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Dear Reader

The Acta Polytechnica journal that you have just opened is a scientific journal published by the Czech
Technical University in Prague. This journal first appeared in 1961 under the name “Proceedings of the Czech
Technical University”. The main purpose of the journal was to support publication of the results of scientific
and research activities at the Czech technical universities. Five years later, in 1966, the name of the journal
was changed to Acta Polytechnica, and it started appearing quarterly. The main title Acta Polytechnica is
accompanied by the subtitle Journal of Advanced Engineering, which expresses the scope of the journal
more precisely. Acta Polytechnica covers a wide spectrum of engineering topics in civil engineering, mechanical
engineering, electrical engineering, nuclear sciences and physical engineering, architecture, transportation science,
biomedical engineering and computer science and engineering. The scope of the journal is not limited to the
realm of engineering. We also publish articles from the area of natural sciences, in particular physics and
mathematics.

Acta Polytechnica is now being published in an enlarged format. Our aim is to be a high-quality multi-disciplinary
journal publishing the results of basic research and also applied research. We place emphasis on the quality of
all published papers. The journal should also serve as a bridge between basic research in natural sciences and
applied research in all technical disciplines.

We invite researchers to submit high-quality original papers. The conditions of the submission process are
explained in detail on: http://ojs.cvut.cz/ojs/index.php/ap. All papers will be reviewed, and accepted
papers are published in English.

We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific
information.

Editorial Board
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In September 2021, the XVIIIth continuation of the series of the international, mathematically oriented
conferences “Analytic and Algebraic Methods in Physics” (AAMP) had to be organized, for well-known reasons,
online. Fortunately, every cloud has a silver lining: the related reduction of the capacity of the scientific
communication channels led to the willingness of the participants to return to the recently almost abandoned
tradition of complementing the Zoom-mediated meeting by a subsequent preparation of an AAMP-oriented
Special Issue (SI) of Acta Polytechnica.

The main purpose of this SI is twofold. Firstly, it is intended to offer, in written form, a sufficiently representative
sample of what has been presented online. This means that in the form of the standard refereed papers, the
readers of this SI will be rewarded by the up-to-the-minute information about the current state of art. Secondly,
in an ambition which reaches behind the meeting itself, the contributing authors felt motivated by the idea that
a compact and comprehensible presentation of their results might find a broader readership among people who
would not normally participate in the conference but who could still find at least some of the presented results
potentially relevant for their own field of research.

In comparison with the AAMP meeting itself (where the separate subjects covered by 36 talks have been
subdivided into 12 sections), a minor disadvantage of our present SI lies, from the point of view of its readers at
least, in the (traditional) alphabetical ordering of the contributions by their first authors. Fortunately, interested
readers might get more info about the subdivisions of the subjects via the webpage of the conference [1]. Another
weakness of the SI collection could be seen, mainly by the 75 AAMP participants themselves, in an incomplete
coverage of the talks. Indeed, roughly one third of them was not eligible for our SI because the material was
based on the recently published papers. Again, the related complementary information is available via the
AAMP homepage [1].

This being said, the readers of this SI are expected to make their own selection of the consumption out of the
menu. All of the papers belong to the AAMP framework, but even such a restriction admitted the inclusion
of a broad spectrum of subfields, which are all bridging the gaps between the existing abstract mathematical
structures (ranging from our understanding of ordinary differential equations up to the applications of the
various forms of symmetries, antilinear symmetries, supersymmetries and nonlinearities) and their possible
practical implementations (ranging again from multiple elementary models and methodical considerations up
to certain fairly complicated phenomenological questions as encountered, say, in the relativistic quantum field
theory).

In the AAMP context, we could speak about the tradition of the search for a deeper understanding of the
connection between mathematics and physics. This led, in 2007, to the formulation of the project and to
the organization of the series of the dedicated international conferences. At that time, indeed, the analytic
and algebraic methods were particularly actively developed by the Founding Fathers from the Nuclear Physics
Institute of the CAS in Řež. In this sense, the mathematical side of the bridge to physics has been (and, in fact,
it is still being) restricted to the analytic and algebraic methods. In parallel, the physics side of the same bridge
proved quickly growing with time. At present, its scope covers so many parts of physics that even the originally
tacitly assumed specification “quantum physics” would and could be considered over-restrictive.

One can only conclude that the interaction between mathematics and physics remains enormously productive.
We believe that our SI will contribute to this productivity, counteracting the extent of damages caused to the
scientific world by the coronavirus. One of its most damaging effects was, indeed, the interruption of many
regular series of international conferences, of which the series “Analytic and Algebraic Methods in Physics”
(AAMP), regularly taking place in Prague every year, is just one of many examples. In fact, the original hopes
that the interruption might only last one year were not fulfilled.

Equally disappointing proved to be our slow but definite empirical discovery that the success and efficiency of
the transformation of these conferences into virtual meetings (mediated, say, by Zoom) remains limited. What
was saved was only a form, not the full contents; not the essence. We all revealed that there exists no real
substitute for the face-to-face meetings, converting the hours of isolated research performed by individuals into
an exchange of ideas and providing a platform for their critical re-evaluation. Creating a genuine living science
which can acquire its final, collective and truly creative character only after multiple informal debates and only
after multiple active personal interactions.

For all of these reasons, the organizers of the AAMP series came to the conclusion that one of the possible
reactions to the unpleasant current circumstances would be an enrichment of the internet-mediated standard
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form of the meetings (in which one listens to talks for a few days, without having a real opportunity of discussing
the subjects in the couloirs) via a return to an apparently obsolete practice of a subsequent preparation and
publication of at least some of the talks in their written, more lasting and better accessible form, better suitable
for the subsequent critical re-evaluation.

In this special issue of Acta Polytechnica, the readers will have the opportunity of seeing and, perhaps,
appreciating the result. Surprisingly, many speakers decided to contribute. For us, this is a proof that the
production of special issues characterized by a well-defined and not-too-broad range of subjects still makes sense.

On behalf of organizers, the guest editors of the special issue,

Andrii Khrabustovskii and Miloslav Znojil, University of Hradec Králové

References
[1] http://www.ujf.cas.cz/en/departments/department-of-theoretical-physics/events/

conferencies/AAMP/index.html
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CONSERVED QUANTITIES IN NON-HERMITIAN SYSTEMS VIA
VECTORIZATION METHOD

Kaustubh S. Agarwal, Jacob Muldoon, Yogesh N. Joglekar∗

Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202 U.S.A.
∗ corresponding author: yojoglek@iupui.edu

Abstract. Open classical and quantum systems have attracted great interest in the past two decades.
These include systems described by non-Hermitian Hamiltonians with parity-time (PT ) symmetry
that are best understood as systems with balanced, separated gain and loss. Here, we present an
alternative way to characterize and derive conserved quantities, or intertwining operators, in such open
systems. As a consequence, we also obtain non-Hermitian or Hermitian operators whose expectations
values show single exponential time dependence. By using a simple example of a PT -symmetric dimer
that arises in two distinct physical realizations, we demonstrate our procedure for static Hamiltonians
and generalize it to time-periodic (Floquet) cases where intertwining operators are stroboscopically
conserved. Inspired by the Lindblad density matrix equation, our approach provides a useful addition
to the well-established methods for characterizing time-invariants in non-Hermitian systems.

Keywords: Parity-time symmetry, pseudo-Hermiticity, conserved quantities.

1. Introduction
Since the seminal discovery of Bender and coworkers
in 1998 [1], non-Hermitian Hamiltonians H with real
spectra have become a subject of intense scrutiny [2–
4]. The initial work on this subject focused on taking
advantage of the reality of the spectrum to define
a complex extension of quantum theory [5] where
the traditional Dirac inner product is replaced by
a Hamiltonian-dependent (CPT ) inner product. Soon
it became clear that this process can be thought of
as identifying positive definite operators η̂ ≥ 0 that
intertwine with the Hamiltonian [6–8], i.e. η̂H = H†η̂,
and that a non-unique complex extension of standard
quantum theory is generated by each positive def-
inite η̂ [9, 10]. These mathematical developments
were instrumental to elucidating the role played by
non-Hermitian, self-adjoint operators, biorthogonal
bases, and non-unitary similarity transformations that
change an orthonormal basis set into a non-orthogonal,
but linearly independent basis set in physically realiz-
able classical and quantum models [11].

A decade later, this mathematical approach gave
way to experiments with the recognition that non-
Hermitian Hamiltonians that are invariant under com-
bined operations of parity and time-reversal (PT ) rep-
resent open systems with balanced gain and loss [12–
15]. The spectrum of a PT -symmetric Hamiltonian
HPT(γ) is purely real when the non-Hermiticity γ
is small. With increasing γ, a level attraction and
resulting degeneracy turns the spectrum into complex-
conjugate pairs when the non-Hermiticity exceeds
a nonzero threshold γPT [16]. This transition is called
PT -symmetry breaking transition, and at the thresh-
old γPT the algebraic multiplicity of the degenerate
eigenvalue is larger than the geometric multiplicity,
i.e. it is an exceptional point (EP) [17].

Fueled by this physical insight, the past decade
has seen an explosion of experimental platforms, usu-
ally in classical wave systems, where effective PT -
symmetric Hamiltonians with balanced gain and loss
have been realized. They include evanescently cou-
pled waveguides [18], fiber loops [19], microring res-
onators [20, 21], optical resonators [22], electrical cir-
cuits [23–25], and mechanical oscillators [26]. The key
characteristics of this transition, driven by the non-
orthogonality of eigenstates, are also seen in systems
with mode-selective losses [27–29]. In the past two
years, these ideas have been further extended to mini-
mal quantum systems, thereby leading to observation
of PT -symmetric breaking and attendant phenom-
ena in a single spin [30], a single superconducting
transmon [31], ultracold atoms [32], and quantum
photonics [33].

We remind the readers the effective Hamiltonian
approach requires Dirac inner product, and is valid in
both PT -symmetric and PT -broken regions. Apro-
pos, the non-unitary time evolution generated by
the effective HPT signals the fact that the system
under consideration is open. In this context, ev-
ery intertwining operator η̂ – positive definite or
not – represents a time-invariant of the system. In
other words, although the state norm ⟨ψ(t)|ψ(t)⟩
or the energy ⟨ψ(t)|HPT|ψ(t)⟩ of a state |ψ(t)⟩ =
exp(−iHPTt)|ψ(0)⟩ of a PT -symmetric system are
not conserved [8], the expectation values ⟨ψ(t)|η̂|ψ(t)⟩
remain constant with time. For a system with N
degrees of freedom, a complete characterization of in-
tertwining operators for a given system is carried out
by solving the set of N2 simultaneous, linear equations,
i.e.

η̂HPT = H†
PTη̂. (1)

1
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In the past, several different avenues have been used
to obtain these conserved quantities. They include
spectral decomposition methods [8, 34], an explicit
recursive construction to generate a tower of inter-
twining operators [25, 35], sum-rules method [36],
and the Stokes parametrization approach for a PT -
symmetric dimer [37]. Here, we present yet another
approach to the problem, and illustrate it with two
simple examples. The plan of the paper is as fol-
lows. In Section 2, we present the eigenvalue-equation
approach for intertwining operators and the details
of the vectorization scheme. This method is valid
for any finite dimensional PT -symmetric Hamilto-
nian. In Section 3, we present results of such analysis
for a quantum PT -symmetric dimer with static or
time-periodic gain and loss. Corresponding results for
a classical PT -symmetric dimer are presented in Sec-
tion 4. We conclude the paper with a brief discussion
in Section 5.

2. Intertwining operators as an
eigenvalue problem

For a PT -symmetric system undergoing coherent but
non-unitary dynamics with static Hamiltonian HPT,
the expectation value of an operator η̂ satisfies the
following linear-in-η̂ first-order differential equation

∂t⟨ψ(t)|η̂|ψ(t)⟩ = −i⟨ψ(t)|η̂HPT −H†
PTη̂|ψ(t)⟩. (2)

This equation is reminiscent of the Gorini Kossakowski
Sudarshan Lindblad (GKSL) equation [38, 39] (hence-
forth referred to as the Lindblad equation) that de-
scribes the dynamics of the reduced density matrix
of a quantum system coupled to a much larger envi-
ronment [40–42]. Interpreting η̂ as an N ×N matrix,
all η̂s that satisfy Eq. (2) can be obtained from the
corresponding eigenvalue problem

Ekη̂k = −i(η̂kHPT −H†
PTη̂k) ≡ Lη̂k, (3)

for 1 ≤ k ≤ N2. We vectorize the matrix η̂ into an
N2-sized column vector |ηv⟩ by stacking its columns,
i.e. [η̂]pq → ηvp+(q−1)N [43]. Under this vectoriza-
tion, the Hilbert-Schmidt trace inner product carries
over to the Dirac inner product, Tr(η̂†

1η̂2) = ⟨ηv1 |ηv2⟩
where ⟨ηv1 | is the Hermitian-conjugate row vector ob-
tained from the column vector |ηv1⟩. Using the identity
Aη̂B → (BT ⊗A)|ηv⟩, the eigenvalue problem Eq. (3)
becomes det(L − E1N2) = 0 where the N2 ×N2 “Li-
ouvillian” matrix is given by

L = −i
[
HT

PT ⊗ 1N − 1N ⊗H†
PT

]
, (4)

and 1m is the m × m identity matrix. Thus, the
intertwining operators are distinct eigenvectors |ηvm⟩
with zero eigenvalue in Eq. (3). The N2 eigenvalues of
the Liouvillian L are simply related to N eigenvalues
ϵm of the HPT as

Epq = −i(ϵp − ϵ∗q). (5)

Since the spectrum of HPT is either real (ϵp = ϵ∗p) or
complex conjugates (ϵp = ϵ∗q for some pair), there are
N zero eigenvalues of L when HPT has no symmetry-
driven degeneracies; the number of zero eigenvalues
grows to N2 if the Hamiltonian is proportional to
the identity matrix [34]. This analysis also provides
a transparent way to construct corresponding inter-
twining operators via the spectral decomposition of
HPT [8]. Note that when E = 0, due to the linearity
of the intertwining relation, Eq. (1), without loss of
generality, we can choose the N intertwining operators
η̂m to be Hermitian.

So what is the advantage of this approach? For one,
it gives us N(N − 1) other, (generally non-Hermitian)
operators whose expectation value in any arbitrary
state evolves simply exponentially in time. When Epq
is purely imaginary, it leads to the non-Hermitian η̂pq
whose expectation value in any state remains constant
in magnitude; on the other hand, if Epq is purely real,
one can choose a Hermitian η̂pq whose expectation
value exponentially grows or decays with time.

This analysis of constants of motion is valid for
systems with a static, PT -symmetric Hamiltonian.
It can be suitably generalized to time-periodic, PT -
symmetric Hamiltonians via the Floquet formal-
ism [25, 28, 32, 44, 45]. When HPT(t) = HPT(t+ T )
is periodic in time, the long-time dynamics of the
system is governed by the Floquet time-evolution op-
erator [46]

GF (T ) = Te
−i

∫ T

0
HPT(t′)dt′

, (6)

where T stands for the time ordered product that
takes into account non-commuting nature of the
Hamiltonians at different times. The (stroboscopic)
dynamics of the system at times tm = mT is then
given by |ψ(tm)⟩ = GmF |ψ(0)⟩, and the corresponding,
Hermitian, conserved operators η̂ = η̂† are determined
by [25, 34]

G†
F η̂GF = η̂. (7)

Vectorization of Eq. (7) implies the conserved quanti-
ties are given by eigenvectors of the “Floquet Liouville
time-evolution” matrix

G = GTF ⊗G†
F (8)

with unit eigenvalue. Since GF (T ) inherits the PT
symmetry of the time-periodic Hamiltonian, the eigen-
values κm of GF (T ) either lie on a circle (|κp| = const.;
PT -symmetric phase) or occur along a radial line in
pairs with constant geometric mean (|κpκq| = const.;
PT -broken phase). Therefore, it is straightforward
to see that among the N2 eigenvalues λpq ≡ κpκ

∗
q

of G, there are N unit eigenvalues, giving rise to N
conserved quantities. As in the case with the static
Hamiltonian, the remaining N(N − 1) eigenvectors
give operators that vary exponentially with the strobo-
scopic time tm irrespective of the initial state |ψ(0)⟩.

2



vol. 62 no. 1/2022 Conserved quantities in non-Hermitian systems

If λpq is real, we can choose them to be Hermitian, as
in the case of a static Hamiltonian.

We now demonstrate these ideas with two concrete
examples.

3. Quantum PT -symmetric dimer
We first consider the prototypical PT -symmetric
dimer (N = 2) with a Hamiltonian given by

H1(t) = Jσx + iγf(t)σz = HT
1 ̸= H†

1 . (9)

We call this model “quantum” because it arises natu-
rally in minimal quantum systems undergoing Lind-
blad evolution when we confine ourselves to trajecto-
ries that undergo no quantum jumps [31], as well as
in wave systems [18–22]. Here J > 0 denotes coupling
between the two degrees of freedom and γ > 0 is the
strength of the gain-loss term. H1 is PT -symmetric
with the parity operator P = σx and time-reversal
operator T = ∗ (complex conjugation). The eigenval-
ues ϵ1,2 = ±

√
J2 − γ2 ≡ ±∆(γ) of the Hamiltonian

H1(γ) remain real when γ < γPT = J and become
purely imaginary when γ exceeds the threshold.

In the static case, f(t) = 1, using Eq. 1, it is
easy to show that η̂1 = P = σx is the first in-
tertwining operator [34, 35], and the recursive con-
struction gives the second intertwining operator as
η̂2 = η̂1H1/J = 1 + (γ/J)σy. However, the corre-
sponding 4 × 4 Liouvillian matrix L, Eq. (4), has two
nonzero eigenvalues that are given by E± = ±2i∆.
The corresponding eigen-operators are given by

η̂± = 1
J2

[
(γ ± i∆)2 −i(γ ± i∆)

+i(γ ± i∆) 1

]
. (10)

Note that the 2 × 2 matrices η̂± have rank 1, and thus
are not invertible. In the PT -symmetric region (∆ ∈
R), the operators η̂± are not Hermitian, whereas in
the PT broken region (∆ ∈ iR), they are Hermitian.

Next we consider the time-periodic case, i.e. f(t) =
f(t+ T ) where f(t) = sgn(t) for |t| < T/2 denotes a
square wave. This piecewise constant gain and loss
means that the Hamiltonian switches from H1+ =
Jσx + iγσz for 0 ≤ t < T/2 to H1− = T H1+T =
Jσx−iγσz for T/2 ≤ t < T . The non-unitary Floquet
time-evolution operator can be explicitly evaluated
as [47]

GF (T ) = e−iH1−T/2e−iH1+T/2, (11)
= G012 + iGxσx +Gyσy, (12)

where G0 = [J2 cos(∆T ) − γ2]/∆2, Gx =
−J sin(∆T )/∆ and Gy = −Jγ[1 − cos(∆T )]/∆2 are
coefficients that remain real irrespective of where ∆(γ)
is real or purely imaginary. When γ → 0, this repro-
duces the expected result GF (T ) = exp(−iJσxT ) and
in the limit T → 0, the time-evolution operator re-
duces to 12 as expected. On the other hand, as ∆ → 0,
the power series for GF (T ) terminates at second order

in T in a sharp contrast to the static case, where it
terminates at first order in time.

The eigenvalues of GF , Eq. (12), are

κ1,2 = G0 ± i
√
G2
x −G2

y. (13)

Thus the EP contours separating the PT -symmetric
phase (|κ1| = |κ2|) from the PT -broken phase (|κ1| ≠
|κ2|) are given by Gx = ±Gy [47]. It is easy to check
that η̂1 = σx satisfies G†

F η̂1GF = η̂1 and is a strobo-
scopically conserved quantity. The second conserved
operator is obtained from the symmetrized or anti-
symmetrized version of the recursive construction [34],
i.e.

η̂2 =
{

(η̂1GF +G†
F η̂1)/2,

−i(η̂1GF −G†
F η̂1)/2.

(14)

In the present case, the symmetrized version re-
turns η̂1 while the antisymmetrized version gives the
second, linearly independent conserved operator as
η̂2 = Gx12 + Gyσz. Following the procedure out-
lined in Section 2 gives us two unity eigenvalues of
G, Eq. (8), with corresponding conserved operators.
The remaining two eigenvalues are complex conju-
gates with unit length in the PT -symmetric region,
i.e. λ3 = λ∗

4 = eiϕ with eigen-operators η̂+ = η̂†
−

that are Hermitian conjugates of each other. In the
PT -broken region, the two complex eigenvalues with
equal phase satisfy |λ3λ4| = 1.

Figure 1 shows expectation values normalized to
their initial values,

ηα(t) ≡ ⟨ψ(t)|η̂α|ψ(t)⟩
⟨ψ(0)|η̂α|ψ(0)⟩ (15)

calculated with initial state |ψ(0)⟩ = | + x⟩ as a func-
tion of dimensionless time t/T . The system param-
eters are γ = 0.5J , JT = 1, and | + x⟩ is the eigen-
state of σx with eigenvalue +1. Thus, the system is
in the PT -symmetric region. Figure 1a shows that
η1(t) is conserved in this evolution at all times, not
just stroboscopically at tm = mT . On the other
hand η2(t), shown in Figure 1b, has a periodic be-
havior with a period ∼ 30T (not shown). Although
η2(t) varies with time, it is stroboscopically conserved,
η2(tm) = 1. The dotted red line shows ℜλt2 = 1.
Figure 1c shows that the real part of η+(t), with
eigenvalue λ3 = −0.44 + 0.9i, also shows periodic vari-
ation. The dotted black line shows ℜλt3, and the fact
that ℜη+(tm) matches it stroboscopically confirms
the simple sinousoidal variation of this eigen-operator.
Figure 1d shows corresponding results for the fourth
operator η̂− = η̂†

+ with eigenvalue λ4 = −0.44 − 0.9i.
We conclude this section with transformation prop-

erties of GF (T ) and the conserved operators η̂. When
the periodic Hamiltonian is Hermitian, i.e. H0(t) =
H†

0(t) = H0(t + T ), shifting the zero of time to t0
leads to a unitary transformation,

GF (T + t0, t0) = U(t0)GF (T )U†(t0), (16)

U(t0) = Te
−i

∫ t0
0
H0(t′)dt′

. (17)
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Figure 1. Conserved quantities for a Floquet, quantum PT -symmetric dimer. System parameters are γ = 0.5J ,
JT = 1, |ψ(0)⟩ = | + x⟩, and ηα(t) denote normalized expectation values. (a) η̂1 = σx is an eigen-operator of G
with eigenvalue λ1 = 1; η1(t) is constant. (b) η̂2 = Gx12 + Gyσz is the second eigen-operator of G with λ2 = 1;
η2(t) oscillates with time, but is stroboscopically constant at t/T = n; the dotted red line shows ℜλt

2 = 1. (c) η̂+
is a non-Hermitian eigen-operator with unit-length eigenvalue λ3 = −0.44 + 0.9i. The real part of its normalized
expectation value stroboscopically matches ℜλt

3 shown in dotted black. (d) Corresponding result for η̂− = η̂†
+ with

eigenvalue λ4 = λ∗
3.

Therefore the conserved operators are also unitar-
ily transformed. However, in our case, Eq. (16) be-
comes a similarity transformation, GF (T + t0, t0) =
SGF (T )S−1 where S = T exp(−i

∫ t0
0 HPT(t′)dt′)

does not satisfy S†S = 1 = SS†. Under this
transformation, the conserved operators change as
η̂ → S−1†η̂S−1. This non-unitary transformation of
the conserved quantities under a shift of zero of time
suggests that they are not related to “symmetries” of
the open system with balanced gain and loss.

4. Classical PT -symmetric dimer
We now consider a different example characterized by
a non-Hermitian Hamiltonian with purely imaginary
entries. We call such a system “classical” because
having HPT = −H∗

PT ensures that the non-unitary
time evolution operator exp(−iHPTt) is purely real,
and therefore |ψ(t)⟩ remains real if |ψ(0)⟩ is. Such
classical Hamiltonian arises naturally in describing the
energy density dynamics in mechanical or electrical cir-
cuits [23–26, 28], where |ψ(t)⟩ encodes time-dependent
positions, velocities, voltages, currents, etc. and is
obviously real. As its simplest model, we consider
a dimer governed by the Hamiltonian

H2(t) = Jσy + iγf(t)σz = −H∗
2 . (18)

On one level, the Hamiltonian H2(t), Eq. (18),
is “just a change of basis” from H1(t), Eq. (9);
H2(t) = exp(−iπσz/4)H1(t) exp(+iπσz/4). However,
since H2(t) models effective, classical systems where

the entire complex state space is physically accessible,
it is necessary to treat it differently. A physical real-
ization of H2(t) is found in a single LC circuit whose
inductance L(t) and capacitance C(t) are varied such
that its characteristic frequency J = 1/

√
L(t)C(t)

remains constant [25].
Hamiltonian H2(t) is PT -symmetric with PT =

σx∗. In the static case (f(t) = 1), the two, Hermi-
tian intertwining operators are given by η̂1 = σy and
η̂2 = η̂1H2/J = 12 − (γ/J)σx. In addition, the vec-
torization approach gives two, rank-1 eigen-operators

η̂± = 1
J2

[
(γ ± i∆)2 −(γ ± i∆)
−(γ ± i∆) 1

]
, (19)

with eigenvalues E± = ±2i∆. As we discussed in
Section 3, these operators are not Hermitian in the
PT -symmetric phase, and become Hermitian in the
PT -broken phase.

For the Floquet case, we choose a gain-loss term that
is nonzero only at discrete times. This is accomplished
by choosing the dimensionless function f(t) as

f(t) = T [δ(t) − δ(t− T/2)] = f(t+ T ). (20)

The resulting Floquet time-evolution operator GF (T )
can be analytically calculated [25]. Since the Hamilto-
nian H2(t) is Hermitian at all times except tk = kT/2,
the evolution is mostly unitary, punctuated by non-
unitary contributions that occur due to δ-functions at
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times tk. The result is

GF (T ) = e+γTσze−iJTσy/2e−γTσze−iJTσy/2

= G012 +Gxσx + iGyσy +Gzσz, (21)

where the four real coefficients Gk are given by

G0 = cos2(JT/2) − sin2(JT/2) cosh(2γT ), (22)
Gx = − sin(JT ) sinh(2γT )/2, (23)
Gy = − sin(JT )[1 + cosh(2γT )]/2. (24)
Gz = − sin2(JT/2) sinh(2γT ). (25)

As is expected, the purely real GF (T ) reduces to
exp(−iJTσy) in the Hermitian limit γ → 0. The
EP conoturs, on the other hand, are determined by
the constraint G2

x + G2
y − G2

z = 0, which reduces to
cos(JT/2) = tanh(γT ) [25].

Two linearly independent Floquet intertwining oper-
ators obtained by solving Eq. (7) are given by η̂1 = σy
and η̂2 = −i(η̂1GF −G†

F η̂1)/2. The latter simplifies to
η̂2 = Gy12 +Gzσx −Gxσz. We leave it for the reader
to check that, as in the case of Floquet quantum PT
dimer problem, the symmetrized version of the recur-
sive procedure, Eq. (14), does not lead to a result that
is linearly independent of η̂1. Following the recipe in
Section 2, we supplement these analytical results with
symbolic or numerical results for four eigenvalues λk
and four eigen-operators η̂1, η̂2, η̂± of G, Eq. (8).

