Exceptional Points for Nonlinear Schroedinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases

G. Wunner, H. Cartarius, P. Koeberle, J. Main, S. Rau


The coalescence of two eigenfunctions with the same energy eigenvalue is not possible in Hermitian Hamiltonians. It is, however, a phenomenon well known from non-hermitian quantum mechanics. It can appear, e.g., for resonances in open systems, with complex energy eigenvalues. If two eigenvalues of a quantum mechanical system which depends on two or more parameters pass through such a branch point singularity at a critical set of parameters, the point in the parameter space is called an exceptional point. We will demonstrate that exceptional points occur not only for non-hermitean Hamiltonians but also in the nonlinear Schroedinger equations which describe Bose-Einstein condensates, i.e., the Gross-Pitaevskii equation for condensates with a short-range contact interaction, and with additional long-range interactions. Typically, in these condensates the exceptional points are also found to be bifurcation points in parameter space. For condensates with a gravity-like interaction between the atoms, these findings can be confirmed in an analytical way.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague