1. INTRODUCTION

This work has a certain history related to Miloslav Havlíček. On the important occasion of Miloslav's 75th birthday, we think this story should be revealed. About 25 years ago, when quasi-exactly-solvable Schroedinger equations with the hidden algebra sl_2 were discovered 1, one of the present authors (AVT) approached Israel M. Gelfand and asked about the existence of the algebra gl_{n+1} of matrix differential operators. Instead of giving an answer, Israel Moiseevich said that M. Havlicek knows the answer and that he must be asked. A set of Dubna preprints was given (see 2 3 and reference therein). Then AVT studied them for many years, at first separately and then together with the first author (YuFS), who also happened to have the same set of preprints. The results of these studies are presented below. While carrying out these studies, we always kept in mind that a constructive answer exists and is known to Miloslav. Thus, we are certain that at least some of the results presented here are known to Miloslav. Having difficulty to understand what is written in the texts we did not know what he really knew, and were therefore unable to indicate it in our text. Our main goal is to find a mixed representation of the algebra gl_{n+1} which contains both matrices and differential operators in a non-trivial way. Then to generalize it to a polynomial algebra which we call gl_{n+1} (see below, Section 4). Another goal is to apply the obtained representations for a construction of the algebraic forms of (quasi)-exactly-solvable matrix Hamiltonians.

2. THE ALGEBRA gl_{n+1} IN MIXED REPRESENTATION

Let us take the algebra gl_n and consider the vector field representation

$$E_{ij} = x_i \partial_j, \quad i, j = 1, \ldots, n, x \in \mathbb{R}^n.$$ \hspace{1cm} (1)

It obeys the canonical commutation relations

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj}. \hspace{1cm} (2)$$

On the other hand, let us consider another representation M_{pm}, $p, m = 1, \ldots, n$ of the algebra gl_n in terms of some operators (matrix, finite-difference, etc) with the condition that all 'cross-commutators' between these two representations vanish

$$[\tilde{E}_{ij}, M_{pm}] = 0. \hspace{1cm} (3)$$

Let us choose M_{pm} to obey the canonical commutation relations

$$[M_{ij}, M_{kl}] = \delta_{jk} M_{il} - \delta_{il} M_{kj}, \hspace{1cm} (4)$$

(cf. 2). It is evident that the sum of these two representations is also the representation,

$$E_{ij} \equiv \tilde{E}_{ij} + M_{ij} \in gl_n. \hspace{1cm} (5)$$

Now we consider an embedding of $gl_n \subset gl_{n+1}$ trying to complement the representation 1 of the algebra gl_n up to the representation of the algebra gl_{n+1}. In principle, this can be done due to the existence of the Weyl-Cartan decomposition,

$$gl_{n+1} = L \oplus (gl_n \oplus 1) \oplus U$$

with the property

$$gl_{n+1} = L \times (gl_n \oplus 1) \times U, \hspace{1cm} (6)$$

where $L(U)$ is the commutative algebra of the lowering (raising) generators with the property $[L, U] = gl_n \oplus 1$. Thus, it realizes a property of the Gauss decomposition of gl_{n+1}. It is worth emphasizing that $dim(L) = dim(U) = n$.

Obviously, the lowering generators (of negative grading) from L can be given by derivations

$$T_i^- = \partial_i, \quad i = 1, \ldots, n, \quad \partial_i \equiv \frac{\partial}{\partial x_i}, \hspace{1cm} (7)$$

(see e.g. 5) when assuming that all commutators

$$[T_i^-, M_{pm}] = 0, \hspace{1cm} (8)$$

DOI:10.14311/AP.2013.53.0462
vanish. This probably implies that the only possible choice for \(M_{\mu n} \) exists when they are either given by matrices or act in a space which is a complement to \(x \in \mathbb{R}^n \). It is easy to check that

\[
[E_{ij}, T_k^-] = -\delta_{kj} T_j^-.
\]

Now we have to add the Euler-Cartan generator of the \(gl_n \) algebra, see (6)

\[
-E_0 = \sum_{j=1}^n x_j \partial_j - k,
\]

where \(k \) is arbitrary constant. Raising generators from \(U \) are chosen as

\[
-T_i^+ = -x_i E_0 + \sum_{j=1}^n x_j M_{ij},
\]

\[
x_i \left(\sum_{j=1}^n x_j \partial_j - k \right) + \sum_{j=1}^n x_j M_{ij}, \quad i = 1, \ldots, n.
\]

(9)

(cf. for instance [5]). Needless to say that one can check explicitly that \(T_i^+, E_{ij}, E_0, T_i^- \) span the algebra \(gl_{n+1} \). In particular,

\[
[E, T^+] = T^+,
\]

and

\[
[T_i^+, T_j^-] = E_{ij} - \delta_{ij} E_0.
\]

If parameter \(k \) takes non-negative integer the algebra \(gl_{n+1} \) spanned by the generators \([5, 7, 9, 10]\) appears in a finite-dimensional representation. There exists a linear finite-dimensional space of polynomials of finite-order in the space of columns/spinors of finite length which is a common invariant subspace for all generators \([5, 7, 9, 10]\). This finite-dimensional representation is irreducible.

The non-negative integer parameter \(k \) has the meaning of the length of the first row of the Young tableau of \(gl_{n+1} \), describing a totally symmetric representation (see below). All other parameters are coded in \(M_{ij} \), which corresponds to an arbitrary Young tableau of \(gl_n \). Thus, we have some peculiar splitting of the Young tableau.

Each representation is characterized by the Gelfand-Tsetlin signature, \([m_1, n, \ldots, m_{n+1}]\), where \(m_{\mu n} \geq m_{\nu+1, n} \) and their difference is positive integer. Each basic vector is characterized by the Gelfand-Tsetlin scheme. An explicit form of the representation is given by the Gelfand-Tsetlin formulas [4].

It can be demonstrated that all Casimir operators of \(gl_{n+1} \) in this realization \([5, 7, 9, 10]\) are expressed in \(M_{ij} \), and thus do not depend on \(x \). They coincide with the Casimir operators of the \(gl_n \)-subalgebra realized by matrices \(M_{ij} \).

3. Example: The Algebra \(gl_3 \) in Mixed Representation

In the case of the algebra \(gl_3 \), the generators \([5, 7, 9, 10]\) take the form

\[
E_{11} = x_1 \partial_1 + M_{11}, \quad E_{22} = x_2 \partial_2 + M_{22},
\]

\[
E_{12} = x_1 \partial_2 + M_{12}, \quad E_{21} = x_2 \partial_1 + M_{21},
\]

\[
E_0 = k - x_1 \partial_1 - x_2 \partial_2,
\]

\[
T_1^- = \partial_1, \quad T_2^- = \partial_2,
\]

\[
T_1^+ = x_1 (k - x_1 \partial_1 - x_2 \partial_2) - x_1 M_{11} - x_2 M_{12},
\]

\[
T_2^+ = x_2 (k - x_1 \partial_1 - x_2 \partial_2) - x_1 M_{21} - x_2 M_{22}.
\]

(11)

The Casimir operators of \(gl_3 \) in this realization are given by

\[
C_1 = E_{11} + E_{22} + E_0 = k + M_{11} + M_{22} = k + C_1(M),
\]

\[
C_2 = E_{12} E_{21} + E_{21} E_{12} + T_1^+ T_1^- + T_1^+ T_1^- + T_2^+ T_2^- + T_2^+ T_2^- + E_{11}^2 + E_{22}^2 + E_0^2 = k (k + 2)
\]

\[
+ M_{11}^2 + M_{22}^2 + M_{12} M_{21} + M_{21} M_{12}
\]

\[
- M_{11} - M_{22} = k (k + 2) + C_2(M) - C_1(M),
\]

and, finally,

\[
C_3 = -\frac{1}{2} C_1^3 + \frac{3}{2} C_1 C_2 + 3 C_2 - 2 C_1^2 - 2 C_1.
\]

In this realization, the Casimir operator \(C_3 \) is algebraically dependent on \(C_1 \) and \(C_2 \). In fact, \(C_1 \) and \(C_2 \) are nothing but the Casimir operators of the \(gl_2 \) sub-algebra. Therefore, the center of the \(gl_3 \) universal enveloping algebra in realization \([11]\) is generated by the Casimir operators of the \(gl_2 \) sub-algebra realized by \(M_{ij} \). Thus, it seems natural that these reps are irreducible.

Now we consider concrete matrix realizations of the \(gl_2 \)-subalgebra in our scheme.

3.1. Reps in \(1 \times 1 \) Matrices

This corresponds to the trivial representation of \(gl_2 \),

\[
M_{11} = M_{12} = M_{21} = M_{22} = 0.
\]

This is \([k, 0]\) or, in other words, a symmetric representation (the Young tableau has two rows of length \(k \) and 0, correspondingly). We also can call it a scalar representation, since the generators

\[
E_{11} = x_1 \partial_1, \quad E_{22} = x_2 \partial_2,
\]

\[
E_{12} = x_1 \partial_2, \quad E_{21} = x_2 \partial_1,
\]

\[
E_0 = k - x_1 \partial_1 - x_2 \partial_2,
\]

\[
T_1^- = \partial_1, \quad T_2^- = \partial_2,
\]

\[
T_1^+ = x_1 (k - x_1 \partial_1 - x_2 \partial_2),
\]

\[
T_2^+ = x_2 (k - x_1 \partial_1 - x_2 \partial_2),
\]

(12)

act on one-component spinors or, in other words, on scalar functions (see e.g. [5]). The Casimir operators are:

\[
C_1 = k, \quad C_2 = k (k + 2).
\]
If parameter k takes non-negative integer the algebra \mathfrak{gl}_3 spanned by the generators \[\{12\}\] appears in finite-dimensional representation. Its finite-dimensional representation space is a space of polynomials

$$ p_{k,0} = \langle x_1^{p_1}x_2^{p_2} \mid 0 \leq p_1 + p_2 \leq k \rangle, \quad k = 0, 1, 2, \ldots. \quad (13) $$

Namely in this representation \[\{12\}\], the algebra \mathfrak{gl}_3 appears as the hidden algebra of the 3-body Calogero and Sutherland models \[\{5\}\], BC_2 rational and trigonometric, and G_2 rational models \[\{6\}\] and even of the BC_2 elliptic model \[\{7\}\].

3.2. Reps in 2×2 Matrices

Take \mathfrak{gl}_2 in two-dimensional reps by 2×2 matrices,

$$ M_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, $$

$$ M_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad M_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, $$

Then the generators \[\{11\}\] of \mathfrak{gl}_3 are:

$$ T_1^- = \begin{pmatrix} \partial_1 & 0 \\ 0 & \partial_1 \end{pmatrix}, \quad T_2^- = \begin{pmatrix} \partial_2 & 0 \\ 0 & \partial_2 \end{pmatrix}, $$

$$ E_{11} = \begin{pmatrix} x_1 \partial_1 + 1 & 0 \\ 0 & x_1 \partial_1 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} x_1 \partial_2 & 1 \\ 0 & x_1 \partial_2 \end{pmatrix}, $$

$$ E_{21} = \begin{pmatrix} x_2 \partial_1 & 0 \\ 1 & x_2 \partial_1 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} x_2 \partial_2 & 0 \\ 0 & x_2 \partial_2 + 1 \end{pmatrix}, $$

$$ E_0 = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, $$

$$ T_1^+ = \begin{pmatrix} x_1(A-1) & -x_2 \\ 0 & x_1A \end{pmatrix}, $$

$$ T_2^+ = \begin{pmatrix} x_2A & 0 \\ -x_1 & x_2(A-1) \end{pmatrix}, $$

(14)

where $A = k - x_1 \partial_1 - x_2 \partial_2$. This is $[k,1]$-representation (the Young tableau has two rows of length k and 1, correspondingly), and their Casimir operators are:

$$ C_1 = k + 1, \quad C_2 = (k + 1)^2. $$

If parameter k takes non-negative integer the algebra \mathfrak{gl}_3 spanned by the generators \[\{14\}\] appears in finite-dimensional representation.

Let us consider several different values of k in detail.

The case $k = 1$. Then three-dimensional representation space $V_1^{(2)}$ appears to be spanned by:

$$ P_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad P_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad Y_1 = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}. \quad (15) $$

This corresponds to antiquark multiplet in standard (fundamental) representation. The Newton polygon is a triangle with points P_{\pm} as vertices at the base.

![Figure 1. Newton polygon for the representation space $V_3^{(2)}$ of the [4,1]-representation of dimension 24.](image)

The case $k = 2$. Then eight-dimensional representation space $V_2^{(2)}$ appears to be spanned by:

$$ P_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad P_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad P_{1}^{(1)} = \begin{pmatrix} 0 \\ x_2 \end{pmatrix}, $$

$$ Y_1^{(1)} = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}, \quad Y_2^{(1)} = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, \quad P_{1}^{(1)} = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, $$

$$ Y_2 = \begin{pmatrix} x_2^2 \\ -x_1x_2 \end{pmatrix}, \quad Y_3 = \begin{pmatrix} x_1x_2 \\ -x_1^2 \end{pmatrix}. \quad (16) $$

This corresponds to octet in standard (fundamental) representation. Space $V_2^{(2)}$ contains $V_1^{(2)}$ as a subspace, $V_1^{(2)} \subset V_2^{(2)}$. It should be mentioned that $Y_1^{(1)} + Y_2^{(1)}$. Now the Newton polygon is a hexagon where the central point is doubled, being presented by $Y_1^{(1,2)}$, and the lower (upper) base has length two being given by P_{\pm} $(Y_{2,3})$.

The case $k = 3$. The representation space $V_3^{(2)}$ is 15-dimensional. In addition to $P_{\pm}, P_{1}^{(1)}$ and $Y_1^{(1,2)}$ (see \[\{15\}\] and \[\{16\}\]), it contains several vectors more, namely,

$$ P_{2}^{(2)} = \begin{pmatrix} 0 \\ x_2^2 \end{pmatrix}, \quad P_{+}^{(2)} = \begin{pmatrix} x_2^2 \\ 0 \end{pmatrix}, \quad (17) $$

which are situated on the \pm-sides of the Newton polygon, doubling the points corresponding to $Y_{2,3}$ (see \[\{16\}\]),

$$ Y_{2}^{(1)} = \begin{pmatrix} 0 \\ x_1x_2 \end{pmatrix}, \quad Y_{2}^{(2)} = \begin{pmatrix} x_2^2 \\ 0 \end{pmatrix}, $$

$$ Y_{3}^{(1)} = \begin{pmatrix} 0 \\ x_1^2 \end{pmatrix}, \quad Y_{3}^{(2)} = \begin{pmatrix} x_1x_2 \\ 0 \end{pmatrix}, \quad (18) $$

plus three extra vectors on the boundary

$$ Y_8 = \begin{pmatrix} x_3^2 \\ -x_1x_2 \end{pmatrix}, \quad Y_9 = \begin{pmatrix} x_1x_2^2 \\ -x_1^2x_2 \end{pmatrix}, \quad Y_{10} = \begin{pmatrix} x_1^2x_2^2 \\ -x_1^3 \end{pmatrix}. \quad (19) $$

It is clear that $V_1^{(2)} \subset V_2^{(2)} \subset V_3^{(2)}$. All internal points of the Newton polygon are double points, while the points on the boundary are single ones.
The general case. The finite-dimensional representation space $V^{(2)}_k$ has dimension $k(k + 2)$ and is presented by the Newton hexagon, which contains $(k + 1)$ horizontal layers. The lower base has length two, while the upper base has length k (see Fig. 3 as an illustration for $k = 4$). All internal points of the Newton hexagon are double points, while the points on the boundary are single ones. Except for k vectors of the last (highest) layer of the Newton hexagon, the remaining $k(k + 1)$ vectors span the space of all possible two-component spinors with components given by the inhomogeneous polynomials in x_1, x_2 of degree not higher than $(k - 1)$. We denote this space as $V^{(2)}_k \subset V^{(2)}$. The non-trivial task is to describe k vectors of the last (highest) layer of the hexagon. After some analysis one can find that they have the form

\[Y_{k(k+1)+i} = \left[\begin{array}{c} x_2^{k-i}x_1^{i+1} \\ -x_2^{k-i-1}x_1^{i+1} \end{array} \right], \]

for $i = 0, 1, 2, \ldots, (k - 1), \quad (20)$

hence they span a non-trivial k-dimensional subspace of spinors with components given by specific homogeneous polynomials of degree k.

3.3. Reps in 3×3 matrices

Take gl_2 in three-dimensional reps by 3×3 matrices,

\[
\begin{align*}
M_{11} &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & M_{22} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \\
M_{12} &= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, & M_{21} &= \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}.
\end{align*}
\]

Then the generators [11] of gl_3 are:

\[
\begin{align*}
T_1^+ &= \begin{pmatrix} x_2A & 0 & 0 \\ -\sqrt{2}x_1 & x_2(A - 1) & 0 \\ 0 & -\sqrt{2}x_1 & x_2(A - 2) \end{pmatrix},
\end{align*}
\]

where $A = k - x_1\partial_1 - x_2\partial_2$. This is $[k, 2]$-representation (the Young tableau has two rows of length k and 2, correspondingly) and their Casimir operators are:

\[
C_1 = k + 2, \quad C_2 = (k + 1)^2 + 3.
\]

As an illustration let us explicitly show finite-dimensional representation spaces for $k = 2, 3$.

The case $k = 2$. Then the six-dimensional representation space $V^{(3)}_2$ appears to be spanned by:

\[
\begin{align*}
P_- &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & P_0 &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & P_+ &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\
Y_1 &= \begin{pmatrix} 0 \\ x_2 \\ -\sqrt{2}x_1 \end{pmatrix}, & Y_2 &= \begin{pmatrix} -\sqrt{2}x_2 \\ x_1 \\ 0 \end{pmatrix}, \\
Y_3 &= \begin{pmatrix} x_2^2 \\ -\sqrt{2}x_1x_2 \\ x_1^2 \end{pmatrix}.
\end{align*}
\]

This corresponds to ‘di-antiquark’ multiplet.

The case $k = 3$. Then 15-dimensional representation space $V^{(3)}_3$ appears to be spanned by:

\[
\begin{align*}
P_- &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & P_0 &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & P_+ &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\
Y_1^{(1)} &= \begin{pmatrix} 0 \\ x_2 \\ 0 \end{pmatrix}, & Y_1^{(2)} &= \begin{pmatrix} 0 \\ x_1 \\ 0 \end{pmatrix}, & Y_2^{(1)} &= \begin{pmatrix} -\sqrt{2}x_2 \\ x_1 \\ 0 \end{pmatrix}, \\
Y_2^{(2)} &= \begin{pmatrix} 0 \\ x_1 \\ 0 \end{pmatrix}, & P_{1-} &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, & P_{1+} &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \\
Y_3^{(1)} &= \begin{pmatrix} -\sqrt{2}x_1^2 \\ x_1x_2 \\ 0 \end{pmatrix}, & Y_3^{(2)} &= \begin{pmatrix} x_1x_2 \\ 0 \\ -\sqrt{2}x_1^2 \end{pmatrix}, \\
Y_4 &= \begin{pmatrix} -\sqrt{2}x_1^2 \\ 2x_1x_2 \\ 0 \end{pmatrix}, & Y_5 &= \begin{pmatrix} 2x_1x_2 \\ 2x_1x_2 \\ 0 \end{pmatrix}, \\
Y_6 &= \begin{pmatrix} x_1^3 \\ -\sqrt{2}x_1x_2^2 \\ x_1^2 \end{pmatrix}, & Y_7 &= \begin{pmatrix} x_1^3 \\ -\sqrt{2}x_1x_2^2 \\ x_1^2 \end{pmatrix}.
\end{align*}
\]

It is worth mentioning that as a consequence of a particular realization of the generators [11] of the gl_3 algebra there exist a certain relations between generators other than those given by the Casimir operators. The first observation is that there are no linear relations between generators of such a type. Some time ago nine quadratic relations were found.
between \(gl_3 \) generators taken in scalar representation [12] other than Casimir operators [8]. Surprisingly, certain modifications of these relations also exist for \([kn]\) mixed representations [11].

\[
-T_1^+ E_{22} + T_2^+ E_{12} = x_1 \left[M_{22} x_1 \partial_1 + M_{12} x_2 \partial_2 + (M_{11} - k) M_{22} - M_{21} M_{12} \right] - x_2 (x_1 \partial_1 - k - 1) M_{12} - M_{21} x_2^2 \partial_2 \equiv -\tilde{T}_1^+, \tag{24}
\]

\[
-T_2^+ E_{11} + T_3^+ E_{21} = x_2 \left[M_{22} x_1 \partial_1 + M_{12} x_2 \partial_2 + (M_{22} - k) M_{11} - M_{12} M_{21} \right] - x_1 (x_2 \partial_2 - k - 1) M_{21} - M_{12} x_2^2 \partial_1 \equiv -\tilde{T}_2^+, \tag{25}
\]

\[
-E_{12}(E_0 + 1) + T_1^+ T_1^- = M_{12}(x_1 \partial_1 - k - 1) - M_{11} x_1 \partial_1 \equiv -\tilde{E}_{12}, \tag{26}
\]

\[
-E_{21}(E_0 + 1) + T_2^+ T_2^- \equiv M_{21}(x_2 \partial_2 - k - 1) - M_{22} x_2 \partial_2 \equiv -\tilde{E}_{21}, \tag{27}
\]

\[
T_1^+ T_1^- - E_{11}(1 + E_0) = M_{11} x_2 \partial_2 - M_{12} x_2 \partial_1 - (k + 1) M_{11} \equiv -\tilde{E}_{11}, \tag{28}
\]

\[
T_2^+ T_2^- - E_{21}(1 + E_0) = M_{22} x_1 \partial_1 - M_{21} x_1 \partial_2 - (k + 1) M_{22} \equiv -\tilde{E}_{22}, \tag{29}
\]

\[
E_{12} E_{21} - E_{11} E_{22} - E_{11} = M_{12} x_2 \partial_1 + M_{21} x_1 \partial_2 - M_{22} x_1 \partial_1 - M_{11} x_2 \partial_2 + M_{12} M_{21} - M_{11} M_{22} - M_{11} \equiv -\tilde{E}_{11}, \tag{30}
\]

\[
E_{22} T_1^- - E_{21} T_2^- = M_{22} x_1 \partial_1 - M_{21} x_2 \partial_2 \equiv -\tilde{T}_1^-, \tag{31}
\]

\[
E_{12} T_1^- - E_{11} T_2^- = M_{12} x_2 \partial_1 - M_{11} x_2 \partial_2 \equiv -\tilde{T}_2^-, \tag{32}
\]

Not all these relations are independent. It can be shown that one relation is linearly dependent, since the sum of \((28) + (29) + (30)\) gives the second Casimir operator \(C_2\).

In scalar case, at least, we can assign a natural (vectorial) grading to the generators. The above relations also reflect a certain decomposition of the gradings,

\[
(1, 0)(0, 0) = (0, 1)(1, -1)
\]

\[
(0, 1)(0, 0) = (1, 0)(-1, 0)
\]

for the first two relations,

\[
(1, -1)(0, 0) = (1, 0)(0, -1)
\]

\[
(-1, 1)(0, 0) = (0, 1)(-1, 0)
\]

for the second two,

\[
(1, 0)(-1, 0) = (0, 0)(0, 0)
\]

\[
(0, 1)(0, -1) = (0, 0)(0, 0)
\]

\[
(1, -1)(-1, 1) = (0, 0)(0, 0)
\]

for three before the last two, and

\[
(0, 0)(-1, 0) = (-1, 1)(0, -1)
\]

\[
(0, 0)(0, -1) = (1, -1)(-1, 1)
\]

for the last two.

4. Algebra \(g^{(m)} \) In Mixed Representation

The basic property which was used to construct the mixed representation of the algebra \(gl_{n+1} \) is the existence of the Weyl-Cartan decomposition \(gl_{n+1} = L \oplus (gl_n \oplus I) \oplus U \) with property [6]. One can pose a question about the existence of other algebras than \(gl_{n+1} \) for which the Weyl-Cartan decomposition with property [6] holds. The answer is affirmative. Let us consider the important particular case of the Cartan
algebra \(gl_2 \oplus I \), and construct a realization of a new algebra denoted \(g^{(m)} \) with the property

\[
g^{(m)} = L_{m+1} \rtimes (gl_2 \oplus I) \rtimes U_{m+1},
\]

where \(L_m(U_m) \) is the commutative algebra of the lowering (raising) generators with the property \([L_m, U_m] = P_{m-1}(gl_2 \oplus I) \otimes P_{m-1} \) as a polynomial of degree \((m-1)\) in generators of \(gl_2 \oplus I \). Thus, it realizes a property of the generalized Gauss decomposition. The emerging algebra is a polynomial algebra. It is worth emphasizing that the realization we are going to construct appears at \(\dim(L_k) = \dim(U_m) = m \).

For \(m = 1 \) the algebra \(g^{(1)} = gl_3 \), see [6]. Our final goal is to build the realization of (33) in terms of finite order differential operators acting on the plane \(\mathbb{R}^2 \).

The simplest realization of the algebra \(gl_2 \) by differential operators in two variables is the vector field \(\partial_x \) of first order differential operators in two variables. The commutator relations (2) of the algebra \(gl_2 \) acting on \(\mathbb{R}^2 \) are given by

\[
\begin{align*}
J_{12} &= \partial_x, \\
J_{11} &= -x \partial_x + \frac{k}{3}, \\
J_{22} &= -x \partial_x + sy \partial_y, \\
J_{21} &= x^2 \partial_x + sxy \partial_y - kx,
\end{align*}
\]

(34)

(see S. Lie, [2] at \(k = 0 \) and A. González-Lopéz et al. [10] at \(k \neq 0 \) (Case 24)), where \(s, k \) are arbitrary numbers. These generators obey the standard commutation relations (2) of the algebra \(gl_2 \) in the vector field representation (1). It is evident that the sum of the two representations, \(J_{ij} \), and the matrix representation \(M_{ij} \), is also a representation,

\[
J_{ij} \equiv J_{ij} + M_{ij} \in gl_2.
\]

(35)

(cf. [3]). It is worth mentioning that the \(gl_2 \) algebra commutation relations for \(M_{mn} \) are taken in a canonical form (4). The unity generator \(I \) in (33) is written in the form of a generalized Euler-Cartan operator

\[
J_0^{(k)} = x \partial_x + sy \partial_y - k.
\]

(36)

Now let us assume that \(s \) is non-negative integer, \(s = m, m = 0, 1, 2, \ldots. \) Evidently, the lowering generators (of negative grading) from \(L_{m+1} \) can be given by

\[
T_i^- = x^i \partial_y, \quad i = 0, 1, \ldots, m,
\]

(37)

forming commutative algebra

\[
[T_i^-, T_j^-] = 0.
\]

(38)

(c.f. [9] [10]). Eventually, the generators of the algebra \((gl_2 \oplus I) \rtimes L_{m+1} \) take the form

\[
\begin{align*}
J_{12} &= \partial_x + M_{12}, \\
J_{11}^{(k)} &= -x \partial_x + \frac{k}{3} + M_{11}, \\
J_{22}^{(k)} &= -x \partial_x + my \partial_y + M_{22}, \\
J_{21}^{(k)} &= x^2 \partial_x + mxy \partial_y - kx + M_{21},
\end{align*}
\]

(39)

with \(J_0^{(k)} \) and \(T_i^- \) given by (36) and (37), respectively.

Let us consider two particular cases of the general construction of the raising generators for the commutative algebra \(U \).

