Modeling of Concrete Creep Based on Microprestress-solidification Theory

P. Havlásek, M. Jirásek


Creep of concrete is strongly affected by the evolution of pore humidity and temperature, which in turn depend on the environmental conditions and on the size and shape of the concrete member. Current codes of practice take that into account only approximately, in a very simplified way. A more realistic description can be achieved by advanced models, such as model B3 and its improved version that uses the concept of microprestress. The value of microprestress is influenced by the evolution of pore humidity and temperature. In this paper, values of parameters used by the microprestress-solidification theory (MPS) are recommended and their influence on the creep compliance function is evaluated and checked against experimental data from the literature. Certain deficiencies of MPS are pointed out, anda modified version of MPS is proposed.


creep; concrete; compliance function; Kelvin chain; solidification; microprestress; finite elements

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague