non-
Newtonkason fluid parameters β on the first and
second order velocity profiles. Here we see that in-
creasing the non-Newton-Kasson fluid parameter β
creates resistance to fluid flow. The result is as shown
in the picture. Figures 3 and 4: Higher values of
the non-Newtonian Casson fluid parameter β decrease
the magnitude of the first and second order veloc-
ity profiles and the thickness of the boundary layer.
Non-Newtonian Casson fluid parameter β increases
to infinity and the current phenomenon in Newtonian
fluids decreases significantly.

Figure 5. Sequel of M on velocity profiles.

Figure 6. Behaviour of M on g′(η).

As shown in Figures 5 and 6, rising the magnetic
field parameter (M) decreases both the thickness of
the boundary layer and the magnitude of the primary
and secondary velocity profiles. Physically, the electric
current phenomenon takes place as a magnetic field
induces an electric current in a conducting liquid,
exerting a drag force on the liquid at the interface
and slowing it down. From this we can conclude that
a magnetic field is present.

According to Figures 7 and 8, the first and second
order velocity profiles decrease as the value of the
porosity parameter λ in the boundary layer increases.
Furthermore, Figures 7 and 8 show that the boundary
layer thickness decreases as λ increases.

Figure 9 illustrates the influence of the stretch ratio
parameter C on the quadratic velocity profile. The
quadratic velocity profile is increased by increasing the
value of the stretch rate ratio C parameter. In general,
increasing the strain parameter C increases the yield
pressure. Figure 10 shows the impact of the Prandtl
number Pr on the liquid temperature. As the Prandtl
number Pr increases, the liquid temperature gradient
decreases. A liquid with a high Prandtl number has
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Figure 7. Behaviour of λ on f ′(η).

Figure 8. Impact of λ on g′(η).

a low thermal conductivity, and therefore a lower
temperature. This figure demonstrates the impact of
the radiation parameter R on the temperature profile.
If the heat dissipation parameter R is greater than the
standard value, the temperature rises. As R increases,
the thermal buoyancy increases, but the thickness
of the thermal boundary layer decreases. Increasing
the heat radiation parameter R generates more heat
in the fluid flow zone, resulting in a more uniform
temperature profile.

Figure 11 demonstrates the influence of the ther-
mal radiation parameter R on the temperature profile.
This graph clearly shows that the temperature in-
creases as the radiation parameter increases. This is
because an increase in thermal radiation has the effect
of thermal energy being released into the liquid.

Figures 12 and 13 demonstrate the influence of the
Brownian motion parameter Nb on the temperature
and concentration profiles. Increasing the Brownian
motion parameter Nb in Figure 12 improves the tem-
perature profile. As shown in Figure 12, the larger the
Brownian motion parameter, the smaller the viscous
force, and the larger the Brownian diffusion coefficient,
the larger the thickness and temperature of the ther-
mal boundary layer. As shown in Figure 13, the con-
centration decreases as the Nb concentration increases.

The effect of thermophoretic parameters Nt on the
temperature and concentration profiles is shown in
Figures 14 and 15. Thermal diffusion coefficients and
viscous forces influence thermophoretic parameters.
Since the viscous force is inversely proportional to Nt,
an increase in Nt implies a decrease in viscous force
and an increase in the thermal diffusion coefficient
with the increase of temperature and nanoparticle
concentration.

Figure 9. Sequel of C on g′(η).

Figure 10. Performance of Pr on θ(η).

Figure 11. Behaviour of R on θ(η).

Figure 12. Analyse of Nb on θ(η).

Figure 13. Behaviour of Nb on ϕ(η).
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Figure 14. Behaviour of Nt on θ(η).

Figure 15. Impact of Nt on ϕ(η).

The influence of the Schmidt number (Sc) on the
concentration profile is shown in Figure 16. Sc repre-
sents the momentum-to-mass diffusivity ratio, and the
diffusion in the concentration (species) boundary layer
is used to determine the relative values of momentum
and mass transfer. As Sc increases, the mass diffu-
sivity of the liquid decreases, resulting in lower φ(η).
Since the mass diffusivity and Sc are inversely related,
a higher Sc value correlates to a weaker concentra-
tion interface. Figure 17 explains the influence of the
chemical reaction parameter γ on the concentration
profile.

5. Conclusion
This paper presented the effect of thermal radiation
and chemical reaction on three-dimensional, steady,
viscous, incompressible, viscous, electrically conduct-
ing Casson-nanofluid flow towards a linearly stretching
sheet through a porous medium in the presence of ther-
mophoresis and Brownian motion effects. The basic
governing equations of the flow are solved numeri-
cally using a finite element technique. An extensive
numerical parametric study is carried out on the nu-
merical explanation of a class of nonlinear equations to
describe the details of the solution and results are de-
tailed in the form of graphs. The resulting conclusions
are:
• All velocity profiles decreased as the Casson fluid

parameter, the magnetic field parameter, and the
permeability parameter increased.

• The temperature profile increased as the thermal
radiation, thermophoretic, and Brownian motion
parameters increased while the Prandtl number
decreased.

Figure 16. Impact of Sc on ϕ(η).

Figure 17. Impact of γ on ϕ(η).

• Concentration profiles decreased as the Schmidt
number, Brownian motion parameters, and chem-
ical reaction parameters increased, while ther-
mophoretic parameters increased the concentration
profile.

• The thickness of the mass transfer velocity boundary
layer decreases with increasing Brownian motion
parameters, Schmidt numbers, chemical reaction
parameters, and thermophoretic parameters.

• Finally, we compare the current findings with those
of Nadeem et al. [36] for limited values of these
parameters.

• Apart from that, the results indicate that the pro-
posed method is appropriate for solving the current
problems.
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