Case 1. For the first case we take the trivial matrix representation of the \(gl_2 \),

\[
M_{11} = M_{12} = M_{21} = M_{22} = 0.
\]

One can check that one of the raising generators is given by

\[
U_0 = y \partial_x^m,
\]

(40)

while all other raising generators are multiple commutators of \(J_{21}^{(k)} \) with \(U_0 \),

\[
U_i = \left[J_{21}^{(k)}, [J_{21}^{(k)}, \ldots, J_{21}^{(k)}, T_0, \ldots] \right]
\]

\[
= y \partial_x^{m-i} J_0^{(k)} (J_0^{(k)} + 1) \ldots (J_0^{(k)} + i - 1),
\]

(41)

at \(i = 1, \ldots, m \). All of them are differential operators of fixed degree \(m \). The procedure for construction of the operators \(U_i \) has the property of nilpotency:

\[
U_i = 0, \quad i > m.
\]

In particular, for \(m = 1 \),

\[
U_0 = y \partial_x, \quad U_1 = y J_0^{(k)} = y (x \partial_x + y \partial_y - k).
\]

Inspecting the generators \(T_{0,1}^-, J_{ij}, J_m \), \(U_{0,1} \) one can see that they span the algebra \(gl_3 \), see [12]. Hence, the algebra \(g^{(1)} \equiv gl_3 \).

If parameter \(k \) takes non-negative integer the algebra \(g^{(m)} \) spanned by the generators (39), (40), (41) appears in finite-dimensional representation. Its finite-dimensional representation space is a triangular space of polynomials

\[
P_{k,0} = \langle x^p y^q | 0 \leq p_1 + mp_2 \leq k \rangle,
\]

\[
k = 0, 1, 2, \ldots.
\]

(42)

Namely in this representation, the algebra \(g^{(m)} \) appears as a hidden algebra of the 3-body \(G_2 \) trigonometric model [6] at \(m = 2 \) and of the so-called TTW model at integer \(m \), in particular, of the dihedral \(I_2(m) \) rational model [11].
5. EXTENSION OF THE 3-BODY CALOGERO MODEL

The first algebraic form for the 3-body Calogero Hamiltonian [12] appears after gauge rotation with the ground state function, separation of the center-of-mass and changing the variables to elementary symmetric polynomials of the translationally-symmetric coordinates [5],

\[h_{\text{Cal}} = -2\tau_2 \partial^2_{\tau_2 \tau_2} - 6\tau_3 \partial^2_{\tau_3 \tau_3} + \frac{2}{3} \tau_2^2 \partial^2_{\tau_2 \tau_3} \]

\[- \left[4\omega \tau_2 + 2(1 + 3\nu) \right] \partial_{\tau_2} - 6\omega \tau_3 \partial_{\tau_3}. \] (43)

These new coordinates are polynomial invariants of the \(A_2 \) Weyl group. Its eigenvalues are

\[-\epsilon_p = 2\omega(2p_1 + 3p_2), \quad p_{1,2} = 0, 1, \ldots \] (44)

As is shown in Ruhl and Turbiner [5], the operator \(h_{\text{Cal}} \) can be rewritten in a Lie-algebraic form in terms of \(gl(3) \)-algebra generators of the representation \([k, 0]\). The corresponding expression is

\[h_{\text{Cal}} = -2E_{11}T^-_1 - 6E_{22}T^-_1 + \frac{2}{3} E_{12} E_{12} \]

\[- 4\omega E_{11} - 2(1 + 3\nu)T^-_1 - 6\omega E_{22}. \] (45)

Now we can substitute the generators of the representation \([k, n]\) in the form \([11]\)

\[h_{\text{Cal}} = -2\tau_2 \partial^2_{\tau_2 \tau_2} - 6\tau_3 \partial^2_{\tau_3 \tau_3} + \frac{2}{3} \tau_2^2 \partial^2_{\tau_2 \tau_3} \]

\[- \left[2\omega \tau_2 + (1 + 3\nu) + (n - 2M_{22}) \right] \partial_{\tau_2} \]

\[- \left(6\omega \tau_3 - \frac{4}{3} M_{12} \tau_2 \right) \partial_{\tau_3} + \frac{2}{3} M_{12} M_{12} \]

\[- 4\omega n - 2\omega M_{22}. \] (46)

This is an \(n \times n \) matrix differential operator. It contains infinitely many finite-dimensional invariant subspaces which are nothing but finite-dimensional representation spaces of the algebra \(gl(3) \). This operator remains exactly-solvable with the same spectra as the scalar Calogero operator.

This operator probably remains completely integrable. A higher-than-second-order integral is the differential operator of the sixth order \((\omega \neq 0) \) or of the third order \((\omega = 0) \), which takes an algebraic form after gauging away the ground state function in \(\tau \) coordinates. It can be rewritten in terms of the \(gl(3) \)-algebra generators of the representation \([k, 0]\), which then can be replaced by the generators of the representation \([k, n]\). Under such a replacement the spectra of the integral remain unchanged and algebraic.

6. EXTENSION OF THE 3-BODY SUTHERLAND MODEL

The first algebraic form for the 3-body Sutherland Hamiltonian [13] appears after gauge rotation with the ground state function, separation of the center-of-mass and changing the variables to elementary symmetric polynomials of the translationally-symmetric coordinates [5],

\[h_{\text{Suth}} = -2E_{11}T^-_1 - 6E_{22}T^-_1 + \frac{2}{3} E_{12} E_{12} \]

\[- 2(1 + 3\nu)T^-_1 + \frac{\alpha^2}{6} E_{21} E_{21} - \frac{\alpha^2}{24} (3E_{11} + 8E_{11} E_{22} + 3E_{22} E_{22} + (1 + 12\nu)(E_{11} + E_{22})]. \] (48)

Now we can substitute the generators of the representation \([k, n]\) in the form \([11]\)

\[h_{\text{Suth}} = -\left(2\eta_2 + \frac{\alpha^2}{2} \eta_2^2 - \frac{\alpha^4}{24} \eta_2^3 \right) \partial^2_{\eta_2 \eta_2} \]

\[- \left[6 + 4\alpha^2 \eta_2 \right] \eta_3 \partial_{\eta_3} \partial_{\eta_3} + \left(\frac{2}{3} \eta^2 - \frac{\alpha^2}{2} \eta_3^3 \right) \partial^2_{\eta_3 \eta_3} \]

\[- \left[2(1 + 3\nu) + \frac{\alpha^2}{3} \eta_2 \right] \partial_{\eta_2} - \left[2\left(\nu + \frac{1}{3} \right) \alpha^2 \eta_3 \right] \partial_{\eta_3} \]

\[+ \frac{\alpha^4}{24} (3\eta_2 \partial_{\eta_2} + \eta_3 \partial_{\eta_3}) + M_{11} \eta_2 \partial_{\eta_2} + M_{22} \eta_2 \partial_{\eta_2}] \]

\[+ \frac{2}{3} M_{12} M_{12} + \frac{\alpha^4}{24} M_{21} M_{21} \]

\[- \frac{\alpha^2}{6} \left[2M_{11} M_{22} + (1 + 12\nu + 3\eta_2) \right]. \] (49)
This is an $n \times n$ matrix differential operator. It contains infinitely-many finite-dimensional invariant subspaces which are nothing but finite-dimensional representation spaces of the algebra $gl(3)$. This operator remains exactly-solvable with the same spectra as the scalar Sutherland operator.

The operator g_{n+1} probably remains completely integrable. A non-trivial integral is the differential operator of the third order, it takes the algebraic form after gauging away the ground state function in η coordinates. It can be rewritten in terms of the $gl(3)$-algebra generators of the representation $[k,0]$, which then can be replaced by the generators of the representation $[k,n]$. Under such a replacement the spectra of the integral remain unchanged and algebraic.

7. Conclusions

The algebra gl_n of differential operators plays the role of a hidden algebra for all A_n, B_n, C_n, D_n, BC_n Calogero-Moser Hamiltonians, both rational and trigonometric, with the Weyl symmetry of classical root spaces (see [14] and references therein). We have described a procedure which, in our opinion, should carry the name of the Havlicek procedure, to construct the algebra gl_n of the matrix differential operators. The procedure is based on a mixed, matrix-differential operator realization of the Gauss decomposition diagram.

As for Hamiltonian reduction models with the exceptional Weyl symmetry group G_2, F_4, E_6, E_7, E_8 both rational and trigonometric, there exist hidden algebras of differential operators (see [14] and references therein). All these algebras are infinite-dimensional but finitely-generated. For generating elements of these algebras an analogue of the Weyl-Cartan decomposition exists but in the Gauss decomposition diagram, a commutator of the lowering and raising generators is a polynomial of the higher-than-one order in the Cartan generators. Matrix realizations of these algebras surely exist. Thus, the above mentioned procedure for building the mixed representations can be realized. It may lead to a new class of matrix exactly-solvable models with exceptional Weyl symmetry.

Acknowledgements

It was planned long ago to dedicate this text to Miloslav Havlicek who has always been deeply respected by both authors as a scientist and also as a citizen.

The text is based mainly on notes jointly prepared by two authors. It does not include results of the authors obtained separately (except for Section 4) and which the authors had no chance to discuss. Thus, the text will appear somehow incomplete. When the first author (YuFS) passed away, it took years for the second author (AVT) to return to the subject due to sad memories. Even now, almost a decade after the death of Yura Smirnov, the preparation of this text was quite difficult for AVT.

AVT thanks CRM, Montreal for their kind hospitality extended to him. A part of this work was done there during his numerous visits. AVT is grateful to J C Lopez Vieyra for taking the interest in the work and for technical assistance. This work was supported in part by the University Program FENOMEC, by PAPIT grant IN109512, and by CONACyT grant 166189 (Mexico).

References

[7] A.V. Turbiner. BC$_2$ Lame polynomials, Talks presented at 1085 Special Session of the American Mathematical Society, Tucson AZ, USA (October 2012) and at the Annual Meeting of the Canadian Mathematical Society, Montreal, Canada (December 2012)