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Abstract. This paper presents the results of tests of a one-dimensional Schmidt lobster-eye prototype
module. The optics benefits from the new technology used for the mechanical part which ensures
accurate positioning of individual mirrors, resulting in a sharp image in the focal plane. The prototype
is designed for X-ray energy of around 1 keV, but it was tested in the visible part of the spectrum.
FWHM is determined. The experimental results agree well with the simulations.
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1. Introduction
The lobster eye concept of grazing incidence optics
offers a wide filed of view that makes this optics conve-
nient for space X-ray sky monitors [1–8]. The Schmidt
lobster eye [9] is assembled from planar rectangular
mirrors, mutually tilted. There exists another design
called the Angel lobster eye [10], which is formed by
rectangular channels. The lobster eye optics is com-
monly used for X-rays. Its main advantage is the wide
field of view that makes it suited mainly for space
X-ray monitors.

The mirrors of a one-dimensional lobster eye are
arranged around a virtual cylinder, see Figure 1. This
set of mirrors will be further referred to as the stack.
The optical behaviour of a single stack is similar to
a cylindric lens. The focus of the system is marked F.
The point C denotes the centre of the cylinder. β is
the angular mirror position

Schmidt lobster eye geometry is defined by these
parameters:
• r radius of the cylinder,
• a mirror spacing,
• t mirror thickness,
• h mirror depth,
• N number of mirrors.

It is possible to use two orthogonally arranged stacks
to make a double-reflecting device mimicking the func-
tion of a spherical lens, see Figure 2.

The technical challenge of the realisation of the
Schmidt lobster eye is to ensure the accurate posi-
tioning of individual mirrors. That is why a new
technological concept has been proposed and covered
by patent [11] and utility models [12, 13].

Figure 1. Layout of one-dimensional Schmidt lobster
eye. The figure is not scaled to real dimensions.

Figure 2. Optical layout of stacks of two-dimensional
Schmidt lobster eye.

The results of optical measurements of the proto-
type module assembled by this technology are pre-
sented in this paper.

2. Description of LNA-215
prototype module

The photo of the prototype one-dimensional lobster
eye LNA-215 is shown in Figure 3. The module has
been designed to be tested on a CubeSat platform.
Therefore, the focal length and the input aperture of
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Figure 3. Photo of prototype module LNA-215.

the optics were chosen so that the optics together with
a focussed detector would fit three units of a CubeSat
satellite. The mirror spacing has been set to maximise
the effective collection length.

Prototype lobster eye LNA-215 has the following
design parameters:
• Focal length F = 215 mm.
• Entrance aperture 87 × 84 mm.
• Stack consists of N = 66 gold-coated glass mir-

rors with a depth of h = 24 mm and thickness of
t = 0.28 mm.

• Mirror pitch A = 1.33 mm.
• Footprint 95.8 × 95.8 × 26 mm without external

housing. This allows it to be used on a 3U or larger
CubeSat.

• Designed for energies of around 1 keV but tests are
possible in a wider spectral range.
The following performance was calculated by simu-

lations:
• Field of view 10.4°.
• Effective collecting length 1.6 cm at 1 keV.
• Corresponding effective collecting area 2.4 cm2 for

2-D system.
Preliminary tests with a simple aparatus using poly-

chromatic light were presented in [14]. In this paper,
the results of measurements on an optical bench in
a laboratory are presented.

3. Experimental setup
The lobster-eye prototype was tested in the optical
laboratory of the Faculty of Mechanical Engineering
of Czech Technical University in Prague. The setup
consists of a light source, collimator, tested optics
and a camera, see Figure 4. The mirrors are made of

Figure 4. Experimental setup.

Figure 5. Acquired focal image.

Figure 6. Focal image – simulation.

gold-coated glass, which also reflect visible light. This
allows the test to be performed in the visible part of
the spectrum. A green high-power LED was used as
the light source. The focal length of the collimator
was 1 600 mm. A Canon EOS 50D camera was used
to take the image. Its resolution is 4 752 × 3 168 pixels
and the sensor area is 22.3 × 14.9 mm.

4. Results
The acquired focal image is shown in Figure 5. The
tests with the previous prototype showed a significant
skew error [15]. No error of this type is observable on
the focal line in Figure 5.

LOPSIMUL software [16, 17] was used for the sim-
ulations. The simulations are based on the simplified
ray-tracing algorithm [18–20]. Ideal mirrors were con-
sidered for the simulations. The result of the simula-
tions of the focal image is presented in Figure 6.
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Figure 7. Profile of intensity – experiment.

Figure 8. Profile of intensity – simulation.

The profile of intensity along the horizontal axis of
the experimental image is shown in Figure 7 while
Figure 8 presents the result of the simulation.

Note that the simulation is performed for mirrors
with 100 % reflectivity (for tests in X-rays, it is planned
to include relevant reflectivity model into the simula-
tions). Therefore, the vertical scales of images Figure 7
and Figure 8 are not comparable.

The FWHM of the experimental profile reaches
1.02 mm while the simulated image shows a better
FWHM of 0.71 mm.

The graph in Figure 8 shows one main peak that
is formed mainly by reflected rays. Some rays come
through the optical system directly through spaces
between mirrors. These rays form secondary maxima
of uniform intensity.

However, the measured profile in Figure 7 shows
that the secondary maxima are not uniform in inten-
sity. This is caused by the diffraction of light. The
diffraction also causes the measured FWHM of the
main peak to be wider than the result of the simula-

tion. The diffraction will not appear in X-rays because
X-rays have a much shorter wavelength.

Another problem that makes the main peak wider
is that the light beam has some small divergency as
the LED chip has a non-zero size. However, the LED
chip size is not known and therefore, it cannot be
included into simulations.

For these reasons, the authors expect that results of
tests in X-ray will be in much better agreement with
the simulations.

5. Conclusion
The experiment showed that the lobster-eye prototype
is functional. The experimentally obtained focal image
is very similar to the calculated one. The FWHM of
the focal line on the image acquired in the experiment
is slightly inferior to the calculated one. It is caused
by the small divergence of rays and the diffraction
effects. The focal line does not show an observable
skew error.
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This proves that the technology used is promising.
An experiment in an X-ray tunnel is necessary to
measure the performance of the lobster-eye prototype
more precisely. The authors plan to test the module
in an X-ray tunnel at the design energy of about
1 keV. We expect that the results of this test will show
good accordance with the simulation as it will not
be affected by diffraction effects because the X-ray
wavelength is much shorter.
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