Figure 2 shows the behavior of normalized expec-
tation values ηα(t) calculated with |ψ(0)⟩ = | + x⟩
as a function of time. The system parameters are
γ = 0.5J and JT = 1, and therefore the system is in
the PT -symmetric region. Note that since |ψ(t)⟩
is purely real, ⟨ψ(t)|η̂1|ψ(t)⟩ = 0 independent of
time [25]. On the other hand η2(t), shown in Fig-
ure 2a, has a periodic behavior. Although η2(t) varies
with time, it is stroboscopically conserved, η2(tm) = 1.
Figure 2b shows that the real part of η+(t), with
unit-magnitude eigenvalue λ3 = −0.65 + 0.756i, also
varies periodically. The dotted black line shows ℜλt3,
and the fact that ℜη+(tm) matches it stroboscopically
confirms the simple sinousoidal variation of this eigen-
operator. Since the system is in the PT -symmetric
phase, η̂− = η̂†

+, and therefore ℜη−(t) = ℜη+(t).
Figure 2c shows the corresponding imaginary parts
ℑη+(t) = −ℑη−(t) for the eigen-operator with the
complex conjugate eigenvalue λ4 = λ∗

3. We note that
in the PT -broken regime, the non-unit-modulus eigen-
values are not complex conjugates of each other, and
therefore the corresponding eigen-operators will not
satisfy the relations shown in Figures 2b-c.

5. Conclusions
In this article, we have presented a new method to
obtain intertwining operators or conserved quantities
in PT -symmetric systems with static or time-periodic
Hamiltonians. In this approach, these operators ap-
pear as zero-E eigenmodes of the static Liouvillian
L or as λ = 1 eigenmodes of the Floquet G. For

Figure 2. Conserved quantities for a classical PT -
symmetric dimer with γ = 0.5J , JT = 1, |ψ(0)⟩ =
|+x⟩. Since |ψ(t)⟩ is purely real, the expectation value
of η̂1 = σy is always zero. (a) η̂2 = Gy12 + Gxσz −
Gzσx is the second eigen-operator of G with λ2 =
1. η2(t) oscillates with time, but is stroboscopically
constant at t/T = n; the dotted red line shows ℜλt

2 =
1. (b) Since the system is in the PT -symmetric phase,
ℜη+(t) = ℜη−(t) (solid black) shows periodic behavior
with values that stroboscopically match ℜλt

3, shown
in dotted black. (c) Corresponding imaginary parts,
ℑη−(t) = −ℑη+(t) (dot-dashed black) show similar,
stroboscopically matching behavior.

an N -dimensional system, in addition to the N con-
stants of motion, this approach also leads to N(N −1)
operators whose expectation values in any arbitrary
state undergo simple exponential-in-time change. We
have demonstrated these concepts with two simple,
physically motivated examples of a PT -symmetric
dimer with different, periodic gain-loss profiles. We
have deliberating stayed away from continuum models
because extending this approach or the recursive con-
struction [34, 35] to infinite dimensions will probably
be plagued by challenges regarding domains of result-
ing, increasingly higher-order differential operators.

The definition of an intertwining operator via Eq. (1)
can be generalized to obtain conserved observables for
Hamiltonians that posses other antilinear symmetries,
such as anti-PT symmetry [48–50] or anyonic-PT
symmetry [51, 52]. The recursive procedure to gener-
ate a tower of such operators [34], and the vectoriza-
tion method presented in Section 2 remains valid for
arbitrary antilinear symmetry. Thus, this approach
can be used to investigate constants of motion in such
systems as well.

5



K. S. Agarwal, J. Muldoon, Y. N. Joglekar Acta Polytechnica

References
[1] C. M. Bender, S. Boettcher. Real spectra in

non-Hermitian Hamiltonians having PT symmetry.
Physical Review Letters 80(24):5243–5246, 1998.
https://doi.org/10.1103/PhysRevLett.80.5243.

[2] G. Lévai, M. Znojil. Systematic search for
PT -symmetric potentials with real energy spectra.
Journal of Physics A: Mathematical and General
33(40):7165–7180, 2000.
https://doi.org/10.1088/0305-4470/33/40/313.

[3] C. M. Bender, D. C. Brody, H. F. Jones. Must
a Hamiltonian be Hermitian? American Journal of
Physics 71(11):1095–1102, 2003.
https://doi.org/10.1119/1.1574043.

[4] C. M. Bender. Making sense of non-Hermitian
Hamiltonians. Reports on Progress in Physics
70(6):947–1018, 2007.
https://doi.org/10.1088/0034-4885/70/6/r03.

[5] C. M. Bender, D. C. Brody, H. F. Jones. Complex
extension of quantum mechanics. Physical Review
Letters 89(27):270401, 2002.
https://doi.org/10.1103/PhysRevLett.89.270401.

[6] A. Mostafazadeh. Pseudo-Hermiticity versus PT
symmetry: The necessary condition for the reality of
the spectrum of a non-Hermitian Hamiltonian. Journal
of Mathematical Physics 43(1):205–214, 2002.
https://doi.org/10.1063/1.1418246.

[7] A. Mostafazadeh. Exact PT -symmetry is equivalent
to Hermiticity. Journal of Physics A: Mathematical and
General 36(25):7081–7091, 2003.
https://doi.org/10.1088/0305-4470/36/25/312.

[8] A. Mostafazadeh. Pseudo-Hermitian representation of
quantum mechanics. International Journal of Geometric
Methods in Modern Physics 07(07):1191–1306, 2010.
https://doi.org/10.1142/s0219887810004816.

[9] M. Znojil, H. B. Geyer. Construction of a unique
metric in quasi-Hermitian quantum mechanics:
Nonexistence of the charge operator in a 2 × 2 matrix
model. Physics Letters B 640(1-2):52–56, 2006.
https://doi.org/10.1016/j.physletb.2006.07.028.

[10] M. Znojil. Complete set of inner products for a
discrete PT -symmetric square-well Hamiltonian.
Journal of Mathematical Physics 50(12):122105, 2009.
https://doi.org/10.1063/1.3272002.

[11] M. Znojil. Special issue “Pseudo-Hermitian
Hamiltonians in quantum physics in 2014”. International
Journal of Theoretical Physics 54(11):3867–3870, 2015.
https://doi.org/10.1007/s10773-014-2501-2.

[12] A. Ruschhaupt, F. Delgado, J. G. Muga. Physical
realization of PT -symmetric potential scattering in
a planar slab waveguide. Journal of Physics A:
Mathematical and General 38(9):L171–L176, 2005.
https://doi.org/10.1088/0305-4470/38/9/l03.

[13] R. El-Ganainy, K. G. Makris, D. N. Christodoulides,
Z. H. Musslimani. Theory of coupled optical PT-
symmetric structures. Optics Letters 32(17):2632–2634,
2007. https://doi.org/10.1364/OL.32.002632.

[14] K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
Z. H. Musslimani. Beam dynamics in PT symmetric
optical lattices. Physical Review Letters 100:103904,
2008.
https://doi.org/10.1103/PhysRevLett.100.103904.

[15] S. Klaiman, U. Günther, N. Moiseyev. Visualization
of branch points in PT -symmetric waveguides. Physical
Review Letters 101:080402, 2008.
https://doi.org/10.1103/PhysRevLett.101.080402.

[16] Y. N. Joglekar, C. Thompson, D. D. Scott,
G. Vemuri. Optical waveguide arrays: quantum effects
and PT symmetry breaking. The European Physical
Journal Applied Physics 63(3):30001, 2013.
https://doi.org/10.1051/epjap/2013130240.

[17] T. Kato. Perturbation Theory for Linear Operators.
Springer, Berlin Heidelberg, 1995.
https://doi.org/10.1007/978-3-642-66282-9.

[18] C. E. Rüter, K. G. Makris, R. El-Ganainy, et al.
Observation of parity-time symmetry in optics. Nature
Physics 6(3):192–195, 2010.
https://doi.org/10.1038/nphys1515.

[19] A. Regensburger, C. Bersch, M.-A. Miri, et al. Parity–
time synthetic photonic lattices. Nature 488(7410):167–
171, 2012. https://doi.org/10.1038/nature11298.

[20] H. Hodaei, M.-A. Miri, M. Heinrich, et al. Parity-time–
symmetric microring lasers. Science 346(6212):975–978,
2014. https://doi.org/10.1126/science.1258480.

[21] B. Peng, Ş. K. Özdemir, F. Lei, et al.
Parity–time-symmetric whispering-gallery microcavities.
Nature Physics 10(5):394–398, 2014.
https://doi.org/10.1038/nphys2927.

[22] L. Chang, X. Jiang, S. Hua, et al. Parity–time
symmetry and variable optical isolation in active–passive-
coupled microresonators. Nature Photonics 8(7):524–529,
2014. https://doi.org/10.1038/nphoton.2014.133.

[23] J. Schindler, A. Li, M. C. Zheng, et al. Experimental
study of active LRC circuits with PT symmetries.
Physical Review A 84(4):040101, 2011.
https://doi.org/10.1103/PhysRevA.84.040101.

[24] T. Wang, J. Fang, Z. Xie, et al. Observation of two
PT transitions in an electric circuit with balanced gain
and loss. The European Physical Journal D 74(8), 2020.
https://doi.org/10.1140/epjd/e2020-10131-7.

[25] M. A. Quiroz-Juárez, K. S. Agarwal, Z. A. Cochran,
et al. On-demand Parity-Time symmetry in a lone
oscillator through complex, synthetic gauge fields, 2021.
arXiv:2109.03846.

[26] C. M. Bender, B. K. Berntson, D. Parker, E. Samuel.
Observation of PT phase transition in a simple
mechanical system. American Journal of Physics
81(3):173–179, 2013.
https://doi.org/10.1119/1.4789549.

[27] D. Duchesne, V. Aimez, R. Morandotti, et al.
Observation of PT -symmetry breaking in complex
optical potentials. Physical Review Letters
103(9):093902, 2009.
https://doi.org/10.1103/physrevlett.103.093902.

[28] R. de J. León-Montiel, M. A. Quiroz-Juárez, J. L.
Domínguez-Juárez, et al. Observation of slowly
decaying eigenmodes without exceptional points in
Floquet dissipative synthetic circuits. Communications
Physics 1(1), 2018.
https://doi.org/10.1038/s42005-018-0087-3.

6



vol. 62 no. 1/2022 Conserved quantities in non-Hermitian systems

[29] Y. N. Joglekar, A. K. Harter. Passive
parity-time-symmetry-breaking transitions without
exceptional points in dissipative photonic systems
[Invited]. Photonics Research 6(8):A51–A57, 2018.
https://doi.org/10.1364/prj.6.000a51.

[30] Y. Wu, W. Liu, J. Geng, et al. Observation of
parity-time symmetry breaking in a single-spin system.
Science 364(6443):878–880, 2019.
https://doi.org/10.1126/science.aaw8205.

[31] M. Naghiloo, M. Abbasi, Y. N. Joglekar, K. W.
Murch. Quantum state tomography across the
exceptional point in a single dissipative qubit. Nature
Physics 15(12):1232–1236, 2019.
https://doi.org/10.1038/s41567-019-0652-z.

[32] J. Li, A. K. Harter, J. Liu, et al. Observation of
parity-time symmetry breaking transitions in
a dissipative Floquet system of ultracold atoms. Nature
Communications 10(1):855, 2019.
https://doi.org/10.1038/s41467-019-08596-1.

[33] F. Klauck, L. Teuber, M. Ornigotti, et al.
Observation of PT -symmetric quantum interference.
Nature Photonics 13(12):883–887, 2019.
https://doi.org/10.1038/s41566-019-0517-0.

[34] F. Ruzicka, K. S. Agarwal, Y. N. Joglekar.
Conserved quantities, exceptional points, and antilinear
symmetries in non-Hermitian systems. Journal of
Physics: Conference Series 2038(1):012021, 2021.
https://doi.org/10.1088/1742-6596/2038/1/012021.

[35] Z. Bian, L. Xiao, K. Wang, et al. Conserved
quantities in parity-time symmetric systems. Physical
Review Research 2(2), 2020.
https://doi.org/10.1103/physrevresearch.2.022039.

[36] M. V. Berry. Optical lattices with PT symmetry are
not transparent. Journal of Physics A: Mathematical
and Theoretical 41(24):244007, 2008.
https://doi.org/10.1088/1751-8113/41/24/244007.

[37] M. H. Teimourpour, R. El-Ganainy, A. Eisfeld, et al.
Light transport in PT -invariant photonic structures with
hidden symmetries. Physical Review A 90:053817, 2014.
https://doi.org/10.1103/PhysRevA.90.053817.

[38] V. Gorini, A. Kossakowski, E. C. G. Sudarshan.
Completely positive dynamical semigroups of N-level
systems. Journal of Mathematical Physics 17(5):821–
825, 1976. https://doi.org/10.1063/1.522979.

[39] G. Lindblad. On the generators of quantum
dynamical semigroups. Communications in
Mathematical Physics 48(2):119–130, 1976.
https://doi.org/10.1007/BF01608499.

[40] M. Ban. Lie-algebra methods in quantum optics:
The Liouville-space formulation. Physical Review A
47(6):5093–5119, 1993.
https://doi.org/10.1103/physreva.47.5093.

[41] V. V. Albert, L. Jiang. Symmetries and conserved
quantities in Lindblad master equations. Physical
Review A 89:022118, 2014.
https://doi.org/10.1103/PhysRevA.89.022118.

[42] D. Manzano. A short introduction to the Lindblad
master equation. AIP Advances 10(2):025106, 2020.
https://doi.org/10.1063/1.5115323.

[43] J. Gunderson, J. Muldoon, K. W. Murch, Y. N.
Joglekar. Floquet exceptional contours in Lindblad
dynamics with time-periodic drive and dissipation.
Physical Review A 103:023718, 2021.
https://doi.org/10.1103/PhysRevA.103.023718.

[44] Y. N. Joglekar, R. Marathe, P. Durganandini, R. K.
Pathak. PT spectroscopy of the Rabi problem.
Physical Review A 90(4):040101, 2014.
https://doi.org/10.1103/physreva.90.040101.

[45] T. E. Lee, Y. N. Joglekar. PT -symmetric Rabi model:
Perturbation theory. Physical Review A 92:042103, 2015.
https://doi.org/10.1103/PhysRevA.92.042103.

[46] P. Hänggi. Driven quantum systems, 1998.
[2020-10-31], https://www.physik.uni-augsburg.de/
theo1/hanggi/Chapter_5.pdf.

[47] A. K. Harter, Y. N. Joglekar. Connecting active and
passive PT -symmetric Floquet modulation models.
Progress of Theoretical and Experimental Physics
2020(12):12A106, 2020.
https://doi.org/10.1093/ptep/ptaa181.

[48] P. Peng, W. Cao, C. Shen, et al. Anti-parity–time
symmetry with flying atoms. Nature Physics 12(12):1139–
1145, 2016. https://doi.org/10.1038/nphys3842.

[49] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song.
Observation of an anti-PT-symmetric exceptional point
and energy-difference conserving dynamics in electrical
circuit resonators. Nature Communications 9(1), 2018.
https://doi.org/10.1038/s41467-018-04690-y.

[50] F. Zhang, Y. Feng, X. Chen, et al. Synthetic anti-PT
symmetry in a single microcavity. Physical Review
Letters 124:053901, 2020.
https://doi.org/10.1103/PhysRevLett.124.053901.

[51] S. Longhi, E. Pinotti. Anyonic PT symmetry,
drifting potentials and non-Hermitian delocalization.
EPL (Europhysics Letters) 125(1):10006, 2019.
https://doi.org/10.1209/0295-5075/125/10006.

[52] G. Arwas, S. Gadasi, I. Gershenzon, et al. Anyonic
Parity-Time symmetric laser, 2021. arXiv:2103.15359.

7



Acta Polytechnica

QUANTUM DESCRIPTION OF ANGLES IN THE PLANE

Roberto Beneducia, Emmanuel Frionb, Jean-Pierre Gazeauc,∗

a Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo c. Cosenza, 87036 Arcavacata di
Rende (Cs), Italy

b University of Helsinki, Helsinki Institute of Physics, P. O. Box 64, FIN-00014 Helsinki, Finland
c Université de Paris, CNRS, Astroparticule et Cosmologie, 75013 Paris, France
∗ corresponding author: gazeau@apc.in2p3.fr

Abstract.
The real plane with its set of orientations or angles in [0, π) is the simplest non trivial example of

a (projective) Hilbert space and provides nice illustrations of quantum formalism. We present some of
them, namely covariant integral quantization, linear polarisation of light as a quantum measurement,
interpretation of entanglement leading to the violation of Bell inequalities, and spin one-half coherent
states viewed as two entangled angles.

Keywords: Integral quantization, real Hilbert spaces, quantum entanglement.

1. Introduction
The formulation of quantum mechanics in a real
Hilbert space has been analyzed by Stueckelberg in
1960 [1] in order to show that the need for a com-
plex Hilbert space is connected to the uncertainty
principle. Later, Solèr [2] showed that the lattice of
elementary propositions is isomorphic to the lattice
of closed subspaces of a separable Hilbert space (over
the reals, the complex numbers or the quaternions).
In other words, the lattice structure of propositions in
quantum physics does not suggest the Hilbert space
to be complex. More recently, Moretti and Oppio [3]
gave stronger motivation for the Hilbert space to be
complex which rests on the symmetries of elementary
relativistic systems.

In this contribution, we do not address the ques-
tion of the physical validity of the real Hilbert space
formulation of quantum mechanics but limit ourselves
to use the real 2-dimensional case, i.e. the Euclidean
plane, as a toy model for illustrating some aspects
of the quantum formalism, as quantization, entangle-
ment and quantum measurement. The latter is nicely
represented by the linear polarization of light. This
real 2-dimensional case relies on the manipulation of
the two real Pauli matrices

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, (1)

and their tensor products, with no mention of the
third, complex matrix σ2 =

(
0 −i
i 0

)
. As a matter

of fact, many examples aimed to illustrate tools and
concepts of quantum information, quantum measure-
ment, quantum foundations, ... (e.g., Peres [4]) are
illustrated with manipulations of these matrices.

In [5], it was shown that the set of pure states in
the plane is represented by half of the unit circle and
the set of mixed states by half the unit disk, and also

that rotations in the plane rule time evolution through
Majorana-like equations, all of this using only real
quantities for both closed and open systems.

This paper is a direct extension of our previous
paper [6], and for this reason we start the discussion
by recalling some key elements of the mathematical
formalism.

2. Background
2.1. Definition of POVMs
We start with the definition of a normalized Positive-
Operator Valued measure (POVM) [7]. It is defined
as a map F : B(Ω) → L+

s (H) from the Borel σ-algebra
of a topological space Ω to the space of linear positive
self-adjoint operators on a Hilbert space H such that

F

( ∞⋃

n=1
∆n

)
=

∞∑

n=1
F (∆n) F (Ω) = 1 . (2)

In this definition, {∆n} is a countable family of dis-
joint sets in B(Ω) and the series converges in the weak
operator topology. If Ω = R, we have a real POVM. If
F (∆) is a projection operator for every ∆ ∈ B(Ω), we
recover the usual projection-valued measure (PVM).

A quantum state is defined as a non-negative,
bounded self-adjoint operator with trace 1. The space
of states is a convex space and is denoted by S(H).
A quantum measurement corresponds to an affine map
S(H) 7→ M+(Ω) from quantum states to probability
measures, ρ 7→ µρ. There is [8] a one-to-one correspon-
dence between POVMs F : B(Ω) → L+

s (H) and affine
maps S(H) 7→ M+(Ω) given by µρ(∆) = Tr(ρF (∆)),
∆ ∈ B(Ω).

2.2. Integral quantization
Quantum mechanics is usually taught in terms of pro-
jection operators and PVM, but measurements usually
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give a statistical distribution around a mean value,
incompatible with the theory. We recall here a gen-
eralization of a quantization procedure, the integral
quantization, based on POVMs instead of PVM. The
basic requirements of this programme are the follow-
ing: the quantization of a classical function defined
on a set X must respect
(1.) Linearity. Quantization is a linear map f 7→ Af :

Q : C(X) 7→ A(H) , Q(f) = Af , (3)

where
• C(X) is a vector space of complex or real-valued

functions f(x) on a set X, i.e. a “classical” math-
ematical model,

• A(H) is a vector space of linear operators in some
real or complex Hilbert space H, i.e., a “quantum”
mathematical model, notwithstanding the ques-
tion of common domains in the case of unbounded
operators.

(2.) Unity. The map (3) is such that the function
f = 1 is mapped to the identity operator 1 on H.

(3.) Reality. A real function f is mapped to a self-
adjoint or normal operator Af in H or, at least,
a symmetric operator (in the infinite-dimensional
case).

(4.) Covariance. Defining the action of a symmetry
group G on X by (g, x) ∈ G×X such as (g, x) 7→ g ·
x ∈ X, there is a unitary representation U of G such
that AT (g)f = U(g)Af U(g−1), with (T (g)f)(x) =
f
(
g−1 · x

)
.

Performing the integral quantization [9] of a func-
tion f(x) on a measure space (X, ν) boils down to the
linear map:

f 7→ Af =
∫

X

M(x) f(x) dν(x) , (4)

where we introduce a family of operators M(x) solving
the identity. More precisely, we have

X ∋ x 7→ M(x) ,

∫

X

M(x) dν(x) = 1 . (5)

If the M(x) are non-negative, they provide a POVM.
Indeed, the quantization of the characteristic function
on the Borel set ∆, A(χ∆),

F (∆) := A(χ∆) =
∫

∆
M(x) dν(x) . (6)

is a POVM which provides a quantization procedure

f 7→ Af =
∫

X

f(x) dF (x).

3. Euclidean plane as Hilbert
space of quantum states

3.1. Mixed states as density matrices
Density matrices act as a family of operators which
can be used to perform covariant integral quantization.

-
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ı̂ = |0⟩ ≡
(

1
0

)

|ϕ⟩ =
(

cos ϕ
sin ϕ

)
↔ Eϕ = |ϕ⟩⟨ϕ|

O

⟨0|0⟩ = 1 =
〈

π
2
∣∣ π

2
〉

, ⟨0
∣∣π

2
〉

= 0

ȷ̂ = | π
2 ⟩ ≡

(
0
1

)

1

ϕ
�

�
�
�
�
�
�
�
��

Figure 1. The Euclidean plane and its unit vectors
viewed as pure quantum states in Dirac ket nota-
tions.

In the context of the Euclidean plane and its rotational
symmetry, one associates the polar angle ϕ ∈ [0, 2π)
with the unit vector ûϕ to define the pure state |ϕ⟩ :=
|ûϕ⟩.

As shown in Figure 1, two orthogonal pure states
ı̂ = |0⟩ and ȷ̂ =

∣∣∣π2
〉

are readily identified with the unit
vectors spanning the plane. In this configuration, the
pure state |ϕ⟩ is defined by an anticlockwise rotation of
angle ϕ of the pure state |0⟩. Denoting the orthogonal
projectors on ı̂ and ȷ̂ by |0⟩⟨0| and

∣∣π
2
〉 〈

π
2
∣∣ respectively,

we visualize the resolution of the identity as follows

1 = |0⟩⟨0| +
∣∣∣π2
〉〈π

2

∣∣∣
⇕

(
1 0
0 1

)
=
(

1 0
0 0

)
+
(

0 0
0 1

)
.

(7)

Recalling that a pure state in the plane, equivalently
an orientation, can be decomposed as |ϕ⟩ = cos ϕ |0⟩ +
sin ϕ

∣∣π
2
〉
, with ⟨0|ϕ⟩ = cos ϕ and

〈
π
2
∣∣ϕ
〉

= sin ϕ, it
is straightforward to find the orthogonal projector
corresponding to the pure state |ϕ⟩,

Eϕ =
(

cos2 ϕ cos ϕ sin ϕ
cos ϕ sin ϕ sin2 ϕ

)
, (8)

from which we can construct the density matrix cor-
responding to all the mixed states

ρ =
(

1 + r

2

)
Eϕ +

(
1 − r

2

)
Eϕ+π/2 , 0 ≤ r ≤ 1 .

(9)

In this expression, the parameter r represents the
degree of mixing. Hence the upper half-disk (r, ϕ),
0 ≤ r ≤ 1, 0 ≤ ϕ < π is in one-to-one correspondence

9
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with the set of density matrices ρ ≡ ρr,ϕ written as

ρr,ϕ = 1
21 + r

2R(ϕ)σ3R(−ϕ)

=
( 1

2 + r
2 cos 2ϕ r

2 sin 2ϕ
r
2 sin 2ϕ 1

2 − r
2 cos 2ϕ

)
= 1

2 (1 + rσ2ϕ) ,

(10)

where R(ϕ) =
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
is a rotation matrix

in the plane, and

σϕ := cos ϕ σ3 + sin ϕ σ1

≡ −→σ · ûϕ =
(

cos ϕ sin ϕ
sin ϕ − cos ϕ

)
= R(ϕ) σ3 . (11)

The observable σϕ has eigenvalues {±1} and eigenvec-
tors

∣∣∣ϕ
2

〉
and

∣∣∣ϕ+π
2

〉
respectively. It plays a crucial

rôle since, as we show right after, it is at the core
of both the non-commutative character and the en-
tanglement of two quantum states of the real space.
It is a typical observable used to illustrate quantum
formalism [4].

3.2. Describing non-commutativity and
finding Naimark extensions through
rotations

Let us apply integral quantization with the real density
matrices (10). With X = S1, the unit circle, equipped
with the measure dν(x) = dϕ

π , ϕ ∈ [0, 2π), we obtain
the resolution of the identity for an arbitrary ϕ0,

∫ 2π

0
ρr,ϕ+ϕ0

dϕ

π
= 1 . (12)

Hence, quantizing a function (or distribution) f(ϕ) on
the circle is done through the map

f 7→ Af =
∫ 2π

0
f(ϕ)ρr,ϕ+ϕ0

dϕ

π

=
(

⟨f⟩ + r
2 Cc (Rϕ0f) r

2 Cs (Rϕ0f)
r
2 Cs (Rϕ0f) ⟨f⟩ − r

2 Cc (Rϕ0f)

)

= ⟨f⟩1 + r

2 [Cc (Rϕ0f) σ3 + Cs (Rϕ0f) σ1] , (13)

with ⟨f⟩ := 1
2π

∫ 2π

0 f(ϕ) dϕ the average of f on the
unit circle and Rϕ0(f)(ϕ) := f(ϕ − ϕ0). Here we
have defined cosine and sine doubled angle Fourier
coefficients of f

Cc
s
(f) =

∫ 2π

0
f(ϕ)

{
cos
sin 2ϕ

dϕ

π
. (14)

In [6], we drew three consequences from this result.
The first consequence is that, upon identification of R3

with the subspace V3 = Span
{

e0(ϕ) := 1√
2 , e1(ϕ) :=

cos 2ϕ, e2(ϕ) := sin 2ϕ
}

in L2(S1, dϕ/π), the inte-

gral quantization map with ρr,ϕ+ϕ0 yields a non-
commutative version of R3 :

Ae0 = 1√
2

,

Ae1 = r

2 [cos 2ϕ0 σ3 + sin 2ϕ0 σ1] ≡ r

2σ2ϕ0 ,

Ae2 = r

2 [− sin 2ϕ0 σ3 + cos 2ϕ0 σ1] ≡ r

2σ2ϕ0+π/2 .

Now, the commutation rule reads

[Ae1 , Ae2 ] = −r2

2 τ2 , τ2 :=
(

0 −1
1 0

)
= −iσ2 ,

which depends on the real version of the last Pauli
matrix and on the degree of mixing.

A second consequence, typical of quantum-
mechanical ensembles, is that all functions f(ϕ) in V3
yielding density matrices through this map imply that

ρs,θ =
∫ 2π

0

[
1
2 + s

r
cos 2ϕ

]

︸ ︷︷ ︸
f(ϕ)

ρr,ϕ+θ
dϕ

π
. (15)

If r ≥ 2s, this continuous superposition of mixed states
is convex. Therefore, a mixed state is composed of
an infinite number of other mixed states. This has
consequences in quantum cryptography, for example,
since the initial signal cannot be recovered from the
output.

The third and last consequence we mention here
concerns the Naimark extension of a function defined
on the circle. In particular, we focus on the Toeplitz
quantization of f(ϕ), which is a kind of integral quan-
tization. In [6], we used this framework to show there
exist orthogonal projectors from L2(S1, dϕ/π) to R2

such that for a function f(ϕ) the multiplication oper-
ator on L2(S1, dϕ/π), defined by

v 7→ Mf v = fv , (16)

maps Mf to Af . They are precisely Naimark’s ex-
tensions of POVMs represented by density matrices
(see [6] for details).

3.3. Linear polarization of light as a
quantum phenomenon

In this section, we recall that the polarization tensor
of light can be expressed as a density matrix, which
allows us to relate the polarization of light to quantum
phenomena such as the Malus Law and the incompat-
ibility between two sequential measurements [6].

First, remember that a complex-valued electric field
for a propagating quasi-monochromatic electromag-
netic wave along the z-axis reads as

−→E (t) = −→E0(t) eiωt = Ex ı̂ + Ey ȷ̂ = (Eα) , (17)

in which we have used the previous notations for the
unit vectors in the plane. The polarization is deter-
mined by −→E0(t). It slowly varies with time, and can be

10



vol. 62 no. 1/2022 Quantum angles

measured through Nicol prisms, or other devices, by
measuring the intensity of the light yielded by mean
values ∝ EαEβ , EαE∗

β and conjugates. Due to rapidly
oscillating factors and a null temporal average ⟨·⟩t,
a partially polarized light is described by the 2 × 2
Hermitian matrix (Stokes parameters) [10–12]

1
J

(⟨E0xE∗
0x⟩t

〈
E0xE∗

0y

〉
t

⟨E0yE∗
0x⟩t

〈
E0yE∗

0y

〉
t

)
≡ ρr,ϕ + A

2 σ2

= 1 + r

2 Eϕ + 1 − r

2 Eϕ+π/2 + iA2 τ2 .

Here, J describes the intensity of the wave. In the
second line, it is clear that the degree of mixing r
describes linear polarization, while the parameter A
(−1 ≤ A ≤ 1) is related to circular polarization. In
real space, we have A = 0, so we effectively describe
the linear polarization of light.

-
6

k̂

ȷ̂
ı̂

�
�

�
��

��
�
��

•HHHHY
Re
(−→E

)
y

z

x

We now wish to describe the interaction between
a polarizer and a partially linear polarized light as
a quantum measurement. We need to introduce two
planes and their tensor product: the first one is the
Hilbert space on which act the states ρM

s,θ of the po-
larizer viewed as an orientation pointer. Note that
the action of the generator of rotations τ2 = −iσ2 on
these states corresponds to a π/2 rotation :

τ2ρM
s,θτ−1

2 = −τ2ρM
s,θτ2 = ρM

s,θ+π/2 . (18)

The second plane is the Hilbert space on which act the
partially linearized polarization states ρL

r,ϕ of the plane
wave crossing the polarizer. Its spectral decomposition
corresponds to the incoherent superposition of two
completely linearly polarized waves

ρL
r,ϕ = 1 + r

2 Eϕ + 1 − r

2 Eϕ+π/2 . (19)

The pointer detects an orientation in the plane de-
termined by the angle ϕ. Through the interaction
pointer-system, we generate a measurement whose
time duration is the interval IM = (tM − η, tM + η)
centred at tM . The interaction is described by the
(pseudo-) Hamiltonian operator

H̃int(t) = gη
M (t)τ2 ⊗ ρL

r,ϕ , (20)

where gη
M is a Dirac sequence with support in IM , i.e.,

lim
η→0

∫ +∞

−∞
dt f(t) gη

M (t) = f(tM ) .

The interaction (20) is the tensor product of an an-
tisymmetric operator for the pointer with an operator

for the system which is symmetric (i.e., Hamiltonian).
The operator defined for t0 < tM − η as

U(t, t0) = exp
[∫ t

t0

dt′ gη
M (t′) τ2 ⊗ ρL

r,ϕ

]

= exp
[
Gη

M (t) τ2 ⊗ ρL
r,ϕ

]
, (21)

with Gη
M (t) =

∫ t

t0
dt′ gη

M (t′), is a unitary evolution
operator. From the formula involving an orthogonal
projector P ,

exp(θτ2 ⊗ P ) = R(θ) ⊗ P + 1 ⊗ (1 − P ) , (22)

we obtain

U(t, t0) =R
(

Gη
M (t) 1 + r

2

)
⊗ Eϕ

+ R
(

Gη
M (t) 1 − r

2

)
⊗ Eϕ+π/2 . (23)

For t0 < tM − η and t > tM + η, we finally obtain

U(t, t0) = R
(

1 + r

2

)
⊗ Eϕ + R

(
1 − r

2

)
⊗ Eϕ+π/2 .

(24)

Preparing the polarizer in the state ρM
s0,θ0

, we obtain
the evolution U(t, t0) ρM

s0,θ0
⊗ ρL

r0,ϕ0
U(t, t0)† of the

initial state for t > tM + η

ρM
s0,θ0+ 1+r

2
⊗ 1 + r0 cos 2(ϕ − ϕ0)

2 Eϕ

+ ρM
s0,θ0+ 1−r

2
⊗ 1 − r0 cos 2(ϕ − ϕ0)

2 Eϕ+π/2

+ 1
4 (R(r) + s0σ2θ0+1) ⊗ r0 sin 2(ϕ − ϕ0) Eϕτ2

− 1
4 (R(−r) + s0σ2θ0+1) ⊗ r0 sin 2(ϕ − ϕ0) τ2Eϕ .

(25)

Therefore, the probability for the pointer to rotate
by 1+r

2 , corresponding to the polarization along the
orientation ϕ is

Tr
[(

U(t, t0) ρM
s0,θ0 ⊗ ρL

r0,ϕ0 U(t, t0)†) (1 ⊗ Eϕ)
]

= 1 + r0 cos 2(ϕ − ϕ0)
2 , (26)

that for the completely linear polarization of the light,
i.e. r0 = 1, becomes the familiar Malus law, cos2(ϕ −
ϕ0). Similarly, the second term gives the probability
for the perpendicular orientation ϕ + π/2 and the
pointer rotation by 1−r

2

Tr
[(

U(t, t0) ρM
s0,θ0 ⊗ ρL

r0,ϕ0 U(t, t0)†) (
1 ⊗ Eϕ+π/2

)]

= 1 − r0 cos 2(ϕ − ϕ0)
2 , (27)

corresponding (in the case r0 = 1) to the Malus law
sin2(ϕ − ϕ0).

11
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4. Entanglement and isomorphisms
In this section, we develop our previous results fur-
ther by giving an interpretation in terms of quantum
entanglement. Previously, we described the interac-
tion between a polarizer and a light ray as the tensor
product (20), which is analogous to the quantum en-
tanglement of states, since it is a logical consequence
of the construction of tensor products of Hilbert spaces
for describing quantum states of composite system. In
the present case, we are in presence of a remarkable
sequence of vector space isomorphisms due to the fact
that 2 × 2 = 2 + 2 1 :

R2 ⊗ R2 ∼= R2 × R2 ∼= R2 ⊕ R2 ∼= C2 ∼= H , (28)

where H is the field of quaternions. Therefore, the
description of the entanglement in a real Hilbert space
is equivalent to the description of a single system (e.g.,
a spin 1/2) in the complex Hilbert space C2, or in H.
In Section 4.3 we develop such an observation.

4.1. Bell states and quantum
correlations

It is straightforward to transpose into the present set-
ting the 1964 analysis and result presented by Bell in
his discussion about the EPR paper [13] and about the
subsequent Bohm’s approaches based on the assump-
tion of hidden variables [14]. We only need to replace
the Bell spin one-half particles with the horizontal
(i.e., +1) and vertical (i.e., −1) quantum orientations
in the plane as the only possible issues of the observ-
able σϕ (11), supposing that there exists a pointer
device designed for measuring such orientations with
outcomes ±1 only.

In order to define Bell states and their quantum
correlations, let us first write the canonical, orthonor-
mal basis of the tensor product R2

A ⊗ R2
B, the first

factor being for system “A” and the other for system
“B”, as

|0⟩A ⊗ |0⟩B ,
∣∣∣π2
〉

A
⊗
∣∣∣π2
〉

B
,

|0⟩A ⊗
∣∣∣π2
〉

B
,
∣∣∣π2
〉

A
⊗ |0⟩B .

(29)

The states |0⟩ and
∣∣π

2
〉

pertain to A or B, and are
named “q-bit” or “qubit” in the standard language
of quantum information. Since they are pure states,
they can be associated to a pointer measuring the
horizontal (resp. vertical) direction or polarisation
described by the state |0⟩ (resp.

∣∣π
2
〉
).

There are four Bell pure states in R2
A ⊗R2

B , namely

|Φ±⟩ = 1√
2

(
|0⟩A ⊗ |0⟩B ±

∣∣∣π2
〉

A
⊗
∣∣∣π2
〉

B

)
, (30)

|Ψ±⟩ = 1√
2

(
±|0⟩A ⊗

∣∣∣π2
〉

B
+
∣∣∣π2
〉

A
⊗ |0⟩B

)
. (31)

1Remind that dim(V ⊗ W ) = dimV dimW while dim(V ×
W ) = dimV + dimW for 2 finite-dimensional vector spaces V
and W

We say that they represent maximally entangled quan-
tum states of two qubits. Consider for instance the
state |Φ+⟩. If the pointer associated to A measures
its qubit in the standard basis, the outcome would
be perfectly random, with either possibility having
a probability 1/2. But if the pointer associated to
B then measures its qubit instead, the outcome, al-
though random for it alone, is the same as the one A
gets. There is quantum correlation.

4.2. Bell inequality and its violation
Let us consider a bipartite system in the state Ψ−.
In such a state, if a measurement of the component
σA

ϕa
:= −→σ A · ûϕa

(ûϕa
is an unit vector with polar

angle ϕa) yields the value +1 (polarization along the
direction ϕa/2), then a measurement of σB

ϕb
when

ϕb = ϕa must yield the value −1 (polarization along
the direction ϕa+π

2 ), and vice-versa. From a classi-
cal perspective, the explanation of such a correlation
needs a predetermination by means of the existence of
hidden parameters λ in some set Λ. Assuming the two
measurements to be separated by a space-like inter-
val, the result εA ∈ {−1, +1} (resp. εB ∈ {−1, +1})
of measuring σA

ϕa
(resp. σB

ϕb
) is then determined by

ϕa and λ only (locality assumption), not by ϕb, i.e.
εA = εA(ϕa, λ) (resp. εB = εB(ϕb, λ)). Given a prob-
ability distribution ρ(λ) on Λ, the classical expecta-
tion value of the product of the two components σA

ϕa

and σB
ϕb

is given by

P(ϕa, ϕb) =
∫

Λ
dλ ρ(λ) εA(ϕa, λ) εB(ϕb, λ) . (32)

Since
∫

Λ
dλ ρ(λ) = 1 and εA,B = ±1 , (33)

we have −1 ≤ P(ϕa, ϕb) ≤ 1. Equivalent predictions
within the quantum setting then imposes the
equality between the classical and quantum expecta-
tion values:

P(ϕa, ϕb) =
〈
Ψ−∣∣σA

ϕa
⊗ σB

ϕb

∣∣Ψ−〉

= −ûϕa
· ûϕb

= − cos(ϕa − ϕb) . (34)

In the above equation, the value −1 is reached at ϕa =
ϕb. This is possible for P(ϕa, ϕa) only if εA(ϕa, λ) =
−εB(ϕa, λ). Hence, we can write P(ϕa, ϕb) as

P(ϕa, ϕb) = −
∫

Λ
dλ ρ(λ) ε(ϕa, λ) ε(ϕb, λ) ,

ε(ϕ, λ) ≡ εA(ϕ, λ) = ±1 . (35)

Let us now introduce a third unit vector ûϕc
. Due

to ε2 = 1, we have

P(ϕa, ϕb) − P(ϕa, ϕc) =
∫

Λ
dλ ρ(λ) ε(ϕa, λ) ε(ϕb, λ)

× [ε(ϕb, λ) ε(ϕc, λ) − 1] . (36)

12
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From this results the (baby) Bell inequality:

|P(ϕa, ϕb) − P(ϕa, ϕc)|

≤
∫

Λ
dλ ρ(λ) [1 − ε(ϕb, λ) ε(ϕc, λ)] = 1 + P(ϕb, ϕc) .

Hence, the validity of the existence of hidden vari-
able(s) for justifying the quantum correlation in
the singlet state Ψ−, and which is encapsulated by
the above equation, has the following consequence on
the arbitrary triple (ϕa, ϕb, ϕc):

1 − cos(ϕb − ϕc) ≥ |cos(ϕb − ϕa) − cos(ϕc − ϕa)| .

Equivalently, in terms of the two independent angles
ζ and η,

ζ = ϕa − ϕb

2 , η = ϕb − ϕc

2 ,

we have
∣∣sin2 ζ − sin2(η + ζ)

∣∣ ≤ sin2 η . (37)

It is easy to find pairs (ζ, η) for which the inequality
(37) does not hold true. For instance with η = ζ ̸= 0,
i.e.,

ϕb = ϕa + ϕc

2 ,

we obtain

|4 sin2 η − 3| ≤ 1 , (38)

which does not hold true for all |η| < π/4, i.e., for
|ϕa − ϕb| = |ϕb − ϕc| < π/2. Actually, we did not
follow here the proof given by Bell, which is a lot
more elaborate. Also, Bell considered unit vectors in
3-space. Restricting his proof to vectors in the plane
does not make any difference, as it is actually the case
in many works devoted to the foundations of quantum
mechanics.

4.3. Entanglement of two angles
Quantum entanglement is usually described by the
complex two-dimensional Hilbert space C2. As a com-
plex vector space, C2, with canonical basis (e1, e2),
has a real structure, i.e., is isomorphic to a real vector
space which makes it isomorphic to R4, itself isomor-
phic to R2 ⊗ R2. A real structure is obtained by
considering the vector expansion

C2 ∈ v = z1e1 + z2e2

= x1e1 + y1 (ie1) + x2e2 + y2 (ie2) , (39)

which is equivalent to writing z1 = x1 + iy1, z2 =
x2 + iy2, and considering the set of vectors

{e1, e2, (ie1) , (ie2)} (40)

as forming a basis of R4. Forgetting about the sub-
scripts A and B in (29), we can map vectors in the
Euclidean plane R2 to the complex “plane” C by

|0⟩ 7→ 1 ,
∣∣∣π2
〉

7→ i , (41)

which allows the correspondence between bases as

|0⟩ ⊗ |0⟩ = e1 ,
∣∣∣π2
〉

⊗
∣∣∣π2
〉

= −e2 ,

|0⟩ ⊗
∣∣∣π2
〉

= (ie1) ,
∣∣∣π2
〉

⊗ |0⟩ = (ie2) . (42)

Also, the spin of a particle in a real basis, given by
the “up” and “down” states, are defined by

e1 ≡ | ↑ ⟩ ≡
(

1
0

)
, e2 ≡ | ↓ ⟩ ≡

(
0
1

)
. (43)

Finally, we obtain an unitary map from the Bell
basis to the basis of real structure of C2

(
|Φ+⟩ |Φ−⟩ |Ψ+⟩ |Ψ−⟩

)
=

(
e1 e2 (ie1) (ie2)

) 1√
2




1 1 0 0
−1 1 0 0
0 0 1 −1
0 0 1 1


 .

In terms of respective components of vectors in their
respective spaces, we have




x1
x2
y1
y2


 = 1√

2




1 1 0 0
−1 1 0 0
0 0 1 −1
0 0 1 1







x+

x−

y+

y−


 . (44)

In complex notations, with z± = x± + iy±, this is
equivalent to
(

z+

z−

)
= 1√

2

(
1 −C
C 1

)(
z1
z2

)
≡ C@

(
z1
z2

)
, (45)

in which we have introduced the conjugation operator
Cz = z̄, i.e., the mirror symmetry with respect to the
real axis, −C being the mirror symmetry with respect
to the imaginary axis.

Let us now see what is the influence of having real
Bell states on Schrödinger cat states. The operator
“cat” C@ can be expressed as

C@ = 1√
2

(1 + F) , F := Cτ2 =
(

0 −C
C 0

)
. (46)

Therefore, with the above choice of isomorphisms,
Bell entanglement in R2 ⊗ R2 is not represented by
a simple linear superposition in C2. It involves also the
two mirror symmetries ±C. The operator F is a kind
of “flip” whereas the “cat” or “beam splitter” operator
C@ builds, using the up and down basic states, the
two elementary Schrödinger cats

F | ↑ ⟩ = | ↓ ⟩ , C@ | ↑ ⟩ = 1√
2

(| ↑ ⟩ + | ↓ ⟩) , (47)

F | ↓ ⟩ = −| ↑ ⟩ , C@ | ↓ ⟩ = 1√
2

(−| ↑ ⟩ + | ↓ ⟩) . (48)

The flip operator also appears in the construction
of the spin one-half coherent states |θ, ϕ⟩, defined in

13
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terms of spherical coordinates (θ, ϕ) as the quantum
counterpart of the classical state n̂(θ, ϕ) in the sphere
S2 by

|θ, ϕ⟩ =
(

cos θ

2 | ↑ ⟩ + eiϕ sin θ

2 | ↓ ⟩
)

≡
(

cos θ
2

eiϕ sin θ
2

)
=
(

cos θ
2 − sin θ

2 e−iϕ

sin θ
2 eiϕ cos θ

2

)(
1
0

)

≡ D
1
2
(
ξ−1

n̂
)

| ↑ ⟩ .

(49)

Here, ξn̂ corresponds, through the homomorphism
SO(3) 7→ SU(2), to the specific rotation Rn̂ mapping
the unit vector pointing to the north pole, k̂ = (0, 0, 1),
to n̂. The operator D

1
2
(
ξ−1

n̂
)

represents the element
ξ−1

n̂ of SU(2) in its complex two-dimensional unitary
irreducible representation. As we can see in matrix
(49), the second column of D

1
2
(
ξ−1

n̂
)

is precisely the
flip of the first one,

D
1
2
(
ξ−1

n̂
)

=
(
|θ, ϕ⟩ F|θ, ϕ⟩

)
. (50)

Actually, we can learn more about the isomorphisms
C2 ∼= H ∼= R+ × SU(2) through the flip and matrix
representations of quaternions. In quaternionic alge-
bra, we have the property ı̂ = ȷ̂k̂ + even permutations,
and a quaternion q is represented by

H ∋ q = q0 + q1ı̂ + q2ȷ̂ + q3k̂

= q0 + q3k̂ + ȷ̂
(

q1k̂ + q2

)

≡
(

q0 + iq3
q2 + iq1

)
≡ Zq ∈ C2 , (51)

after identifying k̂ ≡ i as both are roots of −1. Then
the flip appears naturally in the final identification
H ∼= R+ × SU(2) as

q ≡
(

q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)
=
(
Zq FZq

)
. (52)

Let us close this article with a final remark on spin-
1/2 coherent states as vectors in R2

A ⊗ R2
B . The “cat

states” in C2 given by (49) and equivalently viewed
as 4-vectors in H ∼ R4 as

|θ, ϕ⟩ 7→




cos θ
2

− sin θ
2 cos ϕ

sin θ
2 sin ϕ
0


 , (53)

are represented as entangled states in R2
A ⊗ R2

B by

|θ, ϕ⟩ = cos θ

2 |0⟩A ⊗ |0⟩B − sin θ

2 cos ϕ
∣∣∣π2
〉

A
⊗
∣∣∣π2
〉

B

+ sin θ

2 sin ϕ|0⟩A ⊗
∣∣∣π2
〉

B
+ 0

∣∣∣π2
〉

A
⊗ |0⟩B .

Therefore, we can say that two entangled angles in the
plane can be viewed as a point in the upper half-sphere
S2/Z2 in R3 shown in Figure 2.

Figure 2. Each point in the upper half-sphere is in
one-to-one correspondence with two entangled angles
in the plane.

5. Conclusions
Integral quantization is a quantization scheme con-
structed on Positive Operator-Value Measures. When
applied to a two-dimensional real space, it allows for
a description of quantum states as pointers in the
real unit half-plane. We recalled in this paper that in
this case, a family of density matrices is sufficient to
perform this kind of quantization as it describes all
the mixed states in this space. Furthermore, a density
matrix in a two-dimensional real space depends on
the usual observable σϕ =

(
cos ϕ sin ϕ
sin ϕ − cos ϕ

)
, which

captures the essence of non-commutativity in real
space. As a consequence, commutation relations are
expressed in terms of the real matrix τ2, which serves
as the basis to the description of quantum measure-
ment.

We provide an illustration considering linearly-
polarized light passing through a polarizer. The
pointer, associated with τ2, can rotate by an angle
(1±r)/2 with r the degree of mixing of the density ma-
trix, with a probability given by the usual Malus’ laws
(26) and (27). We extended the analysis by showing
that the interaction between a polarizer and a light
ray is equivalent to the quantum entanglement of two
Hilbert spaces. Orientations in the plane have only
two outcomes (±1), which are the possible issues of
σϕ. We showed that for a general bipartite system,
the classical and quantum measurement of σϕ deny
the existence of local hidden variables, resulting in the
well-known violation of Bell inequalities, here given by
(37). Finally, we demonstrated that the isomorphism
C2 ≃ R4 allows to write Bell states in real space,
with the introduction of the “flip” operator (46). This
operator is necessary for constructing spin one-half
coherent states, that we can fully describe by a set of
orientations in R3, as shown in (53).
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Abstract. We report on some recent purely algebraic approaches to superintegrable systems from
the perspective of subspaces of commuting polynomials in the enveloping algebras of Lie algebras that
generate quadratic (and eventually higher-order) algebras. In this context, two algebraic formulations
are possible; a first one strongly dependent on representation theory, as well as a second formal approach
that focuses on the explicit construction within commutants of algebraic integrals for appropriate
algebraic Hamiltonians defined in terms of suitable subalgebras. The potential use in this context of
the notion of virtual copies of Lie algebras is briefly commented.

Keywords: Enveloping algebras, commutants, quadratic algebras, superintegrability.

1. Introduction
Both the study of (quasi-)exactly solvable systems,
as well as that of super-integrable systems make an
extensive use of the universal enveloping algebras of
Lie algebras, either in the context of the so-called
hidden algebras or as symmetry algebras of the sys-
tem. Of particular interest are those systems that,
beyond super-integrability properties, also belong to
the class of (quasi-)exactly solvable systems [1–5]. In
particular, quadratic subalgebras have been shown to
be a powerful tool for classifying and comparing super-
integrable systems, as shown in [6], where the scheme
of superintegrable systems on a two-dimensional con-
formally flat space has been characterized in terms of
contractions. Additional examples in higher dimen-
sions [7] lead us to suspect that n-dimensional super-
integrable systems are somehow associated to (higher
rank) polynomials in a suitable enveloping algebra [8],
further stimulating the search of alternative algebraic
approaches based on the structural properties of en-
veloping algebras. Although the precise fundamental
properties of enveloping algebras of generic semidirect
sums of simple and solvable Lie algebras are still far
from being completely understood, a purely formal
ansatz applied to the case of the Schrödinger alge-
bras Ŝ(n) has recently been shown to provide some
interesting features [9].

In this work we comment on some purely alge-
braic approaches formulated in the enveloping algebras
of Lie algebras for the identification or construction
of quadratic algebras that may lead to super-integrable
systems, once a suitable realization of the enveloping
algebra by first-order differential operators has been
chosen. The motivation for this analysis lies primarily
on the inspection of super-integrable systems from
the point of view of the algebraic properties of first
integrals seen as elements of an enveloping algebra, as
well as an attempt to determine to which extent these

integrals are characterized algebraically by the hidden
algebra [10]. This moreover suggests a realization-free
description of systems in terms of commutants of al-
gebraic Hamiltonians in enveloping algebras [11], in
which elements of the coadjoint representation of Lie
algebras may be useful to simplify computations.

2. First algebraic reformulation
In the context of (quasi)-exactly solvable problems, the
Hamiltonians are described as differential operators
in p variables that admit an expression as elements in
the enveloping algebra of a Lie algebra g, commonly
known as the hidden algebra, not necessarily associ-
ated to any symmetry algebra of the system. The main
requirement is the existence of a representation of g
that is invariant for the Hamiltonian, a constraint that
allows us to determine its spectrum (either partially or
completely) using algebraic methods [12]. So, for ex-
ample, the universal enveloping algebra of the simple
Lie algebra sl(2,R) and its realization as first-order
differential operators on the real line provide a char-
acterization of quasi-exactly solvable one-dimensional
systems [13]. A second type of systems that uses the
structural properties of enveloping algebras is given by
super-integrable systems, where both the Hamiltonian
and the constants of the motion are interpreted in the
enveloping algebra of some Lie algebra g. Merely in-
tegrable n-dimensional systems can be interpreted as
the image, via a realization Φ by first-order differential
operators, of an Abelian subalgebra A of U(g), while
super-integrable systems would correspond to non-
Abelian extensions of A. The problem under what
conditions a system both exhibits super-integrability
and (quasi-)exact solvability has been analyzed in de-
tail, and large classes of super-integrable systems that
are exactly solvable have been found (see [3, 14, 15]
and references therein).
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A first algebraic formulation, as developed in [10],
is motivated by the use of quadratic algebras in the
context of super-integrable (and exactly solvable) sys-
tems with a given hidden algebra g [3]. To this extent,
we consider a Hamiltonian H expressed in terms of
a subalgebra m ⊂ g via a realization Φ by differential
operators of the Lie algebra g:

H =
dim m∑

i,j=1
αijΦ(Xi)Φ(Xj) +

dim m∑

k=1
βkΦ(Xk) + γ0, (1)

where αij , βk, γ0 are constants and {X1, . . . , Xdim m}
is a basis of m. In this context, the Hamiltonian H is
obtained as the image of a quadratic element Ha in the
universal enveloping algebra U(m) ⊂ U(g). Similarly,
the (independent) constants of the motion φ1, . . . , φs

can also be rewritten as the image of elements in the
enveloping algebra U(g). As differential operators
they satisfy the commutators

[H, φj ] = 0, 1 ≤ j ≤ s. (2)

The commutators [φi, φj ] provide additional (depen-
dent) higher-order constants of the motion. A spe-
cially interesting case is given whenever the first inte-
grals generate a quadratic algebra.

Abstracting from the specific realization Φ, and fo-
cusing merely on the underlying algebraic formulation,
the formal polynomial

Ha =
dim m∑

i,j=1
αijXiXj +

dim m∑

k=1
βkXk + γ0

in the enveloping algebra U(m) of m allows us to re-
cover Hamiltonian H of the system once the generators
are realized by the differential operators. In analogous
form, we can find elements J1, . . . , Js in U(g) that cor-
respond, via the realization Φ, to the first integrals
φ1, . . . , φs of the system. While for the initial system
the relations

[H, φk] = 0, 1 ≤ k ≤ s,

are ensured, there is no necessity that the polynomials
Jk commute with Ha in U(g), although the relation

[Ha, Jk] = 0 (mod Φ) (3)

is satisfied. Similarly, for the polynomial relations
[φi, φj ] = αkℓ

ij φkφℓ + βk
ijφk of the first integrals, the

commutators in U(g) lead to the relation

[Ji, Jj ] = αkℓ
ij JkJℓ + βk

ijJk (mod Φ) (4)

If equations (3) and (4) are satisfied for any realiza-
tion Φ, then the problem is entirely characterized
algebraically by the reduction chain m ⊂ g. It should
be observed that this situation is rather exceptional, as
the analysis of the exactly solvable systems described
in [3] from the point of view of the first algebraic

formulation indicates that, in general, the first inte-
grals of the system do not correspond, at the level
of the enveloping algebra of the hidden algebra, to
polynomials that commute with the algebraic Hamil-
tonian, showing that the commutativity properties
are a consequence of the realization by differential
operators.

Using the correspondence existing between the rep-
resentations of g and those of its enveloping algebra
U(g) (see e.g. [11]) and identifying a Lie algebra g
with the first-order (left-invariant) differential opera-
tors on a Lie group G admitting g as its Lie algebra,
it follows that the universal enveloping algebra can be
seen as the set of (left-invariant) differential operators
on G of arbitrary order. Therefore, if Φ : g → X(Rn)
is some realization of the Lie algebra by first-order
differential operators, it can be uniquely extended to
a realization Φ̂ : U(g) → X(Rn).

In this context, this first algebraic reformulation of
the system is still strongly related to the representa-
tion theory of Lie algebras. More precisely, supposed
that Ha ∈ U(m) is an algebraic Hamiltonian defined
in the enveloping of some subalgebra m ⊂ g and
that the (independent) polynomials J1, . . . , Js gener-
ate a quadratic algebra, that is, satisfy the conditions

[Ji, Jj ] = αkℓ
ij JkJℓ + βk

ijJk, (5)

we consider the (two-sided) ideal I in U(g) generated
by the polynomials

Qi := [Ha, Ji] , 1 ≤ i ≤ s.

The problem is now to analyze whether there ex-
ists an equivalence class of (faithful) representations
Φ : g → X(Rn) such that for the corresponding ex-
tension Φ̂ : U(g) → X(Rn), the image of the ideal
I is contained in the kernel ker Φ̂, ensuring that the
realized polynomials Φ̂(Qi) correspond to first inte-
grals of the Hamiltonian in the given realization. In
some sense, this is a special case of an important
and still unsolved problem, namely the embedding
of a Lie algebra g into the enveloping algebra U(k)
of another Lie algebra k, for which currently only the
case of embeddings ι : g → U(g) for g semisimple
has been completely solved [16], using techniques of
deformation theory [17].

We illustrate the preceding procedure consider-
ing the six-dimensional non-solvable Lie algebra r ⊂
sl(3,R) with basis {X1, . . . , X6} and nonvanishing
commutators
[X1, X2] = X1, [X1, X5] = X4, [X2, X5] = X5,
[X2, X6] = −X6, [X3, X4] = −X4, [X3, X5] = −X5,
[X3, X6] = X6 [X4, X6] = X1, [X5, X6] = X2 − X3.

Superintegrable systems based on this hidden algebra
r and the vector field realization

X1 = ∂t, X2 = t∂t − N

3 , X3 = su∂u − N

3 ,

X4 = ∂u, X5 = t∂u, X6 = u∂t,
(6)
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have been extensively studied in [4], where in addition
their exact solvability was analyzed. We consider
a special case of the generic Hamiltonians studied
there. Taking the values s = k = ω = 1, a = b = − 1

2
and N = 0, we obtain the Hamiltonian h1 and two
quadratic integrals

h1 = −4t∂2
t − 8u∂2

tu − 4u∂2
u + 4t∂t + 4u∂u,

φ1 = 4u(u − t)∂2
u, φ2 = 4(t − u)

(
∂2

t − ∂t

)
.

(7)

Now h1, φ1, φ2 are the image by the realization of the
following polynomials in the enveloping algebra of r:

H1 = 4X2(1 − X1) + 8(1 − X3)X1 + 4(1 − X4)X3,

P1 = −4X3X5 + 4X2
3 − 4X3,

Q1 = 4(X2X1 − X6X1 + X6 − X2).

At the purely algebraic level we have

[H1, P1] ̸= 0, [H1, Q1] ̸= 0,

showing that the polynomials P1 and Q1 do not belong
to the commutant of H1 in U(r). Therefore, the origin
of the quadratic integrals of system (7) is not algebraic,
but a consequence of the specific realization (6).

If we maintain the algebraic Hamiltonian as given
above and search for quadratic polynomials in U(r)
commuting with it, we find that only two such opera-
tors exist (see [10] for the general case), given by

A1 = X4 − X3 − X6 + X1(1 + X3 + X6) + (X3 + X6)X4,

B1 = −4X1 − X2 + X6 + X1X2 + X1X3 − X1X6 − X6X4.

These polynomials are not independent, as they sat-
isfy the relation A1 +B1 + 1

4 H1 = 0. Now, if we extend
the analysis to cubic polynomials in U(r), we find the
following operator C1 that commutes with H1:

C1 = 3X1 − 2X3 − X5 − 4X6 + 2X1X3 + 4X1X6 + X2
3

+ X2X4 + X2
3 − X3X5 + X3X6 + X6X4 − X6X5

− X1X2
3 − X1X3X6 + X2X3X4 + X2X6X4.

The operators A1 and C1 generate a finite-
dimensional polynomial algebra in U(r), with explicit
nonvanishing commutators

[A1, C1] = D1, [A1, D1] = D1, [B1, C1] = −D1,

[C1, D1] = 1
2{B1, D1} − 1

2{A1, D1} − 12A1

− 12A1 + 4B1 + 4C1 − 2{A1, B1},

where {◦, ◦} is the anticommutator.
Now, as the operators H1, A1, C1 commute at the

algebraic level, for any realization of r by vector fields
they give rise to a Hamiltonian system possessing
a quadratic and a cubic integral, respectively.1 For the
particular realization (6), it follows that the resulting
system is actually equivalent to the initial one (7), as
the image of the ideal J generated by A1, B1, C1, D1 is
properly contained in the ideal spanned by φ1 and φ2,
thus being functionally dependent on these integrals.

1Provided that the transformed operators are independent.

3. Commutants in enveloping
algebras and coadjoint
representations

A second algebraic approach, of a more general na-
ture, can be proposed considering chain reductions
g′ ⊂ g of (reductive) Lie algebras, and analyzing the
structure of the commutant of g′ in the enveloping
algebra U(g), in order to identify polynomial (in par-
ticular, quadratic) subalgebras [9]. In the generic
analysis of commutants, elements of the theory the
coadjoint representation of Lie algebras can be used,
in order to simplify some of the computations in en-
veloping algebras. If g is a Lie algebra with generators
{X1, . . . , Xn} and commutators [Xi, Xj ] = Ck

ijXk,
the Xi’s are realized in the space C∞ (g∗) by means
of the first-order differential operators:

X̂i = Ck
ijxk

∂

∂xj
, (8)

where {x1, . . . , xn} are the coordinates of a covector
in a dual basis of R {X1, . . . , Xn}. The invariants of
g (in particular, the Casimir operators) correspond
to the solutions of the following system of partial
differential equations:

X̂iF = 0, 1 ≤ i ≤ n. (9)

For an embedding of Lie algebras f : g′ → g, a basis
{X1, . . . , Xr} of the subalgebra can be extended to
a basis {X1, . . . , Xn} of g. Therefore, we can con-
sider the subsystem formed by the first r equations of
(9), corresponding to the generators of the subalgebra
g′. The solutions of this subsystem, that in particu-
lar encompass the invariants of g′, are usually called
subgroup scalars [18].

By means of the standard symmetrization map

Λ
(
xi1 . . . xip

)
= 1

p!
∑

σ∈Sp

Xσ(i1) . . . Xσ(ip) (10)

polynomial solutions of the subsystem correspond to
elements in the enveloping algebra U(g) of g that
commute with the subalgebra g′. If we now define an
algebraic Hamiltonian

H = H (X1, . . . , Xr) ∈ U(g′), (11)

in terms of the subalgebra generators, the commutant

CU(g)(H) = {U ∈ U(g) | [H, U ] = 0}

certainly includes the solutions of (9) common to the
g′-generators, i.e.

CU(g)(H) ⊃
{

Λ(φ) | X̂1(φ) = · · · = X̂r(φ) = 0
}

,

where φ(x1, . . . , xn) ∈ C∞ (g∗).
Depending on the structure of g and the subalgebra

g′, as well as on the choice of H, two possible cases
arise for a polynomial P ∈ CU(g)(H):
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(1.) P commutes with all X1, . . . , Xr.
(2.) There is an index k0 with [P, Xk0 ] ̸= 0.
Polynomials P in the first case actually commute with
the Hamiltonian H, and thus belong to the two-sided
ideal ⟨I⟩ generated by the set I = {J1, . . . , Js} of
elements corresponding to the symmetrization of in-
dependent polynomials satisfying the subsystem of
(9) corresponding to g′. For these elements, it fol-
lows at once that [Jk, Jℓ] belongs to I. In the general
case, the Hamiltonian H does not commute with all
Xj-generators, and in order to find the commutant
CU(g)(H), we can restrict the analysis to the determi-
nation of a basis of the factor module CU(g)(H)/⟨I⟩.
Although the problem is computationally cumbersome,
certain algorithms in terms of Gröbner bases have been
developed that allow its precise determination [19].

A (restricted) systematic procedure that circum-
vents the above-mentioned obstruction and allows us
to analyze polynomial algebras with respect to a reduc-
tion chain g′ ⊂ g can be proposed starting from the
polynomials in U(g) that commute with all the gen-
erators intervening in the expression of the algebraic
Hamiltonian H ∈ U(g′). More precisely, if the Hamil-
tonian H is given as a polynomial P (Xi1 , . . . , Xis) in
terms of the generators of the subalgebra g′ with basis
{X1, . . . , Xr}, we consider the subsystem of (9) given
by

X̂ij
F (x1, . . . , xn) = 0, 1 ≤ j ≤ s.

We then extract a maximal set of independent poly-
nomial solutions {Q1, . . . , Qp} of (9), which in the re-
ductive case forms an integrity basis for the solutions.
Symmetrizing these functions we obtain elements Mj

in the commutant CU(g)(H). Starting from the set of
polynomials S = {H, M1, . . . , Mp}, we inspect their
commutators and determine whether, either adjoining
new (dependent) elements to S or discarding some
elements of S, a finite-dimensional quadratic algebra
A can be found. Although there is some ambiguity
in the construction, as there is no quadratic algebra
“canonically" associated to the reduction chain g′ ⊂ g,
it provides an alternative method that does not re-
quire a specific realization by vector fields, as the
integrability condition is guaranteed by the commu-
tant.

This ansatz has been successfully applied in [9] to
the enveloping algebra of the Schrödinger algebras
Ŝ(n) for arbitrary values of n ≥ 1 and various choices
of algebraic Hamiltonian, showing that the construc-
tion is formally of use for the analysis of hidden alge-
bras that are not reductive.

4. Virtual copies in enveloping
algebras

In the solution of the embedding problem into envelop-
ing algebras for semisimple algebras, the vanishing
of the first cohomology group with values in U(g)
plays an important role, as it allows to provide a gen-
eral solution for the perturbation problem [16]. For

nonsemisimple Lie algebras, the application of the pro-
cedure is quite complicated for both computational
reasons and the currently incomplete understanding
of the precise structure of the corresponding envelop-
ing algebras. However, for certain types of semidirect
sums of simple and solvable Lie algebras, some analo-
gous statements may be proposed, providing copies
of semisimple Lie algebras in the enveloping algebra
of a semidirect sum, up to a polynomial factor.

Supposed that s is the Levi subalgebra of a semidi-
rect sum g = s

−→⊕Γr, we seek for elements of degree
d ≥ 2 in the generators in U(g) that transform accord-
ing to the structure tensor of s, up to a (polynomial)
factor. The procedure can be summarized as follows:
Consider a basis {X1, . . . , Xn} of s with commmuta-
tors

[Xi, Xj ] = Ck
ijXk. (12)

and extend it to a basis {X1, . . . , Xn, Y1, . . . , Ym} of
of the semidirect sum g. We now define operators

X ′
i = Xi R (Y1, . . . , Ym) + Pi (Y1, . . . , Ym) (13)

in U(g), where Pi and R are still undetermined poly-
nomials. In order to simplify computations, they can
be considered as homogeneous polynomials of degrees
k and k −1 respectively, so that X ′

i is homogeneous of
degree k. We require that these operators commute
with the generators Yk of the radical r, so that the
identity

[X ′
i, Yj ] = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m

is satisfied for all indices. Expanding the latter leads
to the expression

[X ′
i, Yj ] = [XiR, Yj ] + [Pi, Yj ]

=Xi [R, Yj ] + [Xi, Yj ] R + [Pi, Yj ] .

Taking into account the homogeneity degree of the
terms with respect to the generators of s and the rep-
resentation space, it follows that Xi [R, Yj ] can be
seen as a polynomial of degree (k − 1) in the vari-
ables {Y1, . . . , Ym}. On the other hand the terms
of [Xi, Yj ] R + [Pi, Yj ] have degree k, allowing us to
further separate the commutator as

[R, Yj ] = 0,

[Xi, Yj ] R + [Pi, Yj ] = 0. (14)

From the first equation we conclude that the factor
R commutes with all generators Yi, thus defines an
invariant of the solvable Lie algebra r. We further
require that the operators X ′

i transform by the action
of s as the generators of the latter algebra, i.e.

[X ′
i, Xj ] = [Xi, Xj ]′ := Ck

ij (XkR + Pk) . (15)

As this relation must hold for all the generators of the
semidirect sum g, further structural constraints on
the polynomials R and Pi are obtained. Expanding
the left-hand term of condition (15) yields

[X ′
i, Xj ] = [Xi, Xj ] R − Xi [Xj , R] + [Pi, Xj ] .
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As the Yj are the generators of the representa-
tion space Γ, it follows that the term [Xi, Xj ] R −
Xi [Xj , R] is linear in the generators of s and of de-
gree (k −1) in the Yj ’s, while [Pi, Xj ] does not involve
generators of s. Comparing now with the right-hand
side of (15), the condition again separates into two
parts:

[Xi, Xj ] R − Xi [Xj , R] = Ck
ijXkR,

[Pi, Xj ] = Ck
ijPk.

(16)

Simplifying the first equations shows that

Xi [Xj , R] = 0,

hence implying that R also commutes with the gen-
erators of the Lie algebra. As R corresponds simul-
taneously to an invariant polynomial of the radical,
it must correspond to an invariant of g that depends
only on the generators of its maximal solvable ideal.2
The second equation shows that the polynomials Pi

transform according to the adjoint representation of
the semisimple Lie algebra s. Supposed that all the
conditions are satisfied, we obtain the commutators
of the operators X ′

i in the enveloping algebra U(g) as
[
X ′

i, X ′
j

]
= [XiR + Pi, XjR + Pj ]
= [XiR + Pi, XjR] + [XiR + Pi, Pj ]
= Ck

ijXkR2 + Ck
ijPkR + [X ′

i, Pj ] .

(17)

As the X ′
i commute with the Yj , it follows from

equation (17) that [X ′
i, Pj ] = 0 and therefore that[

X ′
i, X ′

j

]
= [Xi, Xj ]′ R, showing that the operators

reproduce the commutators of s, up to the invariant
factor R. It should be emphasized that R is not nec-
essarily a central element, but an invariant of g that
solely depends on the generators of the characteristic
representation Γ.

It follows in particular from this construction that
the operators {R, X ′

1, . . . , X ′
n} generate a finite dimen-

sional quadratic algebra A in the enveloping algebra
U(g), with commutators

[R, X ′
i] = 0,

[
X ′

i, X ′
j

]
= Ck

ijX ′
kR, 1 ≤ i, j, k ≤ n.

Under some specific conditions, these so-called vir-
tual copies of semisimple Lie algebras in enveloping
algebras can be used to construct (formal) Hamiltoni-
ans with first integrals given by some of the operators
X ′

i. Let us outline one possibility, based on the branch-
ing rules of representations of semisimple Lie algebras.
To this extent, we fix a semisimple subalgebra s′ of the
Levi factor s of the semidirect sum g. Further suppose
that the adjoint representation ad(s) decomposes, as
a representation of s′, as follows

ad(s) ↓ ad(s′) + Γ1 + · · · + Γs, (18)
2This fact actually provides information concerning the di-

mension of the characteristic representation Γ in the semidirect
sum.

where Γ = Γ1 + · · · + Γs is the so-called character-
istic representation [20]. Suppose that the trivial
representation Γ0 of s′ has multiplicity k > 0 in the
decomposition (18). This means specifically that we
can find k generators

{
X̃1, . . . , X̃k

}
of s that commute

with the subalgebra s′. Now, by condition (15), for
the corresponding operators X̃s (1 ≤ s ≤ k) we have
that [

X̃ ′
i, Z

]
=

[
X̃i, Z

]′ = 0, Z ∈ s′, (19)
from which it follows that for any algebraic Hamilto-
nian H ∈ U(s′) the integrability condition

[
X̃ ′

i, H
]

= [R, H] = 0, 1 ≤ i ≤ k (20)

is satisfied. On the other hand, by condition (17), it
is straightforward to verify that

[
H,

[
X̃ ′

i, X̃ ′
j

]]
= 0. (21)

This last identity implies that the terms appearing in
the commutator

[
X̃ ′

i, X̃ ′
j

]
also transform according to

the trivial representation of the subalgebra s′.
We conclude that the set

{
R, X̃ ′

1, . . . , X̃ ′
k

}
generates

a finite-dimensional quadratic algebra in the envelop-
ing algebra U(g) that are (formal) first integrals for
the Hamiltonian H. Whether or not these integrals
are sufficient for guaranteeing (super-)integrability,
essentially depends on the subalgebra s′ and the as-
sociated branching rule. In any case, the preceding
construction determines the maximal number of op-
erators X ′

i that commute with the Hamiltonian H,
independently of any realization of the hidden algebra
g by first-order differential operators. For the case
where the characteristic representation Γ does not con-
tain the trivial representation of the subalgebra s′, i.e.,
when no generators of s simultaneously commute with
the elements of s′, the integrability condition for the
operators would not be a consequence of the structure
of the enveloping algebra, but the specific consequence
of a realization of g, relating this approach with the
first algebraic formulation.

We finally observe that the construction presented
here, that depends essentially on the homogeneity of
the operators X ′

i, is specially suitable for semidirect
sums admitting a nonvanishing centre and the class
of one-dimensional non-central extensions of double
inhomogeneous Lie algebras [21, 22], while the argu-
ment is not valid whenever the Levi factor s and the
radical do not have nonconstant invariants in common.
Due to this obstruction, it is formally conceivable to
propose a generalized construction by skipping the
homogeneity assumption. It should however be taken
into account that using operators of different degrees
in (13) may lead to incompatibilities in the commuta-
tors, as equations (14)-(16) cease to hold, and more
general constraints depending on the particular de-
grees of each Pi would be required. If and under
what specific assumptions a solution can be found for
a generalized inhomogeneous set of generators (13), is
still an unanswered question that is currently being
studied in detail.
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5. Conclusions
Two possible approaches to the problem of determin-
ing quadratic algebras as subalgebras of the enveloping
algebra of a Lie algebra have been commented. The
first approach corresponds to an algebraic abstrac-
tion of already known systems, which are analyzed
purely from the perspective of the Hamiltonian and
the integrals as the image by a realization of dif-
ferential operators of elements in some enveloping
algebra, trying to determine to which extent such
integrals are realization-dependent [10]. In a the sec-
ond algebraic formulation, commutants of subalgebras
g′ ⊂ g in the enveloping algebra of g are considered,
from which quadratic algebras formed by polynomi-
als that commute with a given algebraic Hamiltonian
defined in U(g′) are deduced. In order to simplify
the computations in the enveloping algebra, distin-
guished elements in the commutant can be deduced
from the coadjoint representation. For the subalge-
bras found with this method, a realization by vector
fields of an appropriate number of variables automat-
ically provides a (super-)integrable system for the
given Hamiltonian [9]. The method of virtual copies,
initially introduced in the context of invariant theory,
provides an additional approach that combines ele-
ments of the two algebraic formulations, and refers to
a number of still open problems, such as the general
solution of the embedding problem of Lie algebras
into enveloping algebras [16], as well the classification
problem of realizations of Lie algebras in terms of
differential operators [23]. Whether these approaches
are compatible or can be combined with other proce-
dures like the quadratic deformations of Lie algebras
or the formalism of Racah algebras (see e.g. [8, 24, 25]
and references therein) is a problem worthy to be in-
spected. We hope to report on some progress in these
directions in a near future.
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Abstract. We work with photonic graphene lattices under strain with gain and loss, modeled by the
Dirac equation with an imaginary mass term. To construct such Hamiltonians and their solutions, we
use the free-particle Dirac equation and then a matrix approach of supersymmetric quantum mechanics
to generate a new Hamiltonian with a magnetic vector potential and an imaginary position-dependent
mass term. Then, we use a gauge transformation that maps our solutions to the final system, photonic
graphene under strain with a position-dependent gain/loss term. We give explicit expressions for the
guided modes.

Keywords: Graphene, Dirac materials, photonic graphene, matrix supersymmetric, quantum mechan-
ics.

1. Introduction
Graphene is the last known carbon allotrope, it was
isolated for the first time by Novoselov, Geim, et al. in
2004 [1]. This material consists of a two-dimensional
hexagonal arrangement of carbon atoms. Graphene
excels for its interesting properties, such as mechanical
resistance, electrical conductivity, and optical opac-
ity [2, 3]. The study of graphene has contributed to the
development of different areas in physics, for example,
in solid-state, graphene has prompted the discovery
of other materials with similar characteristics, such
as borophene and phosphorene. At low energy, the
charge carriers in graphene behave like Dirac massless
particles, and from this approach, graphene has al-
lowed the verification of the Klein tunneling paradox
as well as the quantum Hall effect. These phenomena
have gained a special interest in particle physics and
quantum mechanics [4].

Exploring graphene in an external constant mag-
netic field has allowed identifying the discrete bound
states in the material, the so-called Landau levels.
Moreover, theoretical physicist have analyzed the be-
havior of Dirac electrons in graphene under different
magnetic field profiles as well. Supersymmetric quan-
tum mechanics is a useful tool to find solutions of the
Dirac equation under external magnetic fields [5–9].
Following this approach, a mechanical deformation
in a graphene lattice is equivalent to introducing an
external magnetic field [10, 11].

Graphene has its analog in photonics, called pho-
tonic graphene. It is constructed through a two-
dimensional photonic crystal with weakly coupled
optical fibers in a three-dimensional setting [12–17].
Photonic graphene under strain is modeled through

a deformation in the coupled optical fiber lattice [18–
21].

Compared with the conventional graphene Hamilto-
nian, the photonic graphene Hamiltonian has an extra
term that represents the gain/loss in the fibers. The
literature on this topic always considers a constant
gain/loss in space. With the previous motivation,
we will apply supersymmetric quantum mechanics
in a matrix approach (matrix SUSY-QM) to obtain
solutions of the Dirac equation for strain photonic
graphene with a position-dependent gain/loss.

2. Strain in photonic graphene
The graphene structure consists of carbon atoms in
a hexagonal arrangement similar to a honeycomb lat-
tice. This structure can be described by two triangular
sublattices of atoms, which are denoted as type A and
type B. The base vectors to the unitary cell are given
by

a1 = a

2 (
√

3, 3), a2 = a

2 (−
√

3, 3), (1)

where a is the interatomic distance, for graphene a =
1.42 Å (see Figure 1a). The position of the atoms in
the whole lattice can be defined by the set of vectors
Rl = l1a1 + l2a2, with l1, l2 ∈ Z. An alternative
description of graphene is through the first neighbors,
which are connected by the vectors δn

δ1 = a

2 (
√

3, 1), δ2 = a

2 (−
√

3, 1), δ3 = a(0,−1). (2)

A reciprocal lattice can be defined in the momentum
space, which is also hexagonal, as shown in Figure 1b.
It is rotated 90◦ with respect to the original carbon
network. A hexagon in the reciprocal lattice is recog-
nized as the first Brillouin zone. In this zone, there
are only two inequivalent points, K± = (± 4π

3
√

3a , 0).
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A

B
a1a 2

δ1δ2

δ3

(a).

b1b2

K+K-

(b).

Figure 1. (A) Hexagonal graphene lattice. The lat-
tice is constructed by type A and type B atoms, in
this case, a1 and a2 correspond to the lattice unitary
vectors, and δn are the vectors that connect the atoms
A(B) with the nearest neighbors. (B) Reciprocal lat-
tice, which is characterized by the b1,2 vectors and K±
correspond to the two possible inequivalent points in
the lattice.

All subsequent corners are determined from either K+
or K− plus integer multiples of the vectors

b1 = 2π
3a (

√
3, 1), b2 = 2π

3a (−
√

3, 1). (3)

Vectors ai and bj fulfill the condition ai · bj = 2πδij .

2.1. Tight-binding model
The tight-binding Hamiltonian describes the hopping
of an electron from an atom A (B) to an atom B (A)

H = −t
∑

Ri

3∑

n=1

(|ARi ⟩ ⟨BRi+δn | + |BRi+δn ⟩ ⟨ARi |), (4)

where t ≈ 3 eV is called the hopping integral, Ri
runs over all sites in the sublattice A, thus |ARi

⟩ is
a state vector in these sites, the same applies to B
and |BRi+δn⟩, recall that δn connects the atoms of
the sublattice A(B) with its nearest neighbors in the
sublattice B(A). The translational symmetry suggests
the use of Bloch states

|ΨBloch⟩ = 1√
Nc

∑

Rj

(eik·RjψA(k) |ARj
⟩

+ eik·(Rj+δ3)ψB(k) |BRj+δ3⟩), (5)

where Nc is the number of the unitary cell [22]. Then
H |Ψ⟩ = E |Ψ⟩ becomes a matrix problem



0 −t
3∑

n=1
e−ik·δn

−t
3∑

n=1
eik·δn 0



(
ψA
ψB

)
= E

(
ψA
ψB

)
,

(6)
with ψA ≡ ψA(k) and ψB ≡ ψB(k) and the energy
term given by

E± = ±
∣∣∣∣∣t

3∑

n=1
e−ik·δn

∣∣∣∣∣

= ±t
√

3 + 2 cos(
√

3kxa) + 4 cos(
√

3kx
a

2 ) cos(3ky
a

2 ).

To obtain an effective Hamiltonian at low energy, we
can consider the Taylor series around the Dirac points
H(k = K± +q) ≈ q ·∇kH|K± . Note that E(K±) = 0,
as a consequence, at these points, the valence and
conduction bands are connected. The above calculus
leads to the analog of the Dirac-Weyl equation

HϱΨ = ℏv0(ϱσ1qx + σ2qy)Ψ = EΨ, (7)

where ϱ = ±1 correspond to the K± valleys, v0 is
called the Fermi velocity, in graphene, v0 = 3ta/2ℏ ≈
c/300, with c being the velocity of light, σi are the
Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (8)

and Ψ is a bi-spinor. The matrix nature of this equa-
tion is related to the sublattices A and B, this degree
of freedom is called pseudo-spin. Notice that at low
energies, the dispersion relation is linear, given by
E±(q) = ±ℏv0|q|, then, the Dirac cones are connect-
ing at E± = 0, as expected for particles without
mass [23].

2.2. Uniform strain
The photonic analog of a graphene lattice is built with
weakly coupled optical fibers. This kind of photonic
system is described by the same tight-binding Hamil-
tonian in graphene with an additional term γA/B ; that
represents the gain and loss in the optical fibers in the
position A/B, this new term produces an attenuation
or amplification in the optical modes.

If we consider uniform strain in the lattices, which
is represented by a strain tensor

u =
(

u11 0
0 u22

)
, (9)

the Fermi velocity is modified in the following form

vij = v0(1 + (1 − β)uij). (10)

The hopping integrals are modified with a little per-
turbation t → tn, that, considering the changes in the
orbitals by the modification of the carbon distances

tn ≈ t

(
1 − β

a2 δn · u · δn
)
, (11)
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where
β = − ∂ ln t

∂ ln a (12)

is the Grüneisen parameter that depends on the model;
for graphene, β is between 2 and 3 [10] (see also [24,
25]). In photonic graphene, a is the distance between
adjacent waveguides. The Hamiltonian of a photonic
graphene with a uniform strain reads as

H = γA

∑

Ri

|ARi ⟩ ⟨ARi | + γB

∑

Ri

|BRi+δn ⟩ ⟨BRi+δn |

−
∑

Ri

3∑

n=1

tn(|ARi ⟩ ⟨BRi+δn | + |BRi+δn ⟩ ⟨ARi |). (13)

The deformation of the lattice produces a shift of
the Dirac points KD

± ≈ (1 − u) · K± ± A, where
A = (Ax,Ay)

Ax = β

2a (u11 − u22), Ay = − β

2a (2u12). (14)

Using the Bloch solution, the Hamiltonian under
strain takes the form:

H =




γA −
3∑

n=1
tne

−ik·(1−u)·δn

−
3∑

n=1
tne

ik·(1−u)·δn γB


 ,

(15)
under the assumption |u·δn| ≪ a. In this work, we will
assume that γA = iγ and γB = γ∗

A, then, for positive
γ, the waveguides in the sublattice A (B) present the
energy gain (loss), as in the arrangements proposed
in [14]. Expanding this Hamiltonian around the Dirac
points, through the substitution k = KD

± + q, one
arrives at a Dirac Hamiltonian analog with minimal
coupling

H = v0σ · (1 + u − βu)q + iγσ3. (16)

Comparing with (7), the effect of strain is equiva-
lent, to consider magnetic-like field modeled through
a pseudo-magnetic vector potential A. The last term
represents a gain/loss balance in sublattices A/B. In
photonic graphene, strain could be generated by de-
formations in the geometry of the optical-fiber lattice.

2.3. Non-uniform strain
For non-uniform strain, the deformation matrix de-
pends of the position, u → u(r). Thus, the expression
for the Hamiltonian becomes

H = −iσi
√vij∂j

√vij + v0σiAi + iγσ3, (17)

considering a strain tensor of the form

u =
(

u11(x) 0
0 u22(y)

)
, (18)

and equations (10) and (14), still apply. We can also
write the strain Hamiltonian as

H(x, y) = − iσ1
√v11∂x

√v11 − iσ2
√v22∂y

√v22

+ σ1
v0β

2a (u11(x) − u22(y)) + iγσ3, (19)

where v11 = v11(x), v22 = v22(y).
We can relate the eigenvalue equation of this Hamil-

tonian, HΨ = EΨ, with a strain-free one using the
following transformation. First, we define the coordi-
nates

r =
∫

v0
v11(x)dx, s =

∫
v0

v22(y)dy, (20)

and the operator

G(x, y) =
√v11v22

v0
exp

(
iv0β

2a

∫ x

0

u11(q)
v11(q)dq

)
, (21)

then, H will be related with a flat Fermi velocity
Hamiltonian H0 as

H(x, y) = G−1(x, y)H0(r(x), s(y))G(x, y), (22)

where

H0Φ =
(

−iv0σ1∂r − iv0σ2∂s − v0β

2a u22 + iγσ3

)
Φ, (23)

and u22 = u22(y(r, s)). The solutions are mapped as

Ψ(x, y) = G−1(x, y)Φ(r(x), s(y)). (24)

The energy spectrum is the same for both Hamiltoni-
ans [18, 19, 26].

3. Supersymmetric quantum
mechanics: matrix approach

Supersymmetric quantum mechanics (SUSY-QM) is
a method that relates two Schrödinger Hamiltonians
through an intertwining operator [27, 28]. Another
approach is the matrix SUSY-QM, which intertwines
two Dirac Hamiltonians H0, H1 by a matrix operator
L. In this work, we use the latter to construct an
appropriate Hamiltonian H1 that will be linked via the
operator G introduced in (21) to a photonic graphene
system under strain. For the sake of completeness we
will give a brief review of matrix SUSY-QM (more
details can be found in [29]).

We start by proposing the following intertwining
relation:

L1H0 = H1L1, (25)

where the Dirac Hamiltonians are given by

H0 = −iσ2∂s + V0(s), H1 = −iσ2∂s + V1(s), (26)

and the intertwining operator is

L1 = ∂s − UsU
−1, (27)

with U being a matrix function called seed or trans-
formation matrix, the subindex in Us represent the
derivative respect to s, and U must satisfy H0U = UΛ.
Let us write U in a general form and Λ as a diagonal
matrix

U =
(
u11 u12
u21 u22

)
, Λ =

(
λ1 0
0 λ2

)
. (28)
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From the intertwining relation and the given defini-
tions, the potential V1 can be written in terms of the
potential V0 and the transformation matrix as

V1 = V0 + i[UsU−1, σ2]. (29)

Solutions of the Dirac equation H0ξ = Eξ can be
mapped onto solutions of H1Φ = EΦ using the inter-
twining operator as Φ ∝ L1ξ. There are some extra
solutions, usually referred to missing states. They
can be obtained from each column of (UT )−1, named
Φλj

, j = 1, 2, which satisfy H1Φλj
= λjΦλj

. If the
vectors Φλj

fulfill the boundary conditions of the prob-
lem, λj must be included in the spectrum of H1. As
a summary, with this technique, we start from H0,
its eigenspinors and spectrum, then we construct H1,
obtain the solutions of the corresponding Dirac equa-
tion and the spectrum. Now, let us mention that it is
possible to iterate this technique. The main advantage
comes from the modification of the spectrum, since
with each iteration, we can add more energy levels.
The second-order matrix SUSY-QM can be reached
through a second intertwining relation

L2H1 = H2L2, (30)

which is similar to (25). The intertwining operator
now takes the form

L2 = ∂s − (U2)sU−1
2 . (31)

The operator L1 is used to determine the transforma-
tion matrix of the second iteration, U2 = L1U2, where
U2 fulfills the relation H0U2 = U2Λ2. In this case, Λ2
is an Hermitian matrix that we choose diagonal once
again,

Λ2 =
(
λ̃1 0
0 λ̃2

)
, U2 =

(
w11 w12
w21 w22

)
. (32)

The elements of Λ2 are such that (λ̃1, λ̃2) ̸= (λ1, λ2).
Therefore, the second order potential is given by

V2 = V1 + i
[
(U2)sU−1

2 , σ2
]
. (33)

The solutions of H2χ = Eχ are obtained from the
eigenspinors of H1 as χ ∝ L2Φ. The second-order
matrix SUSY-QM generates, in principle, two sets of
eigenspinors that correspond to the columns of the
matrices (UT2 )−1 and L2(UT )−1.

4. Photonic graphene under strain
and position-dependent gain and
loss

In this section, we start from the auxiliary Dirac
equation of a free particle with imaginary mass, and
using a matrix SUSY-QM and a gauge transformation
G, we obtain a photonic graphene model with strain
and position dependent gain/loss. We show that we
can iterate the technique to add more propagations
modes.

Figure 2. Graph of the functions v0kr +K(s) (line
blue) and the gain/loss term γ−Γ(s) (dashed red line)
for ϵ = 1.5, kr = π, γ = 1, v0 = 1.0. Notice that
γ − Γ(s) coincides asymptotically with γ.

4.1. Photonic Graphene with a single
mode

Let us start from the free particle Dirac equation
where we included a purely imaginary mass term:

H0Φ =(−iv0σ1∂r − iv0σ2∂s + iγσ3)Φ. (34)

Considering Φ(r, s) = exp(ikrr)(ϕA(s), ϕB(s))T , the
Hamiltonian can be written as

H0(r, s) = −iv0σ2∂s + V0, (35)

where V0 = v0krσ1 + iγσ3. Now, we use the matrix
SUSY-QM to construct a new system. A convenient
selection of the Λ elements is λ1 = ϵ = −λ2. We
build the transformation matrix U with the entries
u21 = u∗

22 = cosh(κs) + i sinh(κs), the corresponding
momentum in s is given by κ =

√
k2
r − (γ2 + ϵ2)/v2

0 .
The other two components are found through the
equation:

u1j = v0
(λj − iγ) (−u′

2j + kru2j), j = 1, 2. (36)

From (29) we obtain V1 as

V1 = V0 + σ1K(s) − iσ3Γ(s), (37)

where Γ(s), K(s) are given by

Γ = 2γ + 2ϵ (κ(γ sinh(2κs) + ϵ) − γkr cosh(2κs))
κ(γ − ϵ sinh(2κs)) + krϵ cosh(2κs) ,

K = 2v0krϵ (kr cosh(2κs) − κ sinh(2κs))
κ(γ − ϵ sinh(2κs)) + krϵ cosh(2κs) − 2v0kr.

Figure 2 shows a plot of the functions v0kr + K(s)
and γ − Γ(s). The new Hamiltonian takes the form
H1(r, s) = −iσ2v0∂s +σ1(−iv0∂r +K)+ iσ3(γ−Γ). (38)

This system supports two single bound states. They
are the columns of the matrix (UT )−1 = (Φϵ,Φ−ϵ).
The eigenvector associated with ϵ is given by

Φϵ(r, s) =

eikrr

2


 − (γ2+ϵ2)(cosh(κs)+i sinh(κs))

v0κ(γ−ϵ sinh(2κs))+v0krϵ cosh(2κs)
(γ−iϵ)((κ+ikr) cosh(κs)−(kr+iκ) sinh(κs))

κ(γ−ϵ sinh(2κs))+krϵ cosh(2κs)


 . (39)
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Our next step is to apply the gauge transformation
defined in (20)-(22). The strain and Fermi velocity
tensors that we consider are

u =
(

0 0
0 − 2aK(y))

β

)
,

v = v0

(
1 1
1 1 − (1 − β) 2aK(y)

β

)
, (40)

see (18). The change of variables in (20) becomes

r = x, s =
∫ 1

1 − (1 − β) 2aK(y)
β

dy, (41)

and the operator G(x, y) =
√

1 − (1 − β) 2aK(y)
β . This

choice leads to the following Hamiltonian

H1(x, y) = − iv0σ1∂x − iσ2
√

v22(y)∂y
√

v22(y)

− σ1
v0β

2a u22(y) + i(γ − Γ(y))σ3. (42)

Bounded eigenstates of H1 can be found as Ψϵ(x, y) =
G−1(x, y)Φϵ(r(x), s(y)). In this system, there is a sin-
gle mode in the upper Dirac cone and another in the
bottom cone.

The strain generates an analog of a magnetic
field perpendicular to the graphene layer B⃗(y) =
(β/2a)∂yu22ẑ. Since we are working with a photonic
graphene, such a pseudo-magnetic field affects light.
Moreover, the term iΓ(y)σ3 indicates a position de-
pendent gain/loss in the optical fibers of the sublattice
A/B. Figure 3a shows the square modulus of each com-
ponent of Φϵ = (ϕϵA, ϕϵB)T (shadowed curves) and
the intensity |ϕϵA|2 + |ϕϵB |2 (red curve). Figure 3b
shows the same for the mode Ψϵ.

4.2. Photonic Graphene with two modes
In this subsection, we use two iterations of the ma-
trix SUSY-QM, starting again from the free-particle
Hamiltonian. Let us choose an initial system with
zero gain/loss (γ = 0), which is a massless fermion
in graphene. In the first matrix SUSY-QM step we
use the same transformation matrix U as in the ex-
ample above. The first matrix SUSY-QM partner
Hamiltonian has the form

H1 = −iσ2v0∂s + σ1K(s) + iσ3Γ(s), (43)

where K(s) = krv0,

Γ(s) = 2ϵv0κ

κv0 sinh(2κs) − krv0 cosh(2κs) , (44)

with κ =
√

(krv0)2 − ϵ2/v0. As a result of the first
matrix SUSY-QM step, it is generated a position de-
pendent gain/loss term Γ(s). The iteration of the
method requires to define the second diagonal ma-
trix Λ2, with λ̃1 = −λ̃2 = ϵ1 ≠ ϵ, and the sec-
ond transformation matrix U2. For this example, we

(a).

(b).

Figure 3. (A) Plot of the individual intensities |ϕϵA|2
(gray curve) and |ϕϵB |2 (blue curve) and the total
intensity |ϕϵA|2 + |ϕϵB |2 (red line). (B) Analog of
the (A) plot for the solution Ψϵ of the Hamiltonian
under strain. The parameters in this case are: kr = π,
ϵ = 1.5, a = 1.0, β = 0.8, γ = 1, v0 = 1.0.

Figure 4. Graph of the function v0kr +K2(s) (black
line), and the gain/loss function Γ(s) + Γ2(s) (red
dashed line), for ϵ = 1.5, ϵ1 = 2.0, kr = π, γ = 0,
v0 = 1.0.

choose w21 = cosh(κ2s) and w22 = cosh(κ2s), where
κ2 =

√
(krv0)2 − ϵ21/v0. The other two components

can be found through the equation

w1j = v0

λ̃j
(−w′

2j + krw2j), j = 1, 2. (45)

The potential V2 can be calculated from (33), V2 =
V1+σ1K2(s)+iσ3Γ2(s) = V0+σ1K2+iσ3(Γ+Γ2). The
functions v0kr + K2(s) and Γ(s) + Γ2(s) are shown
in Figure 4. It is important to highlight that the
gain/loss term remains a pure imaginary quantity.
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(a).

(b).

Figure 5. (A) Intensity of the superposition |Φ̄(s, z)|2
propagating in the z-axis. (B) Intensity of the super-
position |Ψ̄(y, z)|2. The values of the parameters taken
are ϵ = 1.5, ϵ1 = 2.0, kr = π, γ = 0, β = 0.8, a = 1.0,
v0 = 1.0.

The second matrix SUSY-QM step introduces two
new sets of eigenmodes. They can be extracted from
the columns of the matrix (UT2 )−1 = (χϵ1 , χ−ϵ1). The
eigenmodes added in the first step are mapped as
χ±ϵ = L2Φ±ϵ. Similar to the previous example, it
is possible to perform the gauge transformation (20)-
(22). Then, in the system under strain, the modes
become

Ψ±ϵ1(x, y) = G−1(x, y)χ±ϵ1(r(x), s(y)),
Ψ±ϵ(x, y) = G−1(x, y)χ±ϵ(r(x), s(y)).

Therefore, in this new optical system, two guided
modes are created in the upper Dirac cone and two
more in the bottom Dirac cone. Finally, let us mention
that we can have superpositions of the introduced
modes and let them propagate along the z-axis inside
the photonic graphene. For example, in the flat Fermi
velocity system (before the gauge transformation),

Φ̄(s, z) = A1e
−iϵzΦϵ(s) +A2e

−iϵ1zΦϵ1(s), (46)

becomes

Ψ̄(y, z) = A1e
−iϵzΨϵ(y) +A2e

−iϵ1zΨϵ1(y), (47)

in the photonic graphene system under strain with
the position dependent gain/loss balance. Figure 5a

shows the propagation along z-axis of the intensity
|Φ̄(s, z)|2, while Figure 5b shows |Ψ̄(s, z)|2.

5. Summary
This article shows a natural way to construct Hamil-
tonians associated with a photonic graphene under
strain with a position-dependent gain/loss balance.
The main tools that we use are a matrix approach
to supersymmetric quantum mechanics and a gauge
transformation. With a correct choice of a transforma-
tion matrix U , it is possible to add a bound state to the
free-particle Hamiltonian using the matrix SUSY-QM,
but the Dirac equation will have two new terms in the
potential, V1 = V0 + σ1K(s) − iσ3Γ(s). The function
K could be associated with a magnetic vector poten-
tial, but the function iΓ is related to an imaginary
mass term, which is difficult to interpret or realize in
a solid-state graphene. The gauge transformation G
maps solutions from the flat Fermi velocity system of
the previous step to a graphene system under strain.
At this point, it becomes relevant to work with the
photonic graphene. The magnetic vector potential
translates into deformations of the lattice of optical
fibers, while the iΓ function indicates the gain/loss
of the fibers in the sublattice A/B. We end with the
Hamiltonian of photonic graphene with a single mode.
This mode is confined by the strain and the position-
dependent gain/loss balance. Finally, we show that
the technique can be iterated, to have two or more
modes in the photonic graphene.
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Abstract. In this work, we derive two equivalent non-rational extensions of the quantum harmonic
oscillator using two different supersymmetric transformations. For these extensions, we built ladder
operators as the product of the intertwining operators related with these equivalent supersymmetric
transformations, which results in two-step ladder operators. We linearised these operators to obtain
operators of the same nature that follow a linear commutation relation. After the linearisation, we derive
coherent states as eigenstates of the annigilation operator and analyse some relevant mathematical and
physical properties, such as the completeness relation, mean-energy values, temporal stability, time
evolution of the probability densities, and Wigner distributions. From these properties, we conclude
that these coherent states present both classical and quantum behaviour.

Keywords: Supersymmetric quantum mechanics, non-rational extensions, linearised ladder operators,
coherent states.

1. Introduction
In quantum physics, supersymmetric quantum me-
chanics (SUSY) is considered the most efficient tech-
nique to generate new quantum potentials from an
initial solvable one (see [1–5] for reviews on the topic).
This method allows modifying the energy spectrum
of an initial Hamiltonian to obtain new Hamiltonians
with known eigenstates and eigenvalues. These po-
tentials obtained with SUSY are known as extensions
or SUSY partners of the considered initial potential.
Moreover, when two different SUSY transformations
lead to the same potential (up to an additive constant),
it can be said that the extensions are equivalent [6, 7].

Equivalent rational extensions of the quantum har-
monic oscillator are very attractive in mathematical
physics since its eigenstates are written in terms of
exceptional orthogonal polynomials and the results
are useful for studying superintegrable systems or gen-
erating solutions to the Painlevé equations [8–10]. In
a recent work of the authors [11], it was shown that
the equivalence between SUSY transformations goes
beyond rational extensions and can be extended to
non-rational extensions of the harmonic oscillator, i.e.
extensions whose potentials cannot be written as the
quotient of two polynomials, by considering not only
polynomial solutions but also general solutions of the
Schrödinger equation.

However, since the birth of quantum theory, it has
been relevant to study the quantum states at the

border between classical and quantum regimes. In this
sense, it is well-known that Schrödinger, in 1926 [12],
derived quantum states of the harmonic oscillator
that resemble classical behaviour on the phase-space
as the classical oscillator does. Later on, in 1962,
Glauber rediscovered these states, known as coherent
states, and found that they provided the quantum
description of coherent light [13]. Since then, there
has been a continuous research activity in quantum
physics looking for quantum states with a behaviour
at the border between classical and quantum regimes
by examining semi-classical phase-space properties, in
particular, by systems generated by SUSY [4, 14–20].

The coherent states of the harmonic oscillator are
Gaussian states, labeled by a complex number z, that
minimize the Heisenberg uncertainty relation. They
can be constructed either as displaced versions of the
ground state or as eigenvectors of the annihilation
operator. Moreover, they form an overcomplete set in
the sense that

1
π

∫

C
|z⟩ ⟨z| d2z = 1. (1)

These four properties are commonly used as defini-
tions of coherent states when we have a potential
different from the harmonic oscillator, see for exam-
ple [21–25]. Each definition gives, in general, different
sets of coherent states. In this work, we obtain coher-
ent states of non-rational extensions of the harmonic
oscillator as eigenvectors of the annihilation operator.
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For this purpose, we need to find ladder operators of
the system.

The outline of the work is the following: In the next
section, we present a short summary of SUSY. In Sec-
tion 3, we generate two equivalent non-rational exten-
sions of the harmonic oscillator. Then, we construct
ladder operators as the product of the intertwining op-
erators of the SUSY transformations. In the Section 4,
we linearise the ladder operators to obtain a linear
commutation relationship, then, we derive coherent
states as eigenstates of the annihilation operator and
study some of their properties. Our conclusions are
presented in the last section.

2. Supersymmetric quantum
mechanics

With this technique, we start with two Hamiltonians

H = −1
2
d2

dx2 + V (x), H̃ = −1
2
d2

dx2 + Ṽ (x), (2)

where H is the initial Hamiltonian with known eigen-
functions ψn(x) and eigenvalues En, n = 0, 1, 2, . . . ,
whereas H̃ is the Hamiltonian under construction.
The potential Ṽ is known as the extension or su-
persymmetric partner of V . Now, we propose the
existence of k-th order differential operators B,B+

that intertwine H and H̃ as

H̃B+ = B+H, BH̃ = HB. (3)

By properly choosing k general solutions uj (j =
1, 2, . . . , k) of the stationary Schrödinger equation
Huj = ϵjuj , with corresponding energies ϵj , the SUSY
partner potential Ṽ (x) reads

Ṽ (x) = V (x) − [lnW (u1, u2, . . . , uk)]′′, (4)

where W (f1, f2, . . . , fk) denotes the Wronskian of the
functions in its argument. The functions uj are usually
referred to as seed solutions and the constant ϵj as
factorization energies. Be aware that to have a regular
potential, we must choose the seed solutions in such
a way the Wronskian has no zeroes.

If B+ψn ̸= 0, the eigenfunctions ψ̃n, n = 0, 1, . . . ,
of H̃ can be computed with the relation

ψ̃n(x) = B+ψn(x)√
(En − ϵ1) . . . (En − ϵk)

= 1√
(En − ϵ1) . . . (En − ϵk)

W (u1, u2, . . . , uk, ψn)
W (u1, u2, . . . , uk) . (5)

The constructed Hamiltonian H̃ may contain addi-
tional eigenfunctions ψ̃ϵi

, known as missing states, for
some of the factorization energies ϵi, given by

ψ̃ϵi ∝ W (u1, . . . , ui−1, ui+1, . . . , uk)
W (u1, . . . , uk) . (6)

If ψ̃ϵj
fullfills the boundary conditions of the quantum

problem, then ϵj must be included in the spectrum of
H̃.

In particular, for second-order supersymmetric
quantum mechanics, the intertwining operators have
the explicit form [26]

B = 1
2

[
d2

dx2 + g(x) d
dx

+ g′(x) + h(x)
]
, (7)

B+ = 1
2

[
d2

dx2 − g(x) d
dx

+ h(x)
]
. (8)

where the functions g(x), h(x) are found in terms of
the only two seed solutions u1, u2 with the correspond-
ing factorization energies ϵ1, ϵ2, as

g = W ′(u1, u2)
W (u1, u2) , h = g′

2 + g2

2 − 2V + ϵ1 + ϵ2
2 . (9)

Finally, the intertwining operators B and B+ fulfill
the following factorization relations:

B+B = (H̃ − ϵ1) . . . (H̃ − ϵk), (10)
BB+ = (H − ϵ1) . . . (H − ϵk), (11)

i.e., the product of B+ and B are polynomials of the
Hamiltonians H and H̃.

3. Non-rational extensions of the
quantum harmonic oscillator
and their ladder operators

Let us consider the harmonic oscillator potential V =
1
2x

2 and the Hamiltonian H as

H = −1
2
d2

dx2 + 1
2x

2, (12)

whose eigenfunctions and eigenvalues are

ψn(x) =
√

1
2n

√
πn!e

− x2
2 Hn(x), En = n+ 1

2 ,

where n = 0, 1, 2, . . . and Hn(x) are Hermite poly-
nomials [27].

When eigenfunctions of a Hamiltonian are employed
as seed functions to generate its SUSY partner, the
results are rational extensions and the transformation
is called Krein-Adler transformation [6, 7, 28].

Moreover, rational extensions can also be built by
employing the polynomial non-normalizable solutions
of the Schrödinger equation

φm(x) = e
x2
2 Hm(x), E−m−1 = −

(
m+ 1

2

)
,

where m = 0, 1, 2, . . . , and Hm(x) = (−i)mHm(ix)
are the modified Hermite polynomials [29], which are
free of nodes for even m and possess a single node at
x = 0 for m odd. In the case of m even, the reciprocal
of these solutions are square-integrable functions [6].

We can generate non-rational extensions of the har-
monic oscillator potential using non-polynomial solu-
tions of the Schrödinger equation as seed functions
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in a SUSY transformation. Let us write down the
general solution of the stationary Schrödinger equa-
tion, with an arbitrary factorization energy denoted
by E = λ+ 1/2, as

u(x) = e− x2
2 [Hλ(x) + γHλ(−x)], (13)

where

Hλ(x) ≡ 2λΓ
( 1

2
)

Γ
( 1−λ

2
) 1F1

(
−λ

2 ; 1
2 ;x2

)

+
2λΓ

(
− 1

2
)

Γ
(
−λ

2
) x1F1

(
1 − λ

2 ; 3
2 ;x2

)
, (14)

are defined as Hermite functions [30, 31],

1F1(a; b; z) ≡ Γ(b)
Γ(a)

∞∑

n=0

Γ(a+ n)
Γ(b+ n)

zn

n! , (15)

is the confluent hypergeometric function, and γ is
a real parameter. If γ > 0, the solution will have an
even number of zeroes and for γ < 0, an odd number
of nodes.

3.1. First SUSY transformation
As the first non-rational extension of the harmonic
oscillator, we perform a second-order SUSY transfor-
mation where we add two new levels with factorization
energies −3/2 < E1 < 1/2 and E2 = E−2 = −3/2,
both below the ground state energy. We start by
choosing the seed solutions as

u
(1)
1 (x) = e− x2

2 [Hλ1(x) + γHλ1(−x)],

u
(1)
2 (x) = φ1(x), (16)

where λ1 = E1 − 1/2. To obtain a nodeless Wronskian
W (u(1)

1 , u
(1)
2 ), we take γ > 0. Notice that E1 is an

arbitrary energy between E0 = 1/2 and E−2 = −3/2.
By following the relation (8), we can define a set of
second-order intertwining operators B(1), B(1)+ which
satisfy the relations

H̃(1)B(1)+ = B(1)+H, (17)

and its adjoint. The SUSY partner potential is

Ṽ (1) = 1
2x

2 −
[
lnW (u(1)

1 , u
(1)
2 )

]′′
. (18)

Since u(1)
1 is an infinite series, the potential Ṽ (1) is

a non-rational extension of V . To find the eigenfunc-
tions of the Hamiltonian H̃(1), we use the operator
B(1)+ as

ψ̃(1)
n = B(1)+ψn√

(En − E1)(En − E2)
, n = 0, 2, 3, . . . (19)

Regarding both missing states of this extension

ψ̃
(1)
E1

∝ u
(1)
2

W (u(1)
1 , u

(1)
2 )

, ψ̃
(1)
E2

∝ u
(1)
1

W (u(1)
1 , u

(1)
2 )

, (20)

due to a stronger divergent behaviour of the Wron-
skian when |x| → ∞ than the solutions u

(1)
1 ,u(1)

2 ,
the Hamiltonian H̃(1) contains two new bounded
states ψ̃(1)

E1
, and ψ̃

(1)
E2

, so its spectrum is Sp{H̃(1)} =
{E−2, E1, En, n = 0, 1, 2, . . . }.

3.2. Second but equivalent SUSY
transformation

We can obtain the same Hamiltonian H̃(1), up to
an additive constant, with a different second-order
SUSY transformation. Let us choose the following
seed solutions:

u
(2)
1 (x) = ψ1(x),

u
(2)
2 (x) = e− x2

2 [Hλ2(x) + γHλ2(−x)], (21)

with the factorization energies E3 = E1, and E4 = E1 +
2, respectively. Note that λ2 = λ1 +2. Again, through
the relations (7) and (8), we can define second-order
differential operators B(2), B(2)+, which intertwine
a Hamiltonian H̃(2) with H as

H̃(2)B(2)+ = B(2)+H. (22)

The supersymmetric partner potential is

Ṽ (2) = 1
2x

2 −
[
lnW (u(2)

1 , u
(2)
2 )

]′′
. (23)

Since u(2)
2 is an infinite series, Ṽ (2) is a non-rational

extension of V . The eigenfunctions of its Hamiltonian
are

ψ̃(2)
n = B(2)+ψn√

(En − E3)(En − E4)
, n = 0, 2, 3, . . . , (24)

and the missing states

ψ̃
(2)
E3

∝ u
(2)
2

W (u(2)
1 , u

(2)
2 )

, ψ̃
(2)
E4

∝ u
(2)
1

W (u(2)
1 , u

(2)
2 )

. (25)

In this case, owing to the divergent asymptotic be-
haviour of the solution u(2)

2 when |x| → ∞, the missing
state ψ̃(2)

E3
is not normalizable, and since u(2)

1 converges,
the state ψ̃(2)

E4
is square-integrable. Therefore, the en-

ergy spectrum of H̃(2) is Sp(H̃(2)) = {E0, E3, E2, . . . }.
It is important to notice that the seed functions

u
(1)
1 , u

(1)
2 used to construct H̃(1) are related to the

seed solutions u(2)
1 , u

(2)
2 involved in H̃(2). The func-

tions u(1)
1 and u

(2)
2 satisfy u

(1)
2 =

√
2
√
πex

2
u

(2)
1 , and

a−a−u(2)
2 = 2λ(λ− 1)u(1)

1 , where a− is the annihila-
tion operator of the harmonic oscillator. Then, by
a direct substitution, it can be shown that

H̃(2) = H̃(1) + 2.

Thus, Ṽ (1) and Ṽ (2) are equivalent non-rational exten-
sions of the harmonic oscillator. Notice that due to
this equivalence, the eigenfunctions obtained by both
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transformations are the same but with eigenvalues dis-
placed. In the first extension, the ground state is the
missing state ψ̃(1)

E2
, which is also obtained by B(2)+ψ0.

Moreover, the missing state ψ̃(1)
E1

corresponds to the
missing state ψ̃(1)

E4
. Finally, relations (19) and (24) are

also equivalent as ψ̃(2)
n ∝ ψ̃

(1)
n−2, where n = 2, 3, 4, . . .

3.3. Ladder operators
Since both Hamiltonians H̃(1) and H̃(2) are equivalent,
we can simplify the notation by defining H̃(2) as H̃,
its eigenfunctions simply by ψ̃, the potential Ṽ (2) as
Ṽ , and E3 as ϵ. Be aware that 1/2 < ϵ < 5/2.

Now, we can define the ladder operators for the
SUSY extension H̃ as the product of the intertwining
operators related to the equivalent SUSY transforma-
tions as in [32], i.e.

L+ = B(1)+B(2), L− = B(2)+B(1). (26)

They satisfy the following commutation algebra

[H̃,L±] = ±2L±, (27)

and

[L−,L+] = (H̃ + 2 − E1)(H̃ + 2 − E2)

(H̃ + 2 − E3)(H̃ + 2 − E4)

− (H̃ − E1)(H̃ − E2)(H̃ − E3)(H̃ − E4). (28)

From the relation (27) and the diagram in Figure 1,
we can observe how these operators are two-step lad-
der operators. Furthermore, the commutation rela-
tion (28) indicates that these operators, together with
H̃, realize a polynomial Heisenberg algebra of third-
order [33], with a generalized number operator:

N4(H̃) = L+L−

= (H̃ − E1)(H̃ − E2)(H̃ − E3)(H̃ − E4). (29)

The kernel of the annihilation operator L− is com-
posed by the functions

KL− = {ψ̃E0 , ψ̃ϵ, ψ̃E3 , B
(1)+u

(2)
2 }. (30)

The first three elements of the kernel are eigenfunc-
tions of H̃ and the last one is a non-normalizable
solution of the corresponding Schrödinger equation.
By applying iteratively the operator L+ onto these
three eigenfunctions, we can construct a basis of
three subspaces of the Hilbert space, the direct sum
of the three Hilbert-subspaces compose the whole
Hilbert space (see Figure 2). Notice that ψ̃ϵ is an-
nihilated by L+, then the corresponding subspace
will be one-dimensional whereas the other two are
infinite-dimensinal subspaces.

.
Figure 1. Diagram of the mechanism of the two-step
ladder operators (26)

Figure 2. Three independent energy ladders that
make up the spectrum of H̃. This spectrum is com-
posed by two infinite energy ladders and a single-
element one.

4. Linearised coherent states and
their properties

Once we have defined the ladder operators L± in (26),
and clarify how they divide the Hilbert space into
two infinite subspaces (or energy ladders) plus a one-
dimensional subspace, we proceed to linearise them.
We focus on the two infinite subspaces since the con-
struction of the coherent state of the third subspace
is trivial. We define new ladder operators for each
infinite subspace as

l+ν = σν(H̃)L+, l−ν = σν(H̃ + 2)L−, (31)

where ν = 0, 3 is the index of the subspace. When
ν = 0, we refer to the subspace span{ψ̃0, ψ̃2, ψ̃4, . . . }
and, when ν = 3, we refer to the subspace
span{ψ̃3, ψ̃5, ψ̃7, . . . }. The operators σν are defined
as

σ0(H̃) = [(H̃ − E1)(H̃ − E3)(H̃ − E4)]−1/2,

σ3(H̃) = [(H̃ − E1)(H̃ − E2)(H̃ − E3)]−1/2. (32)
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From (27), and considering σν(x) a regular function,
we obtain the following useful relations.

σν(H̃)L+ = L+σν(H̃ + 2), σν(H̃)L− = L−σν(H̃ − 2);

L+σν(H̃) = σ(H̃ − 2)L+, L−σν(H̃) = σν(H̃ + 2)L−.

Using (29), it is direct to show that the operators l±ν
fulfill the linear commutation relation

[lν , l+ν ] = 21Hν , (33)

where 1Hν is the identity in the subspace Hν . There-
fore, on both Hilbert subspaces, the action of the
linearised ladder operators is

l−ν ψ̃ν+2n =
√

2nψ̃ν+2(n−1),

l+ν ψ̃ν+2n =
√

2(n+ 1)ψ̃ν+2(n+1), (34)

where n = 0, 1, 2, . . .
At this stage, we can define the linearised coher-

ent states as eigenstates of the linear annihilation
operator,

l−ν |zν⟩ = z |zν⟩ , ν = 0, 3, (35)

where z ∈ C. We can make the expansion

|zν⟩ =
∞∑

n=0
cn |ν + 2n⟩ , (36)

where ψ̃ν+2n(x) = ⟨x|ν + 2n⟩ are the eigenfunctions
of the SUSY Hamiltonian, and following the defini-
tion (35), we find that the explicit form of the nor-
malised coherent states is

|zν⟩ = e− |z|2
4

∞∑

n=0

(z/
√

2)n√
n!

|ν + 2n⟩ . (37)

Notice that we obtained a similar expression of the
standard coherent states but with the relevant differ-
ence that the expansion is in terms of eigenfunctions
of the supersymmetric partner Hamiltonian H̃ in the
subspace ν.

4.1. Completeness relation
An important property that the constructed coher-
ent states fulfill is that they form an over-complete
set on Hilbert subspaces, i.e., they solve an identity
expression [25]

1
2π

∫

C
|zν⟩ ⟨zν | d2z = 1Hν . (38)

4.2. Mean-energy values
The eigenvalue equation of the Hamiltonian H̃ is given
by

H̃ |ν + 2n⟩ =
(
ν + 1

2 + 2n
)

|ν + 2n⟩ , (39)

which leads to the energy expectation

⟨zν | H̃ |zν⟩ = ν + 1
2 + |z|2. (40)

We observe that we obtain the well-known quantity of
energy-growth corresponding to the oscillator coherent
states, this result is another direct consequence of the
linear commutation relation between the linearised
ladder operators.

4.3. Temporal stability
Another relevant property of the coherent states is
that they must remain coherent as they evolve in
time. By applying the time evolution operator U(t),
we obtain

U(t) |zν⟩ = e−i(ν+ 1
2 )t |zν(t)⟩ ,

i.e., our linearised coherent states fulfill this condition.
The period of evolution of these states is τ = π,
the half of the harmonic oscillator coherent states
(T = 2π). This means that in the phase-space, our
states need just the half of the time to return to the
same point with an acquired phase. This represents a
first clear indication of non-classical behaviour.

4.4. Evolution of the probability
densities

Let us analyse the time evolution of the probabil-
ity densities. For the classical coherent states, this
quantity is represented by a Gaussian wave packet
oscillating around the minimum of the potential. In
our case, we have:

ρz(z, x, t) = |⟨x|U(t) |zν⟩|2

= |
∞∑

n=0
e− |z|2

4
(ze−i2t/

√
2)n√

n!
ψ̃ν+2n(x)|2. (41)

In the Figure 3, we plot this evolution. We ob-
serve that each coherent state is composed by two
wavepackets with a back-and-forth motion resembling
a semi-classical behaviour, since each wavepacket looks
like a harmonic-oscillator coherent state. The two
wavepackets interfere with each other, and it is more
noticeable when they collide around x = 0. A par-
ity symmetry x → −x, is only apparent and cannot
be guaranteed for the SUSY extensions since the po-
tential Ṽ is only symmetric around x = 0 when the
parameter γ = 0 in the seed function u

(2)
2 .

4.5. Wigner distributions
An efficient tool to determine the nature of quan-
tum wave functions is the Wigner quasiprobability
distribution in the phase space, defined by

W (x, p) ≡ 1
2π

∫ ∞

−∞
ψ∗

(
x− y

2

)
ψ

(
x+ y

2

)
eipydy. (42)

In Figure 4, we show the corresponding Wigner
functions of coherent states for both subspaces. We
observe that the distributions possess regions with
non-positive values, which is a clear indication of the
non-classical behaviour or pure quantum nature of
our linearised coherent states.
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Figure 3. Time evolution of the probability densi-
ties (41) of the linearised coherent states (37) with
ϵ = 2, γ = 2, Top: ν = 0, z = 5, and Bottom: ν = 3,
z = 5.

4.6. Heisenberg uncertainty relation
First, we introduce two Hermitian quadrature opera-
tors

X1 = l+ν + l−ν
2 , X2 = l−ν − l+ν

2i , (43)

and the uncertainties

σ2
Xi

= ⟨X2
i ⟩zν − ⟨Xi⟩2

zν , i = 1, 2. (44)

Since the coherent states are eigenfunctions of l−, it
is found that these uncertainties follow the product

σ2
X1σ

2
X2 = 1

4 , (45)

indicating that they saturate the Heisenberg inequal-
ity.

5. Conclusions
We have found a family of equivalent non-rational ex-
tensions of the harmonic oscillator potential generated
through two different SUSY transformations involv-
ing general solutions of the stationary Schrödinger
equation in terms of Hermite functions. These SUSY

Figure 4. Wigner distributions of the linearised co-
herent states with ϵ = 2, γ = 2, z = 5, Top: ν = 0,
and Bottom: ν = 3.

transformations consisted in moving the first-excited
state to an arbitrary level between the ground and the
second-excited states, and, on the other hand, adding
two new levels below the ground state. We built
fourth-order differential ladder operators as the prod-
uct of the intertwining operators related to the equiva-
lent SUSY transformations. Then, we linearised these
ladder operators to have a linear commutation relation.
In addition, we realized that these operators divide
the entire Hilbert space of eigenfunctions into two
infinite energy ladders or Hilbert-subspaces, and one
single-element subspace. Then, we derived coherent
states of the linearised annihilation operator as eigen-
states. We uncovered that they are temporally stable
cyclic states with a period τ = π, and we showed
as well that they form an overcomplete set in each
subspace. Moreover, they present the same energy
growth as the oscillator coherent states. For the time
evolution of the probability densities, we obtained the
structure of two oscillating wave-packets, each one
with a period 2π, but the collective behaviour with
a period τ . For the Wigner functions, we observed
that they possess regions with non-positive values,
unveiling the quantum nature of these states. Finally,
by defining two Hermitian quadrature operators as in
the harmonic oscillator, we got the linearised coherent
states saturate the Heisenberg inequality. Therefore,
as we already mentioned, we conclude that our states
present both classical and quantum behaviour.
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Abstract. In this paper, we theoretically analyze the massless Dirac fermion dynamics in two-
dimensional monolayers of boron allotropes, 8B and 2BH − pmmn borophene, interacting with external
electric and magnetic fields. We study the effect of the Dirac cone tilt in these materials, which is
known as valley index, through the time evolution of probability density of coherent electron states as
well as their phase-space representation obtained via the Wigner function. Our results show that the
time evolution of the coherent electron states in these materials is valley dependent, which is reinforced
in the presence of external electric fields.

Keywords: Tilted Dirac cones, anisotropic Dirac materials, borophene, coherent states, Wigner
function.

1. Introduction
Coherent states (CSs) are minimal uncertainty
states [1, 2], so that they are considered the most
classical states in quantum mechanics. For this rea-
son, they arise in multiple branches of physics, mainly
in quantum optics [2] and information processes [3, 4].
Although the wave function provides interesting fea-
tures about any state, its experimental realization
in several quantum systems [3] requires a different
approach. In this sense, the Wigner function (WF)
constitutes one of the most important theoretical tools
for describing quantum systems in the phase-space
representation. The WF for a bidimensional system
is a quasi-probability distribution defined as [5–7]

W (r,p) = 1
(2π)2

∫ ∞

−∞
ei p·q Ψ

(
r − q

2

)
Ψ†
(

r + q
2

)
dq,

(1)
where Ψ(r) is the wave function, r = (x, y) and
p = (px, py) are two-dimensional vectors representing
the classical position and momentum values in phase
space, respectively; and q = (q1, q2) is a position vec-
tor needed in the integration process. In contrast
with the probability density of any quantum state,
the WF can take negative values, which indicates the
nonclassicality of a state and it is a sign of quantum-
ness [3, 8, 9]. Despite this, it has been implemented in
quantum optics [3, 4, 9–13], and recently also applied
in condensed matter for studying electron dynamics
in two-dimensional materials, particularly in graphene
under the presence of electromagnetic fields [3, 14–
26] as well as in strained honeycomb lattices with
dispersive pseudo-Landau-levels [27].

Following this trend, and since the number of two-
dimensional materials has been increasing recently,
our aim is to provide an adequate description in
phase space of the physics of certain quantum macro-

scopic phenomena, and their semi-classical represen-
tation, that occurs in condensed matter systems in
the context of valleytronics [28–30]. In this emerg-
ing research area, two-dimensional materials such as
8 − pmmn borophene [31–35], strained graphene [36],
Weyl semimetals [37–40], and the organic compound
α-(BEDT-TTF)2I3 [41–44], characterize due to the
presence of anisotropy and tilted Dirac cones at their
low-energy band structure [31, 32, 40, 43, 45–53].
The anisotropy and tilt can be intrinsic, as occurs
in borophene [31–34] and phosphorene [54, 55], or
induced by strain-engineering and external electric
fields, as observed in graphene [20, 36, 56–72].

In this work, we will focus on two-dimensional mono-
layers of boron allotropes, 8B and 2BH − pmmn
borophene [73], which have recently attracted at-
tention due to the boron capacity of flexible bond-
ing [47, 74, 75]. The geometry of two-dimensional
boron-based Dirac cone materials is much more com-
plicated than that of the pristine honeycomb structure
of graphene and, as a consequence, their electronic
and transport properties are valley dependent due
to the tilting of Dirac cones. These features moti-
vate the research of unusual effects by the intrinsic
Dirac cone tilt under the presence of external elec-
tric and magnetic fields. For instance, the study of
8 − pmmn borophene conductivity in the presence
of crossed electric and magnetic fields exhibits a clear
valley-dependence in magnetotransport properties and
polarization currents [33, 34]. It exists the possibility
of the realization of coherent electron states in the
laboratory and the development of electron quantum
optics [15, 76, 77] due to the recent advances in the
experimental reconstruction of the WF of electronic
systems in quantum tomography experiments.
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Thus, this paper is organized as follows. In Sec-
tion 2, we describe the Dirac Hamiltonian of mono-
layers of boron allotropes at low-energy regime in the
presence of external electric and magnetic fields, and
obtain the corresponding Landau states and energy
spectra. In Section 3, we discuss the construction of
the matrix ladder operators associated to the physical
system and also construct the corresponding coher-
ent electron states as eigenstates of the annihilation
operator. We also study the time evolution of the
probability density and the corresponding phase-space
representation. In Section 4, we present our conclu-
sions.

2. Electron dynamics in
monolayers of boron
allotropes

8 − pmmn borophene [31–34] and other two-
dimensional monolayers of boron allotropes, such as
8B and 2BH − pmmn borophene [73], present tilted
Dirac cones at their low electronic band structure, so
that their electronic properties are described by the
continuous Dirac Hamiltonian

H = ν (vtσ0py + vxσxpx + vyσypy), (2)

where the matrices σx,y are the Pauli matrices, while
σ0 is the identity matrix. The quantity ν, known as
valley index, allows us to transit from valley K (ν = 1)
to valley K’ (ν = −1). The terms vx and vy are
the anisotropic Fermi velocities and vt is the velocity
that quantifies the tilting of the Dirac cone. These
velocities depend on the material. For instance, the
velocity values {vx, vy, vt} in multiples of the Fermi
velocity vF = 1 for three different allotropes of boron
are shown in Table 1.

Boron allotrope vx vy vt

8 − pmmn 0.86 0.69 0.32
8B − pmmn 0.534 0.785 -0.345
2BH − pmmn 0.77 1.348 -0.386

Table 1. The velocities vx, vy and vt in units of the
Fermi velocity vF = 106 m/s, for three boron allotropes
in the low-energy single-particle effective model.

2.1. Effective Dirac-Weyl Hamiltonian
Now, let us consider massless Dirac fermions in a two-
dimensional boron monolayer under the presence of
an in-plane electric field E = E x̂ and a perpendicular
magnetic field B = Bẑ. These fields are included in
the Hamiltonian in Eq. (2) through the scalar and
vector potentials

U = −x E , A = xBŷ, (3)

to obtain the following eigenvalue equation in natural
units (e = −1 and ℏ = 1) [35, 42, 43]:

H ′Ψ̄(r)
= (ν [vxσxpx + (vtσ0 + vyσy)(py + xB)] + xEσ0) Ψ̄(r)
= EΨ̄(r). (4)

Taking advantage of the translational invariance along
the y-axis, so that Ψ̄(r) = exp(ikyy)Ψ(x), the eigen-
value equation in Eq. (4) becomes:
[(

E − xc E
v′

F

)
σ0 + i∂xσx −

(
xc ωB + 2kc

y

)

2 σy

]
Ψ(x) = 0,

(5)
where E = E− ν vtky, E = (E + ν vtB)

√
vx/vy, ωB =

2B, xc = x
√
vy/vx, kcy = ky

√
vy/vx, and v′

F = √
vxvy

is an effective Fermi velocity. By introducing the
parameter βν and the dimensionless quantity ξ,

βν = E
v′

FB
= vd
vy

+ ν
vt
vy
, ξ =

√
ωB
2

(
xc +

2kcy
ωB

)
,

(6)
with vd = E/B being the drift velocity, Eq. (5) can
be rewritten as
[(

ϵ0 −
√
ωB

2 βνξ
)
σ0+i

√
ωB

2
d
dξ σx−

√
ωB

2 ξσy

]
Ψ(ξ) = 0,

(7)
where ϵ0 = E/v′

F + kcyβν = (E + kyvd)/v′
F.

2.1.1. Energy spectrum
In order to find the solutions of the initial problem,
we proceed as follows [78, 79]. Multiplying by −iσx
to the left of Eq. (7), we get:
[√

ωB
2

d
dξ σ0 − i

(
ϵ0 −

√
ωB
2 βνξ

)
σxσ0

+ i

√
ωB
2 ξσxσy

]
Ψ(ξ) = 0. (8)

Differentiating the above expression with respect to
ξ, we obtain the following equation
[(

d2

dξ2 +
(√

2
ωB

ϵ0 − βνξ

)2

− ξ2

)
σ0 + K

]
Ψ(ξ) = 0,

(9)
where K = i (σxβν + σxσy) is a complex symmetric
matrix. The solutions of Eq. (9) can be expressed
as Ψ(ξ)η = ψη(ξ)χη, where χη fulfills the eigenvalue
equation Kχη = ηχη, and ψη(ξ) is a scalar function
that satisfies the differential equation
[

d2

dξ2 +
(√

2
ωB

ϵ0 − βνξ

)2

− ξ2 + η

]
ψη(ξ) = 0.

(10)
In order to simplify the above equation, the variable
ζ is defined as

ζ = ξ(1 − β2
ν)1/4 +

√
2
ωB

βν ϵ0
(1 − β2

ν)3/4 , (11)
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Figure 1. Energy spectrum in Eq. (15) with ky = 0 and B = 1 as a function of the electric field E for 8B − pmmn
borophene (a, b) and 2BH − pmmn (c, d) in each Dirac point (ν = ±1).

where βν must fulfill the condition |βν | < 1 for keeping
real values of ζ. Hence, we obtain the Weber equation
[

d2

dζ2 − ζ2 + 2ϵ2
0

ωB(1 − β2
ν)3/2 + η

(1 − β2
ν)1/2

]
ψη(ζ) = 0.

(12)
On the other hand, the eigenvalues η of the matrix

K turn out to be σ(K) = {ηk = (−1)k(1 − β2
ν)1/2}

with k = 1, 2, while the corresponding normalized
eigenvectors are given by

χη1 = 1√
2

( √
C+

−i√C−

)
, χη2 = 1√

2

(
−√

C−
i
√
C+

)
,

(13)

where C± = 1±
√

1 − β2
ν . Substituting the eigenvalues

ηk in Eq. (12) and taking ψη(ζ) = exp
(
−ζ2/2

)
fη(ζ),

one gets the following ODE:

f ′′
η (ζ) − 2 ζf ′

η(ζ) =
(

1 − (−1)k − 2ϵ2
0/ωB

(1 − β2
ν)3/2

)
fη(ζ),

(14)
with k = 1, 2. By solving the above ODE, the energy
spectrum turns out to be [80] (see Figure 1):

En,ky
= sgn(n)√vxvy(1−β2

ν)3/4√ωB|n|−ky vd. (15)

The Landau energy levels in Eq. (15) depend on valleys
K and K’ [43] via the amount βν in Eq. (6), which
indicates whether the orbits are closed (|βν | < 1) or
opened (|βν | ≥ 1) [43, 80, 81]. Also, the critical values
of vcd = Ec for which βν = 1 depend on each tilted
anisotropic Dirac material (see again Figure 1). For
instance, in Table 2 we summarize the critical values
Ec in valleys K and K’ for three monolayers of boron
allotropes.

Borophene monolayer Ec (K) Ec (K’)

8 − pmmn 0.37 1.01
8B − pmmn 1.13 0.44
2BH − pmmn 1.734 0.962

Table 2. The electric field critical value Ec = (vy −
νvt)B for three boron allotropes according to the valley
index ν. The data for 8 − pmmn borophene were
obtained from [35].
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Finally, the average velocity in the y-direction is
given by [82, 83]

⟨vy⟩ = ∂En,ky
∂ky

= −vd =
[

E × B
B2

]

y

, (16)

that means the Dirac fermions move with an average
velocity vd in the negative y-direction.

2.1.2. Eigenstates
The eigenstates of the Hamiltonian in Eq. (4) can be
written as

Ψn(x) = [(1 − δ0n)χη1ψn−1(x) + λχη2ψn(x)]√
2(1−δ0n)

= MΦn(x), (17)

where δmn denotes the Kronecker delta, the band
index λ indicates the conduction (λ = 1) or (λ = −1)
valence band, and

M =
√

1
2

( √
C+ i

√
C−

−i
√
C−

√
C+

)
, (18a)

Φn(x) = 1√
2(1−δ0n)

(
(1 − δ0n)ψn−1(x)

iλψn(x)

)
. (18b)

The components of the pseudo-spinor Φn(x) are given
by the wave functions [79]

ψn(ζn) = (1 − β2
ν)1/8

√
n!

(
ωBvy
2πvx

)1/4
Dn(

√
2 ζn), (19)

where Dn(·) are the parabolic cylinder functions with
n a non-negative integer, and the quantity ζn is given
by Eq. (11) with ϵ0 = (En,ky

+ kyvd)/√vxvy.

3. Coherent electron states
We start to obtain the CSs by first considering the
set of ladder operators A± given in [35] and acting on
the Hilbert basis Φn(x) = M−1Ψn(x), namely,

A+Φn(ζn) =
√

2(1−δ0n)
√
n+ 1 Φn+1(ζn+1), (20a)

A−Φn(ζn) =
√

2(1−δ1n)√nΦn−1(ζn−1), (20b)

and whose commutation relation reads

[A−,A+]Φn(x) = c(n)Φn(x), c(n) =





1, n = 0,
3, n = 1,
2, n > 1.

(21)
Now, we define the CSs as eigenstates of the anni-

hilation operator A−:

A−Φz(x) = zΦz(x), z ∈ C, (22)

with complex eigenvalue, where

Φz(x) =
∞∑

n=0
anΦn(x). (23)

Using Eq. (20a), the explicit expression for the CSs
is given by

Φz(x) = Nα

[
Φ0(x) +

∞∑

n=1

√
2αn√
n!

Φn(x)
]
, (24)

where N −2
α = 2 exp

(
|α|2

)
− 1 and α = z/

√
2 =

|α| exp (iφ). Here, the physical meaning of |α| is
that it is the oscillation amplitude while the phase
angle φ is identical to the angular rotation in the
classical motion. It is worth to mention that the
procedure described allows to obtain the so-called
Barut-Girrardello CSs. However, this is not the only
way to build CSs. In [27], the displacement-operator
method has been implemented in order to construct
such states in other honeycomb lattices.

Finally, defining the matrix operators

B− ≡ MA−M−1, B+ ≡ MA+M−1, (25)

whose actions on the Landau states Ψn(x) in Eq. (17)
reads as

B+Ψn(ζn) =
√

2(1−δ0n)
√
n+ 1 Ψn+1(ζn+1), (26a)

B−Ψn(ζn) =
√

2(1−δ1n)√nΨn−1(ζn−1), (26b)

it is possible to verify that the states Ψα(x) = MΦz(x)
are eigenfunctions of the annihilation operator B−

with the same eigenvalue z. Therefore, the states
Ψ̄α(r) = exp (ikyy) Ψα(x) are the coherent electron
states of the system. In addition, the commutation
relation in Eq. (21) is also fulfilled writing B± and Ψn

instead of A± and Φn, respectively.

3.1. Overcompleteness and resolution to
the identity

The CSs satisfy the following relation

|⟨Ψ̄α′ |Ψ̄α⟩| =

∣∣∣∣∣
2 exp(α′∗α) − 1√

(2 exp(|α|2) − 1)(2 exp(|α′|2) − 1)

∣∣∣∣∣
̸= δ(α′ − α). (27)

Since the coherent electron states are not orthogonal
for α ̸= α′, we say the set of such states is overcom-
plete.

Besides, these CSs satisfy the following relation
that can be considered as an unusual resolution to the
identity:

|Ψ̄0⟩⟨Ψ̄0|
2 +

∫

C

dρ(α)
π

|Ψ̄α⟩⟨Ψ̄α| = I+, (28)

where I+ denotes the identity operator in the Hilbert
space for Landau states in the conduction band, and
dρ(α) is a positive measure defined as

dρ(α) =
2 exp

(
|α|2

)
− 1

2 exp (−|α|2) |α| d|α| dφ. (29)
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Figure 2. Occupation number distribution Pα(n)
in Eq. (30) for the coherent electron states Ψ̄α for
different values of µ = |α|2.

3.2. Occupation number distribution
The CSs follow a Poisson-like distribution with mean
µ = |α|2, according to the occupation number distri-
bution

Pα(n) = |⟨Ψ̄n|Ψ̄α⟩| = 1
2 exp (µ) − 1

{
1, n = 0,
2µn

n! , n > 0,
(30)

which gives the probability of a CS of being in an
Landau state Ψ̄n (see Figure 2).

3.3. Mean energy value
On the another hand, the expectation value of the
energy in the CS basis is given by

⟨H⟩α = N 2
α

[
kyvd

(
1 − 2 exp

(
|α|2

))
+ 2√

vxvy ωB

× (1 − β2
ν)3/4

∞∑

n=1
sgn(n) |α|2n

n!
√

|n|
]
. (31)

The mean group velocity of the CSs is obtained as

⟨vy⟩α = ∂⟨H⟩α
∂ky

= −vd, (32)

which agrees with Eq. (16).

3.4. Time evolution of the wave packet
Now, let us consider the time-evolution operator
U(t) = exp(−iHt) applied on the expansion of CSs
in terms of Landau states Ψ̄n(r). Hence, the time-
dependent coherent electron states are:

Ψ̄α(r, t) = Nα exp (ikyy)M
(

ψα,1(x, t)
i λψα,2(x, t)

)
,

(33)

where

ψα,1(x, t) =
∞∑

n=1

αne−iEnt

√
n!

ψn−1(x), (34a)

ψα,2(x, t) =
∞∑

n=0

αne−iEnt

√
n!

ψn(x). (34b)

The time-dependent probability density |Ψ̄α(r, t)|2
is

|Ψ̄α(r, t)|2 = N 2
α

{
|ψα,1(x, t)|2 + |ψα,2(x, t)|2

− 2λβνℜ
[
ψ∗
α,1(x, t)ψα,2(x, t)

] }
, (35)

where ℜ(z) denotes the real part of a complex number
z.

Figure 3 shows the time evolution of the probability
distribution of the CSs for 8B and 2BH − pmmn
borophene. We can see that in both cases, the density
probability in valley K evolves faster than that in
valley K’. This means that Dirac fermions take less
time to complete a loop around the equilibrium point.
The function |Ψ̄α(r, t)|2 shows maximum values close
to the turning points in the x-axis. Besides, with the
values chosen for the parameters α = 4i, ky = 0 and
B = 1, the probability density of the CSs with ν = −1
for 8B − pmmn borophene shows a different behavior
in time in comparison to the other cases. This is
related to the fact for the electric field considered
(E = 0.25), the corresponding energy spectrum is
near to collapse, indicating the classical orbits that
the charge carriers in valley K’ follow are more open
compared with those in K for 8B − pmmn borophene,
and even for those ones in 2BH − pmmn borophene.

3.5. Obtaining of the time-dependent
Wigner function for coherent
electron states

To calculate the Wigner matrix (WM) [84] for the
coherent states in Eq. (33) in valleys K and K’, we
substitute them into the integral matrix representation
in Eq. (1) to get [35]:

Wα(r,p) = MWα(r,p)M†. (36)

Thus, the trace of this matrix provides us an expres-
sion of the time-dependent WF of the coherent states:

Tr[Wα(r,p, t)] = N 2
α δ (py − ky)

{
W11(χ, t)

+W22(χ, t) − 2λβνℜ[W12(χ, t)]
}
, (37)

where the components W11, W22 and W12 are the cor-
responding Wigner functions of the terms in Eq. (34)
and their product, and that in general involve sums
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Figure 3. Time evolution of the probability density |Ψα(r, t)|2 in Eq. (35) with ky = 0, B = 1, α = 4i, E = 0.25
and λ = 1 for 8B − pmmn borophene (a, b) and 2BH − pmmn borophene (c, d) in each Dirac point (ν = ±1).

of functions of the form (see [35] for more details)

Wu,v(χn,m) = 1
π

exp
(

−1
2 |χn,m|2 + i(ζn − ζm)s

)

×





(−1)u
√

u!
v!χ

v−u
n,mL

v−u
u

(
|χn,m|2

)
, if u ≤ v,

(−1)v
√

v!
u!χ

∗u−v
n,m Lu−v

v

(
|χn,m|2

)
, if u ≥ v,

(38)

with Lmn (·) denoting the associated Laguerre polyno-
mials, and

χn,m = ζn + ζm√
2

+ i
√

2 s, χn ≡ χn,n, (39a)

s =
(
1 − β2

ν

)−1/4
√

2vx
ωBvy

px. (39b)

The time evolution of the WM trace for the CSs is
shown in Figures 4 and 5 for 8B and 2BH − pmmn
borophene, respectively. In both cases, we observe
that the WF in valley K propagates faster than in
valley K’. As the state evolves in time, the trace of the
WM takes negative values, which is an indication of
the increasing of the CS quantumness and also of the
uncertainty relations, as is discussed in [35]. For larger
times, the WM traces become identical to that of the
Landau state with n equal to the integer part of |α|2,

in agreement to the number occupation distribution
in Eq. (30).

3.5.1. Period of motion
Now, in order to provide an approximate period τ
for the CSs, we proceed as follows [85]. First, we
calculate the mean energy ⟨H⟩α for the CSs Ψ̄α(r).
Then, setting the eigenvalue z, we compute the energy
interval in which ⟨H⟩α lies, namely, Ej,ky

< ⟨H⟩α <
Ej+1,ky

. Thus, the approximate period is determined
as:

τ = 2π
∆E = 2π

Ej+1,ky − Ej,ky

, (40)

that will be different for each valley since the energy
spectrum depends on the tilting parameter ν. For
instance, for the CSs with α = 4i and the same values
used in Figures 3, 4 and 5, we have E15 < ⟨H⟩α < E16.
Note that ⟨H⟩α is bounded by the Landau level with
n = |α|2 = 16. Thus, the respective periods are
reported in Table 3.

The period τ in Eq. (40) increases as ∆E → 0 close
to the electric field critical value Ec, since a Dirac
fermion takes a longer time to complete a loop an
opened orbit (see red and blue curves in Figure 6).
In contrast, the orbits are closed for more separated
energy levels resulting in a shorter period τ (see green
curve in Figure 6).
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(a) t = 0, ν = 1 (b) t = 0, ν = −1
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(e) t = 30, ν = 1 (f) t = 30, ν = −1
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Figure 4. Time evolution of the trace of the Wigner matrix Wα(r,p) in Eq. (37) for different values of t in each
Dirac point (ν = ±1) of 8B − pmmn borophene. B = 1, ky = 0, α = 4i, {vx, vy, vt} = {0.534, 0.785,−0.345},
E = 0.25, and λ = 1. In the figure labels, lB = 1/

√
B.
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(c) t = 15, ν = 1 (d) t = 15, ν = −1
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Figure 5. Time evolution of the trace of the Wigner matrix Wα(r,p) in Eq. (37) for different values of t in each
Dirac point (ν = ±1) of 2BH − pmmn borophene. B = 1, ky = 0, α = 4i, {vx, vy, vt} = {0.77, 1.348,−0.380},
E = 0.25, and λ = 1. In the figure labels, lB = 1/

√
B.
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Figure 6. A generic honeycomb lattice interacts with
crossed electric and magnetic fields directed along the
x- and z-directions, respectively. In absence of electric
field E, a non-relativistic classical charged particle
performs a circular trajectory (green curve), while if
the strength E increases, the trajectory becomes into
a trochoid (red and blue curves). The drift velocity
vd = E × B/B2 is directed along the y-direction.

Borophene monolayer τ+ (K) τ− (K’)

8 − pmmn 34.165π 14.566π
8B − pmmn 17.388π 32.642π
2BH − pmmn 11.012π 13.200π

Table 3. Valley-dependent period τ for the CSs with
eigenvalue α = 4i = z/

√
2 in three boron allotropes.

The data for 8 − pmmn borophene were obtained
from [35].

3.6. Discussion
Anisotropic and tilted Dirac cone materials, such
as 8B and 2BH − pmmn borophene, possess valley-
dependent electronic properties under the interaction
with crossed electric and magnetic fields. The effective
Hamiltonian depends on two anisotropic velocities and
one tilt velocity (see Eq. (2)). In the case in which
these materials interact with external crossed electric
and magnetic fields (see Eq. (4)), it is possible to ob-
tain the solutions to the physical problem in a simple
algebraic way (see Eq. (15) and (17)).

We have constructed the CSs Ψ̄α(r) as a linear
combination of the Landau eigenfunctions Ψ̄(r) of the
Hamiltonian in Eq. (4), that also be eigenfunction of a
matrix ladder operator B− with a complex eigenvalue
z. As the coherent electron states evolve in time, their
probability density clearly shows maximum values
only around the turning points in the x-axis, in which
momentarily the velocity of charge carriers reduces.
In turn, the emergence of negative values in the trace

of the Wigner matrix for longer times is related to
the increasing uncertainties of the position and mo-
mentum, as is studied in [35], in agreement to the
probability distribution Eq. (30). Also, the increasing
of the electric field to a critical value can delay the
time-evolution of CSs in one of the valleys, allowing
us to distinguish the Dirac fermions of one valley from
those of another (see Figures 3, 4 and 5).

In Figure 6, we have showed the classical picture of
a (valley-independent) non-relativistic charge carrier
that follows a closed trajectory in the xy-plane in
presence of an external magnetic field B along the
z-direction. When an electric field E is applied along
the x-axis, the trajectory becomes into a trochoid with
velocity vd directed to the y-direction. In contrast, we
observe that in the quantum picture of our problem,
due to the Lorentz transformation into the reference
frame and the energy [43], as well as the valley in-
dex, there is a factor (1 − β2

ν)3/4 that modifies the
spacing between two adjacent Landau levels, and as
a consequence also the period of motion in Eq. (40).

4. Conclusions
We studied the dynamics of massless Dirac fermions in
two bidimensional monolayers of boron allotropes un-
der the interaction with crossed external electric and
magnetic fields. We analyzed the effect of the Dirac
cone tilt in the time evolution of probability density of
coherent electron states as well as the corresponding
Wigner function. We conclude that the time evolu-
tion of the coherent electron states in these materials
is valley dependent, and the presence of an in-plane
external electric field reinforces such a dependency.

We consider that the findings here presented may
contribute to the understanding of the effects of the
tilting of the Dirac cones 8B and 2BH − pmmn
borophene on the charge carrier dynamics under
the interaction of electromagnetic fields, with which
these materials could be considered as viable val-
ley splitters in experimental applications. Besides,
the coherent state description developed through the
phase-space representation may provide a satisfac-
tory semi-classical description of similar quantum
valley-dependent phenomena that occur in other tilted
anisotropic Dirac materials interacting with external
electromagnetic fields.
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Abstract.
In this work we report on a 3-body system in a d−dimensional space Rd with a quadratic harmonic

potential in the relative distances rij = |ri − rj | between particles. Our study considers unequal masses,
different spring constants and it is defined in the three-dimensional (sub)space of solutions characterized
(globally) by zero total angular momentum. This system is exactly-solvable with hidden algebra sℓ4(R).
It is shown that in some particular cases the system becomes maximally (minimally) superintegrable.
We pay special attention to a physically relevant generalization of the model where eventually the
integrability is lost. In particular, the ground state and the first excited state are determined within
a perturbative framework.

Keywords: Three-body system, exact-solvability, hidden algebra, integrability.

1. Introduction
The two-body harmonic oscillator, i.e. two particles
with masses m1 and m2 interacting via the transla-
tional invariant potential V ∝ |ri − rj |2, appears in
all textbook in Classical Mechanics. In an arbitrary
d−dimensional Euclidean space Rd this system ad-
mits separation of variables in the center-of-mass and
relative coordinates as well as exact solvability. The
relevance of such a system is obvious: any scalar po-
tential U = U(|ri − rj |) can be approximated by the
two-body harmonic oscillator. In this case, the center-
of-mass and relative coordinates are nothing but the
normal coordinates. Therefore, in the n-body case of
n > 2 particles interacting by a quadratic pairwise
potential it is natural to ask the question about the
existence of normal coordinates and the correspond-
ing explicit exact solutions. Interestingly, even for
the three-body case n = 3 a complete separation of
variables can not be achieved in full generality.

Starting in 1935, the quantum n−body problem in
R3 was studied by Zernike and Brinkman [1] using
the so-called hyperspherical-harmonic expansion. Two
decades later, this method possessing an underlying
group-theoretical nature was then reacquainted and
refined in the papers by Delves [2] and Smith [3].
Nevertheless, in practice the success of the method
is limited to the case of highly symmetric systems,
namely identical particles with equal masses and equal
spring constants.

In a previous work [4], the most general quantum
system of a three-body chain of harmonic oscillators,
in Rd, was explored exhaustively. For arbitrary masses
and spring constants this problem possesses spherical
symmetry. It implies that the total angular momen-
tum is a well-defined Observable which allows to re-
duce effectively the number of degrees of freedom in

the corresponding Schrödinger equation governing the
states with zero angular momentum. In the sector of
vanishing angular momentum, it turns out that this
three-body quantum system is exactly solvable. The
hidden algebra sℓ(4,R) responsible of the exact solv-
ability was exhibited in [4] using the ρ-representation.
In the present work we consider a physically relevant
generalization of the model where eventually the inte-
grability properties are lost. Again, in our analysis we
assume a system of arbitrary masses and spring con-
stants with the total angular momentum identically
zero.

In the current study we revisited the algebraic struc-
ture and solvability of the quantum 3-body quantum
oscillator system in the special set of coordinates ap-
pearing in [5], [6]. Afterwards, a physically motivated
generalization of the model is considered. The goal
of the paper is two-fold. Firstly, in the (sub)-space
of zero total angular momentum we will describe the
reduced Hamiltonian operator which admits a hidden
sℓ(4;R) algebraic structure, hence, allowing exact-
analytical eigenfunctions. Especially, at any d ≥ 1 it
is demonstrated the existence of an exactly-solvable
model that solely depends on the moment of inertia
of the system. This model, admits a quasi-exactly-
solvable extension as well.

Secondly, we explore a physically relevant general-
ization of the model. Approximate solutions of the
problem are presented just for the case of equal masses
in the framework of standard perturbation theory and
complemented by the variational method. The first
excited state, thus the energy gap of the system, is
briefly discussed.
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2. Generalities
The quantum Hamiltonian in Rd (d > 1) for three non-
relativistic spinless particles with masses m1,m2,m3
and translationally invariant potential is given by

H = −
3∑

i=1

1
2mi

∆(d)
i + V (r12, r13, r23) , (1)

(ℏ = 1) see e.g. [4, 5], where ∆(d)
i stands for the

individual Laplace operator of the ith mass with
d−dimensional position vector ri, and

rij = |ri − rj | , (2)

(j = 1, 2, 3) is the relative mutual distance between the
bodies i and j. The eigenfunctions of (1) which solely
depend on the ρ-variables, ρij = r2

ij , are governed by
a three-dimensional reduced Hamiltonian [4]

Hrad ≡ −∆rad + V (ρ) , (3)

where

∆rad = 2
µ12

ρ12 ∂
2
ρ12 + 2

µ13
ρ13 ∂

2
ρ13

+ 2
µ23

ρ23 ∂
2
ρ23 + 2(ρ13 + ρ12 − ρ23)

m1
∂ρ13, ρ12

+2(ρ13 + ρ23 − ρ12)
m3

∂ρ13, ρ23 + 2(ρ23 + ρ12 − ρ13)
m2

∂ρ23, ρ12

+ d

µ12
∂ρ12 + d

µ13
∂ρ13 + d

µ23
∂ρ23 , (4)

c.f. [5], and
µij = mimj

mi +mj
,

denotes a reduced mass. The operator (3) de-
scribes three-dimensional (radial) dynamics in vari-
ables ρ12, ρ13, ρ23. This operator Hrad is, in fact,
equivalent to a Schrödinger operator, see [4]. We
call it three-dimensional (radial) Hamiltonian. All the
d−dependence in (3) occurs in the coefficients in front
of the first derivatives.

2.1. Case of identical particles:
τ-representation

Now, let us consider the case of identical masses

m1 = 1 ; m2 = 1 ; m3 = 1 ,

thus, µij = 1
2 , and the operator (4) is S3

permutationally-invariant in the ρ-variables. It sug-
gests the change of variables ρ ↔ τ where

τ1 = ρ12 + ρ13 + ρ23 ,

τ2 = ρ12 ρ13 + ρ12 ρ23 + ρ13 ρ23 ,

τ3 = ρ12 ρ13 ρ23 ,

(5)

are nothing but the lowest elementary symmetric poly-
nomials in ρ-coordinates.

In these variables (5), the coefficients of the operator
∆rad are also polynomials, hence, this operator is
algebraic in both representations. Explicitly,

∆rad = 6 τ1∂
2
1 + 2τ1(7τ2 − τ2

1 )∂2
2 + 2τ3(6τ2 − τ2

1 )∂2
3

+ 24 τ2∂
2
1,2 + 36τ3∂

2
1,3 + 2 [9τ3τ1 + 4τ2(τ2 − τ2

1 )]∂2
2,3

+ 6 d ∂1 + 2 (2d+ 1)τ1 ∂2 + 2 [(d+ 4)τ2 − τ2
1 ] ∂3

(6)
∂i ≡ ∂τi , i = 1, 2, 3.

3. Laplace-Beltrami operator
Now, as a result of calculations it is convenient to
consider the following gauge factor

Γ4 =
(S2

△)2−d

M I , (7)

M = m1 +m2 +m3, where

S2
△ = 2ρ12 ρ13 + 2ρ12 ρ23 + 2ρ23 ρ13 − ρ2

12 − ρ2
13 − ρ2

23
16 ,

and

I = m1m2 ρ12 + m1m3 ρ13 + m2m3 ρ23
M

,

possess a geometrical meaning. The term S2
△ is the

area (squared) of the triangle formed by the position
vectors of the three bodies whilst the term I is the
moment of inertia of the system with respect to its
center of mass. The radial operator Hrad (3) is gauge-
transformed to a truly Schrödinger operator [4],

HLB ≡ Γ−1 Hrad Γ = −∆LB + V + V (eff) , (8)

here ∆LB stands for the Laplace-Beltrami operator

∆LB(ρ) =
√

| g | ∂µ
1√
| g |

gµν∂ν ,

(ν, µ = 1, 2, 3) and ∂1 = ∂
∂ρ12

, ∂2 = ∂
∂ρ13

, ∂3 = ∂
∂ρ23

.
The corresponding co-metric in ∆LB(ρ) reads

gµν =




2
µ12

ρ12
(ρ13+ρ12−ρ23)

m1
(ρ23+ρ12−ρ13)

m2

(ρ13+ρ12−ρ23)
m1

2
µ13

ρ13
(ρ13+ρ23−ρ12)

m3

(ρ23+ρ12−ρ13)
m2

(ρ13+ρ23−ρ12)
m3

2
µ23

ρ23



.

Its determinant

| g | ≡ Detgµν = 32 M2

m2
1m

2
2m

2
3

I S2
△ , (9)

admits factorization and is positive definite. The term
V (eff) denotes an effective potential

V (eff) = 3
8

1
I + (d− 2)(d− 4)

32
M I

m1 m2 m3 S2
△
,

which depends on the two variables I and S2
△ alone.

Thus, the underlying geometry of the system emerges.
The classical analogue of the quantum Hamilto-

nian operator (8) describes an effective non-relativistic
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Figure 1. 3-body chain of harmonic oscillators.

classical particle in a three-dimensional curved space.
Explicitly, the Hamiltonian function takes the form

H(classical)
LB = gµν Πµ Πν + V , (10)

where Πµ , µ = 12, 23, 13 are the associated canon-
ical conjugate momenta to the ρ-coordinates. The
Hamilton-Jacobi equation, at vanishing potential
V = 0 (free motion), is clearly integrable. However,
a complete separation of variables is absent in the
ρ-representation. The Poisson bracket between the ki-
netic energy T = gµν Πµ Πν and the linear function
in momentum variables

L
(c)
1 = (ρ13−ρ23)Π12+(ρ23−ρ12)Π13+(ρ12−ρ13)Π23 ,

is zero.

4. Three body harmonic oscillator
system

In the spectral problem with Hamiltonian (3) we take
the harmonic potential

V (HO)(ρ) = 2ω2
[
ν12 ρ12 + ν13 ρ13 + ν23 ρ23

]
, (11)

ω > 0 is frequency and ν12, ν13, ν23 > 0 are con-
stants with dimension of mass. This problem can
be solved exactly [4]. In particular, in ρ-space the
reduced operator (3) possesses multivariate polyno-
mial eigenfunctions, see below. We call the above
potential V (HO)(ρ) the 3-body oscillator system. We
mention that in the case d = 1 (3 particles on a line),
the corresponding spectral problem was studied in
the paper [7]. In the current report, we analyze the
d−dimensional case with d > 1.

In r-variables, ρ = r2, the potential (11) can be
interpreted as a three-dimensional (an)isotropic one-
body oscillator. It is displayed in Figure 1. The
configuration space is a subspace of the cube R3

+(ρ)
in E3 ρ-space. The ρ-variables must obey the “tri-
angle condition” S2

△ ⩾ 0, namely the area of the
triangle formed by the position vectors of the bodies
is always positive.

4.1. Solution for the ground state
In the harmonic potential (11), the ground state eigen-
function reads

Ψ(HO)
0 = e−ω (a1 µ12 ρ12 + a2 µ13 ρ13 + a3 µ23 ρ23) , (12)

where the parameters a1, a2, a3 ≥ 0 are introduced
for convenience. They define the spring constants, see
below. The associated ground state energy

E0 = ω d (a1 + a2 + a3) , (13)

is mass-independent. There exists the following alge-
braic relations

ν12 = a2
1 µ12 + a1 a2

µ12 µ13
m1

+ a1 a3
µ12 µ23
m2

− a2 a3
µ13 µ23
m3

,

ν13 = a2
2 µ13 + a1 a2

µ12 µ13
m1

+ a2 a3
µ13 µ23
m3

− a1 a3
µ12 µ23
m2

,

ν23 = a2
3 µ23 + a1 a3

µ12 µ23
m2

+ a2 a3
µ13 µ23
m3

− a1 a2
µ12 µ13
m1

.

5. Lie algebraic structure
Using the previous function Ψ(HO)

0 (12) as a gauge
factor, the transformed Hamiltonian Hrad (3)

h(algebraic) ≡
(
Ψ(HO)

0
)−1 [−∆rad + V − E0] Ψ(HO)

0
(14)

is an algebraic operator, i.e. the coefficient are poly-
nomials in the ρ-variables. The E0 is taken from
(13).

In addition, this algebraic operator (14) is of Lie-
algebraic nature. It admits a representation in terms
of the generators

J −
i = ∂

∂yi
,

J 0
ij = yi

∂

∂yj
,

J 0(N) =
3∑

i=1
yi

∂

∂yi
−N ,

J +
i (N) = yi J 0(N) = yi




3∑

j=1
yj

∂

∂yj
−N


 ,

(i, j = 1, 2, 3) of the algebra sℓ(4,R), see [8, 9] here N
is a constant. The notation

y1 = ρ12 , y2 = ρ13 , y3 = ρ23 ,

was employed for simplicity. If N is a non-negative
integer, a finite-dimensional representation space takes
place,

VN = ⟨yn1
1 yn2

2 yn3
3 | 0 ≤ n1 + n2 + n3 ≤ N⟩ . (15)
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6. Relation with the Jacobi
oscillator

Now, we can indicate an emergent relation between
the harmonic potential (11) and the Jacobi oscillator
system

H(Jacobi) ≡
2∑

i=1

[
− ∂2

∂zi∂zi
+ 4 Λi ω2 zi · zi

]
, (16)

where ω > 0, Λ1, Λ2 ≥ 0, and

z1 =
√

m1 m2
m1 +m2

(r1 − r2)

z2 =

√
(m1 +m2)m3
m1 +m2 +m3

(
r3 − m1 r1 +m2 r2

m1 +m2

)

are standard Jacobi variables, see e.g. [10]. This
Hamiltonian describes two decoupled harmonic os-
cillators in flat space, see [6]. Consequently, it is an
exactly-solvable problem. The complete spectra and
eigenfunctions can be calculated by pure algebraic
means.

The solutions of the Jacobi oscillator that solely
depend on the Jacoby distances zi = |zi| are governed
by the operator,

H(Jacobi)
rad =

2∑

i=1

[
− ∂2

∂zi∂zi
− (d− 1)

zi

∂

∂zi

]

+ 4 Λ1 ω
2 z2

1 + 4 Λ2 ω
2 z2

2 .

(17)

In this case, the associated hidden algebra is given
by sl

⊗ (2)
2 which acts on the two-dimensional space

(z1, z2).
In particular, the eigenfunctions of H(Jacobi) (16)

can be employed to construct approximate solutions
for the n-body problem, for this discussion see [10].

Assuming any of the two conditions
m2
m3

= ν12
ν13

; m1
m2

= ν13
ν23

,

in the harmonic oscillator potential V (HO) (11), we
obtain

U
(HO)
J ≡ 4 Λ1 ω

2 z2
1 + 4 Λ2 ω

2 z2
2

= 2ω2
[
ν12 ρ12 + ν13 ρ13 + ν23 ρ23

]

= V (HO)

(18)

with
Λ1 = Λ2 = m1 +m2 +m3

2m1 m3
ν13 ,

hence, in this case the three-body oscillator poten-
tial coincides with the two-body Jacobi oscillator
potential. In fact, imposing the singly condition
m2 ν13 = m3 ν12 the equality (18) is still valid but
Λ1 ̸= Λ2 and the system is not maximally superinte-
grable any more.

6.1. Identical particles: hyperradious
A remarkable simplification occurs in the case of three
identical particles with the same common spring con-
stant, namely

m1 = m2 = m3 = 1 , a1 = a2 = a3 ≡ a .
(19)

Thus, the potential (11) reduces to

V (HO) = 3
2 a

2 ω2 (ρ12 + ρ13 + ρ23)

= 3
2 a

2 ω2 τ1 .

Consequently, the ground state solutions (12) and (13)
read

Ψ(3a)
0 = e− ω

2 a ( ρ12 + ρ13 + ρ23 )

= e− ω
2 a τ1 ,

(20)

E0 = 3ω d a , (21)
respectively. Moreover, from (6) it follows that in this
case there exists an infinite family of eigenfunctions

ΨN (τ1) = e− 1
2 a ω τ1 L

(d−1)
N (aω τ1) ,

with energy

EN = 3 aω ( d + 2N ) ,

N = 0, 1, 2, 3, . . ., that solely depend on the variable
τ1, the so called hyperradious, here L(d−1)

N (x) denotes
the generalized Laguerre polynomial. These solutions
are associated with a hidden sℓ(2,R) Lie-algebra.

6.2. Arbitrary masses: moment of inertia
A generalization of the results presented in Section 6.1
can be derived from the decomposition of ∆rad (4)

∆rad = ∆I + ∆̃ , (22)

where ∆I = ∆I(I) is an algebraic operator for arbi-
trary d ≥ 1. It depends on the moment of inertial I
only. Explicitly, we have

∆I = 2 I ∂2
I,I + 2 d ∂I . (23)

The operator ∆̃ = ∆̃(I, q1, q2) depends on I and
two more (arbitrary) variables q1, q2 for which the
coordinate transformation {ρij} → {I, q1, q2} is in-
vertible (not singular). Since such an operator ∆̃
annihilates any function F = F (I), i.e. ∆̃F = 0,
the splitting (22) indicates that for any potential of
the form

V = V (I) , (24)
the eigenvalue problem for the operator Hrad =
−∆rad + V is further reduced to a one-dimensional
spectral problem, namely

[ −∆I + V (I) ]ψ = E ψ , (25)

which can be called the I−representation.
In the case of equal masses m1 = m2 = m3 the co-

ordinate I is proportional to the hyperspherical radius
(hyperradious). Also, HI (25) is gauge-equivalent to
a one-dimensional the Schrödinger operator.
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Figure 2. Classical generalized three-body harmonic
oscillator system: average Lyapunov exponent in the
space of parameters (H, m1). The values m2 = m3 =
1, ω = 1, ν12 = ν13 = ν23 = 1 and R12 = R13 = R23 =
1 were used.

7. Generalized three body
harmonic oscillator system

Now, let us consider the following potential

V (R) = 2ω2
[
ν12 (√ρ12 − R12)2 + ν13 (√ρ13 − R13)2

+ ν23 (√ρ23 − R23)2
]
,

(26)
where R12, R13, R23 ⩾ 0 denote the rest lengths

of the system. At R12 = R13 = R23 = 0 we re-
cover the exactly solvable 3-body oscillator system,
V (R) → V (HO). The relevance of V (R) comes from
the fact that any arbitrary potential V = V (rij) can
be approximated, near its equilibrium points, by this
generalized 3-body harmonic potential.

However, the existence of non-trivial exact solu-
tions is far from being evident. Even for the most
symmetric case of equal masses and equal spring con-
stants, we were not able to find a hidden Lie algebra
in the corresponding spectral problem (3). Moreover,
at the classical level such a system is chaotic. This
can be easily seen by computing the average Lya-
punov exponent in the space of parameters (H, m1),
see Figure 2, where H is the value of the classical
Hamiltonian (energy) with potential V (R) (26).

Also, for one-dimensional systems it is said (see [11])
that a classical orbit is PT -symmetric if the orbit re-
mains unchanged upon replacing x(t) by −x∗(−t).
There are several classes of complex PT -symmetric
non-Hermitian quantum-mechanical Hamiltonians
whose eigenvalues are real and with unitary time evo-
lution [12, 13]. However, while the corresponding
quantum three-body oscillator Hamiltonian is Her-
mitian, it can still have interesting complex classical
trajectories.

7.1. Identical particles
In order to simplify the problem one can consider
the simplest case of equal masses and equal spring
constants (19) with ω = 1. Also, we will assume equal
rest lengths

R12 = R13 = R23 = R > 0 .

Ε0PT
[0.5, R]

Ε0PT
[1, R]

Ε0PT
[2, R]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
R

5

10

15

20
Ε0[ a, R]

Figure 3. Ground state energy of the generalized 3-
body harmonic oscillator vs R for different values of the
parameter a which defines the spring constant, see text.
The solid lines correspond to the variational result
whilst the dashed ones refer to the value calculated by
perturbation theory up to first order.

In this case, approximate solutions for the Schrödinger
equation can be obtained using perturbation theory
in powers of R.

7.1.1. Ground state
Taking the R−dependent terms in (26) as a small
perturbation, the first correction E1,0 to the ground
state energy takes the form

E1,0 = 3 a
2π ( 3π aR2 − 4R

√
6π a ) .

The domain of validity of this perturbative approach
is estimated by means of the variational method. The
use of the simple trial function

Ψtrial
0 = e− ω

2 aα ( ρ12 + ρ13 + ρ23 )

c.f. (20), where α is a variational parameter to be fixed
by the procedure of minimization, leads to the results
shown in Figure 3.

7.1.2. First excited state
It is important to mention that for the 3-body har-
monic oscillator (R = 0) the exact first excited state
possesses a degeneracy equal to 3. For R > 0, the
perturbation theory partially breaks this degeneracy.
The energy of the approximate first excited state cal-
culated by perturbation theory, up to first order, is
displayed in Figure 4.

8. Conclusions
In this report for a 3-body harmonic oscillator in Eu-
clidean space Rd we consider the Schrödinger operator
in ρ-variables ρij = r2

ij ,

HLB = −∆LB(ρij) +V (HO)(ρij) +V (eff)(ρij) , (27)

where the kinetic energy corresponds to a 3-
dimensional particle moving in a non-flat space. The
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E1[0.5, R]

E1[1, R]

E1[2, R]

0.2 0.4 0.6 0.8 1.0
R
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15

20

25

30

E1[a, R]

Figure 4. First excited state of the generalized 3-
body harmonic oscillator vs R.

Schrödinger operator (27) governs the S-states solu-
tions of the original three-body system (1), in par-
ticular, it includes the ground state. It implies that
the solutions of corresponding eigenvalue problem
depend solely on three coordinates, contrary to the
(3d)-dimensional Schrödinger equation. The reduced
Hamiltonian HLB is an Hermitian operator, where the
variational method can be more easily implemented
(the energy functional is a 3-dimensional integral only).
The classical analogue of (27) was presented as well.
The operator (27) up to a gauge rotation is equivalent
to an algebraic operator with hidden algebra sℓ(4,R),
thus, becoming a Lie-algebraic operator.

In the case of identical masses and equal frequencies
the aforementioned model was generalized to a 3-body
harmonic system with a non-zero rest length R > 0.
In this case, no hidden algebra nor exact solutions
seem to occur. An indication of the lost of integra-
bility is the fact that the classical counterpart of this
model exhibits chaotic motion. Using perturbation
theory complemented by the variational method it
was shown that the ground state energy vs R develops
a global minimum, hence, defining a configuration of
equilibrium.
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Abstract. In this work, we construct a time-dependent step-like potential supporting a normalizable
state with energy embedded in the continuum. The potential is allowed to evolve until a stopping time
ti, where it becomes static. The normalizable state also evolves but remains localized at every fixed
time up to ti. After this time, the probability density of this state freezes becoming a Bound state In
the Continuum. Closed expressions for the potential, the freezable bound state in the continuum, and
scattering states are given.

Keywords: Bound states in the continuum, supersymmetric quantum mechanics, time-dependent
quantum systems.

1. Introduction
The first discussion of Bound states In the Con-
tinuum (BICs) in quantum mechanics dates back
to von Neumann and Wigner [1] who constructed
normalizable states corresponding to an energy em-
bedded in the continuum in a periodic potential
V (r) = E + ∇2ψ/ψ from a modulated free-particle
wave function ψ(r) = (sin(r)/r)f(r), with twice the
period of the potential. The localization of this state
is interpreted as the result of its reflection in the Bragg
mirror generated by the wrinkles of V (r) as r → ∞.
The extended family of von-Neumann and Wigner
potentials have been discussed and extended for many
years [2–5] from different frameworks including the
Gelfan-Levitan equation [6] also known as inverse scat-
tering method [4, 7], Darboux transformations [8, 9]
and supersymmetry (SUSY) [10–13], among others.
Bound states In the Continuum are nowadays recog-
nized as a general wave phenomenon and has been
explored theoretically and experimentally in many
different setups, see [14] for a recent review.

Exact solutions to the time-dependent Schrödinger
equation are known only in a few cases, including
the potential wells with moving walls [15, 16], which
has been explored from several approaches (see, for
instance, Ref. [17] and references therein) including
the adiabatic approximation [18] and perturbation
theory [16] and through point transformations [19–
23], which combined with supersymmetry techniques
allow to extend from the infinite potential well with
a moving wall to the trigonometric Pöschl-Teller po-
tential [24].

In this article, we present the construction of a time-
dependent step-like potential. We depart from the
standard stationary step potential and apply a second-
order supersymmetric transformation to add a BIC.
Then, by means of a point transformation, the poten-
tial and the state become dynamic and we allow them
to evolve. After a certain time, we assume that all the
time-dependence of the potential is frozen, such that
the potential becomes stationary again and explore
the behavior of the normalizable state. Intriguingly,
it is seen that the freezable BIC is not an eigenso-
lution of the stationary Schrödinger equation in the
frozen potential, but rather solves an equation that
includes a vector potential that does not generate
a magnetic field whatsoever. Thus, by an appropri-
ate gauge transformation, we gauge away the vector
potential and observe the BIC that remains frozen as
an eigenstate of the stationary Hamiltonian after the
potential ceases to evolve in time.

In order to expose our results, we have organized
the remaining of this article as follows: In Section 2
we describe the preliminaries of SUSY and a point
transformation. Section 3 presents the construction
of the time-dependent step-like potential and give ex-
plicit expressions for the freezable BIC and scattering
states. Final remarks are presented in Section 4.

2. Supersymmetry and a point
transformation

Point transformation is a successful technique to de-
fine a time-dependent Schrödinger equation with a full
time-dependent potential from a known stationary
problem [19, 20, 24]. In this section, we use a trans-
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formation of this kind in combination with a conflu-
ent supersymmetry transformation to obtain a time-
dependent step-like potential from the stationary case.

2.1. Confluent supersymmetry
Darboux transformation, intertwining technique
or supersymmetric quantum mechanics (SUSY) is
a method to map solutions ψ of a Schrödinger equa-
tion into solutions ψ̄ of another Schrödinger equation
[25–29]. It is based on an intertwining relation where
two Hamiltonians and a proposed operator L† must
fulfill the relation

H̄L† = L†H, (1)

where

H = − d2

dy2 + V0(y), H̄ = − d2

dy2 + V̄ (y). (2)

The main ingredient of SUSY are the seed solutions,
which correspond to solutions of the initial differential
equation Hu = ϵu, where ϵ is a real constant called
factorization energy. In this work we focus on the so
called confluent supersymmetry, where L† is a second-
order differential operator. Once a seed solution and
a factorization energy are chosen, the next step is to
construct the following auxiliary function

v = 1
u

(
ω +

∫
u2(y)dz

)
, (3)

where ω is a real constant to be fixed. Then, one way
to fulfill (1) is by selecting

L† =
(

− d

dy
+ v′

v

) (
− d

dy
+ u′

u

)
, (4)

and the potential term in H̄ as

V̄ (y) = V0(y) − 2 d
2

dy2 ln
(
ω +

∫ y

y0

u2dz

)
. (5)

Then, solutions of the differential equation Hψ = Eψ,
where E is energy, can be mapped using L† and the
intertwining relation as follows:

Hψ = Eψ,

⇓ times L†

L†Hψ = EL†ψ,

⇓ using (1)
H̄L†ψ = EL†ψ,

⇓ defining ψ̄ ∝ L†ψ

H̄ψ̄ = Eψ̄.

We define ψ̄ as

ψ̄ = 1
E − ϵ

L†ψ. (6)

The factor (E − ϵ)−1 is introduced for normalization
purposes. Moreover, H̄ could have an extra eigenstate

that cannot be written in the form (6). This state is
called missing state and plays an important role in this
work. The missing state is obtained as follows: First
we have seen that L† maps solutions of Hψ = Eψ
into solutions of H̄ψ̄ = Eψ̄, by obtaining the adjoint
equation of (1) HL = LH̄, where L = (L†)† we can
construct the inverse mapping, but there is a solution
ψ̄ϵ such that Lψ̄ϵ = 0. This solution is explicitly:

ψ̄ϵ = Cϵ
1
v

= Cϵ
u

ω +
∫
u2(y)dy , (7)

where Cϵ is a normalization constant if ψ̄ϵ is square
integrable. This state fulfills H̄ψ̄ϵ = ϵψ̄ϵ. Notice that
the selection of u, ϵ and ω is very relevant, we must
choose these carefully to avoid the introduction of sin-
gularities in the potential V̄ that lead to singularities
also in ψ̄. The function ω +

∫
u2dy must be node-

less. We can satisfy this if either limy→∞ u(y) = 0 or
limy→−∞ u(y) = 0 and if ω is appropriately chosen.

2.2. Point transformation
Given that we know the solution of the time indepen-
dent Schrödinger equation

d2

dy2 ψ̄(y) +
[
E − V̄ (y)

]
ψ̄(y) = 0 (8)

with a potential defined in y ∈ (−∞,∞), let us con-
sider the following change of variable

y(x, t) = x

4t+ 1 , (9)

where x ∈ (−∞,∞) is considered as a spatial variable
and t ∈ [0,∞) a temporal one. Then, the wavefunc-
tion

ϕ(x, t) = 1√
4t+ 1

exp
{
i(x2 + E

4 )
4t+ 1

}
ψ̄

(
x

4t+ 1

)
, (10)

solves the time-dependent Schrödinger equation

i
∂

∂t
ϕ(x, t) + ∂2

∂x2ϕ(x, t) − V (x, t)ϕ(x, t) = 0, (11)

where the potential term is

V (x, t) = 1
(4t+ 1)2 V̄

(
x

4t+ 1

)
. (12)

In other words, the change of variable (9) together
with the replacements V̄ → V and ψ̄ → ϕ trans-
form a stationary Schrödinger equation into a time
dependent solvable one.

3. Time dependent step-like
potential with a freezable
bound state in the continuum

In this section, we depart from the well-known step
potential V (y) = V̂Θ(−y) as time independent sys-
tem. Then, using confluent supersymmetry we will
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add a single BIC. Furthermore, with the point trans-
formation previously introduced we transform the
stationary system into a time-dependent system with
an explicitly time-dependent potential. We will choose
a stopping time or freezing time ti after which the
potential no longer evolves:

VF (x, t) =
{
V (x, t) 0 ≤ t < ti,

V (x, ti) t ≥ ti.
(13)

Finally, the solutions of the Schrödinger equation will
be presented.

Let us commence our discussion by considering the
Step-Potential

V0(y) =
{
V̂ y ≤ 0,
0 y > 0,

(14)

defined along the axis y ∈ (−∞,∞) and V̂ is a positive
constant. The solutions of this system are well known
in the literature (see [30, 31]). Restricting ourselves
to the case 0 < Eq < V̂ , the solutions are:

ψ(y) =
{

exp(ρy) y ≤ 0,
cos(qy) + κ

k sin(qy) y > 0,
(15)

with energy Eq = q2 and ρ =
√
V̂ − Eq.

Next, to perform the confluent supersymmetric
transformation we choose a factorization energy such
that 0 < ϵ < V̂ and the corresponding seed solution
u(y) as

u(y) =
{

exp(κy) y ≤ 0,
cos(ky) + κ

k sin(ky) y > 0,
(16)

with k2 = ϵ and κ2 = V̂ − ϵ. Note that u(y) → 0
when y → −∞. Then, from (5) we obtain explicitly
the SUSY partner V̄ :

V̄ (y) =




V̂ − 16 exp(2κy)κ3ω

(exp(2κy)+2κω)2 y ≤ 0

32k2
(
k cos(ky) + κ sin(ky) ṽ(y)

v̂(y)

)
y > 0,

(17)

where the functions ṽ(y) and v̂(y) are

ṽ(y) =
[
(k2 + κ2)(k2x+ κ) + 2k4ω

]
sin(ky)

− k
[
(k2 + κ2)(κy + 1) + 2k2κω

]
,

v̂(y) =
[
2ky(k2 + κ2) + 4k3ω − 2kκ cos(2ky)

+(k2 − κ2) sin(2ky)
]2
.

We can calculate directly from (7) the missing state
associated to the factorization energy ϵ:

ψ̄ϵ(y) = Cϵ





2κ exp(κy)
2κω+exp(2κy) y ≤ 0,
4k3(cos(ky)+ κ

k sin(ky))
ψ̂ϵ(y) y > 0,

(18)

where

ψ̂ϵ(y) = (k2 − κ2) sin(2ky) − 2κk cos(2ky)
+ 4ωk3 + 2ky

(
κ2 + k2)

.
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Figure 1. |ψ̄ϵ(y)|2 and an envelop function of
the form A(y) = a

b+y
, with a = 2k(κ2 + k2)−1/2,

b = 2ωk2(κ2 + k2)−1. The scale of the graph is fixed
with V̂ = 5, k = 1, κ = 2 and Cϵ = 1, in the appropri-
ate units.

In order to confirm that ψ̄ϵ is square integrable, we
proceed in the following way. First, we separate the
integral ||ψ̄ϵ||2 =

∫ ∞
−∞ |ψ̄ϵ|2dy =

∫ 0
−∞ |ψ̄ϵ|2dy +∫ ∞

0 |ψ̄ϵ|2dy. The first integral can be directly calcu-
lated:

∫ 0

−∞
|ψ̄ϵ|2dy = |Cϵ|2

√
2
κω

tan−1
(

1√
2κω

)
.

For the second integral, we can show that it is bounded
by a square integrable function:

∫ ∞
0 |ψ̄ϵ|2dy

|Cϵ|2
=

∫ ∞

0

∣∣∣∣∣
4k3(cos(ky) + κ

k sin(ky))
ψ̂ϵ(y)

∣∣∣∣∣

2

dy

≤
∫ ∞

0

∣∣∣∣∣
4k2√

k2 + κ2

4ωk3 + 2ky (κ2 + k2)

∣∣∣∣∣

2

dy

=
∫ ∞

0

∣∣∣∣
a

b+ y

∣∣∣∣
2
dy = a2

b
, (19)

where a = 2k√
κ2+k2 , b = 2ωk2

κ2+k2 . Figure 1 shows a fair
fit to the squared modulus of eq. (18) for y > 0.

For an energy E = q2 ̸= ϵ, the wavefunction solving
H̄ψ̄ = Eψ̄ is constructed using (6), and (15). It reads

ψ̄(y) =





[
(κ−ρ) exp(ρy)

(q2−k2)

]
ψ̄−(y) y ≤ 0,

ψ̄+(y)−q2 cos(qy)−qρ sin(qy)
q2−k2 y > 0,

(20)

where we abbreviated

ψ̄−(y) = 2κω0(κ+ ρ) + (ρ− κ) exp(2κy)
2κω + exp(2κy) ,

ψ̄+(y) = k2(ρ sin(qy) + q cos(qy))
q

+ 4k(κ sin(ky) + k cos(ky))
ψ̂ϵ(y)

×
[
k

q

(
κ cos(ky) − k sin(ky)

) (
ρ sin(qy) + q cos(qy)

)

+
(
κ sin(ky) + k cos(ky)

)(
q sin(qy) − ρ cos(qy)

)]
.
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In Figure 2 the potential V̄ (y), along with the proba-
bility densities of the missing state |ψ̄ϵ(y)|2 and a scat-
tering state |ψ̄(y)|2 are shown. We observe that the
wavefunction of the BIC has an envelop function which
tends to zero as |y| → ∞, whereas the state ψ̄(y) is
not localized.

The next step is to construct a time dependent
potential from (17) using the point transformation
presented in (9-12). Notice that x = y at t = 0. Then
V̄ transforms as the piecewise potential:

V (x, t) = 1
(4t+ 1)2

{
V̂ −

16κ3ω exp( 2κx
4t+1 )

[
2κω + exp( 2κx

4t+1 )
]2

}
(21)

if x ≤ 0, otherwise

V (x, t) = 32k2

(4t+ 1)2

×
[
k cos

(
kx

4t+ 1

)
+ κ sin

(
kx

4t+ 1

)
ṽ(y(x, t))
v̂(y(x, t))

]
. (22)

In Figure 3 (top) we show the potential V (x, t) at
t = 0, t = 0.1 and t = 0.2. Its shape changes in time
and its spatial profile oscillates as expected, vanishing
as x → ∞. Analogously, for the time-dependent BIC,
the associated wavefunction for energy ϵ is explicitly

ϕϵ(x, t) = 1√
4t+ 1

exp

{
i(x2 + k2

4 )
4t+ 1

}
ψ̄ϵ

(
x

4t+ 1

)
, (23)

This function solves the time-dependent Schrödinger
equation i∂tϕϵ + ∂xxϕϵ − V ϕϵ = 0 and its square
integrability is guaranteed since ψ̄ϵ(y) is a square
integrable function:

||ϕϵ||2 =
∫ ∞

−∞
|ϕϵ(x, t)|2dx

= 1
4t+ 1

∫ ∞

−∞

∣∣ψ̄ϵ
(

x

4t+ 1

) ∣∣2
dx

=
∫ ∞

−∞

∣∣ψ̄ϵ(y)
∣∣2
dy = ||ψ̄ϵ||2. (24)

where we used the change of variable (9). Its proba-
bility density is shown in Figure 3 (center) at different
times. This state is localized and the first peak in the
probability density broadens and diminishes height as
time increases.

For states with energy Eq = q2 ̸= ϵ, the correspond-
ing time-dependent wavefunction has the explicit form

ϕ(x, t) = 1√
4t+ 1

exp

{
i(x2 + q2

4 )
4t+ 1

}
ψ̄

(
x

4t+ 1

)
, (25)

The behavior of the probability density |ϕ(x, t)|2, for
E = 2 at different times is shown in Figure 3 (bottom).
This state is unlocalized at any time.

Finally, we choose the freezing or stopping time ti.
Then, we can consider a charge particle in a potential:

VF (x, t) =
{
V (x, t) 0 ≤ t < ti,

V (x, ti) t ≥ ti.
(26)

Figure 2. Potential V̄ (y), along with the probability
densities of the missing state |ψ̄ϵ(y)|2 and a scattering
state |ψ̄(y)|2 are shown. The scale of the graph is fixed
with V̂ = 5, k = 1, κ = 2, q =

√
2 and ω = 4.

Figure 3. Behavior of the potential V (x, t) (top), the
BIC ϕϵ(x, t) (center) and the scattering state ϕ(x, t)
(bottom) at the times t = 0, t = 0.1, and t = 0.2. The
scale of the graphs is fixed by V̂ = 5, k = 1, κ = 2,
q =

√
2 and ω = 4.
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where V (x, t) is given by (21,22). Notice that when
t ∈ [0, ti) the potential is changing in time, and when
t ≥ ti the potential is frozen. This potential is in fact
a family, parametrized by ω > 0, recall that ω was
introduced by the confluent SUSY transformation.

Neither ϕ(x, t) nor ϕϵ(x, t) are stationary states,
they evolve in time, and they are not eigenfunctions
of the operator −∂xx + V . At any time t ≥ ti, the
functions ϕ(x, ti) and ϕϵ(x, ti) satisfy the eigenvalue
equation:

[(
− ∂

∂x
+ iAx(x)

)2
+ V (x, ti)

]
ϕ(x, ti)

= E

(4ti + 1)2ϕ(x, ti), t ≥ ti, (27)

where Ax(x) = −∂xθ(x) and

θ(x) = i

4ti + 1

(
x2 + E

4

)
. (28)

Equation (27) is the Schrödinger equation for
a charged particle under the influence of a vector
potential A = (Ax, 0, 0) that, nevertheless, does not
generate magnetic field since B = ∇ × A = 0. Let
us recall that the Schrödinger equation for a charged
particle of charge q immersed in an external electro-
magnetic field is better written in terms of the scalar
φ and vector potentials A through the Hamiltonian

H = (p̂ + qA)2 + qφ. (29)

These electromagnetic potentials allow us to define
the electric and magnetic fields as

E = −∇φ− ∂A
∂t

, B = ∇ × A, (30)

definition that does not change if the following trans-
formations are performed simultaneously,

A → A′ = A + ∇λ, φ → φ′ = φ− ∂λ

∂t
, (31)

where λ = λ(x, t) is a scalar function. This is a state-
ment of gauge invariance of Maxwell’s equations. In
quantum mechanics, the time-dependent Schrödinger
equation

i
∂ψ

∂t
= Hψ (32)

retains this feature if along the transformations in
Eq. (31) in the Hamiltonian (29), the wavefunction
changes according to the local phase transformation

ψ → ψ′ = eiλψ. (33)

In our example at hand, this freedom allows us to
select λ in such a way that if at certain instant of
time ti the vector potential A ̸= 0 but before we
had A = 0, one can still have a Schrödinger equation
without vector potential by tuning appropriately the
scalar potential. In particular, by selecting

λ(x, t) = ℓ(x)Θ(t− ti), (34)

we can shift the scalar potential such that the time-
dependent equation governing this state never de-
velops a vector potential to begin with. Then, by
choosing a vector potential A(x, t) = (Ax(x, t), 0, 0)
where Ax(x, t) = −Θ(t − ti)∂xθ(x), we observe that
the piecewise function

ϕF (x, t) =
{
ϕ(x, t) 0 ≤ t < ti,

ψ̄
(

x
4ti+1

)
t ≥ ti.

(35)

becomes a solution of

i∂tϕF (x, t) = [−∂xx + VF (x, t)]ϕF (x, t) = HϕF (x, t).

In particular, the function

ϕFϵ(x, t) =
{
ϕϵ(x, t) 0 ≤ t < ti,

ψ̄ϵ

(
x

4ti+1

)
t ≥ ti,

(36)

before the freezing time ti is just a time dependent
wave packet but for t > ti it becomes a Frozen Bound
state In the Continuum satisfying the eigenvalue equa-
tion HϕFϵ = εϕFϵ, where ε = ϵ/(4ti+1)2. In Figure 4
we plot the potential VF (top), the Freezable Bound
State in the Continuum ϕFϵ (center) and a scattering
state ϕF (bottom) at t = 0.8, t = 1 and t = 1.8, the
freezing time is ti = 1, note that after t = 1 neither
the potential nor the wavefunctions evolve.

4. Final remarks
In this article, we apply a confluent supersymmetric
transformation to the standard Step-Potential defined
in the whole real axis. The seed solution that we
use makes it possible to embed a localized squared
integrable state in the continuum spectrum, a BIC.
We have provided the system, potential, and states,
with time evolution through a point transformation.
Nevertheless, we notice that the wrinkles in the po-
tential as x → ∞ still localize a BIC at every fixed
time.

Next, we allow the evolution of the system continue
and at a given stopping time ti, we freeze the potential
and fix it stationary. Upon exploring the behavior of
the BIC with this static potential after the freeze-out
time, we surprisingly observe that it does not cor-
respond to a solution of the stationary Schrödinger
equation, but instead it develops a geometric phase
encoded in a vector potential which does not gener-
ate any magnetic field. Thus, by gauging out this
geometric phase, the resulting state becomes indeed
an eigenstate of the frozen Hamiltonian. We call this
state a Freezable Bound state In the Continuum.

Further examples are being examined under the
strategy presented in this work, including vector po-
tentials which might be relevant for pseudo-relativistic
systems.
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Figure 4. Behavior of the potential VF (x, t) (top),
the FBIC ϕF ϵ(x, t) (center) and the scattering state
ϕF (x, t) (bottom) at the times t = 0.8, t = 1, and
t = 1.8. The freezing time is ti = 1. The scale of the
graph is fixed by V̂ = 5, k = 1, κ = 2, q =

√
2 and

ω = 4.
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AN ALGEBRAIC EIGENENERGY BOUNDING METHOD
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Abstract. The ability to generate tight eigenenergy bounds for low dimension bosonic or ferminonic,
hermitian or non-hermitian, Schrödinger operator problems is an important objective in the computation
of quantum systems. Very few methods can simultaneously generate lower and upper bounds. One of
these is the Eigenvalue Moment Method (EMM) originally introduced by Handy and Besssis, exploiting
the use of semidefinite programming/nonlinear-convex optimization (SDP) techniques as applied to the
positivity properties of the multidimensional bosonic ground state for a large class of important physical
systems (i.e. those admitting a moments’ representation). A recent breakthrough has been achieved
through another, simpler, moment representation based quantization formalism, the Orthonormal
Polynomial Projection Quantization Bounding Method (OPPQ-BM). It is purely algebraic and does not
require any SDP analysis. We discuss its essential structure in the context of several one dimensional
examples.

Keywords: Eigenvalue bounding methods, hermitian and non-hermitian linear operators.

1. Introduction
The eigenvalue bounding problem for linear ordinary
differential equations, or linear partial differential
equations (i.e. LODE/LPDE) has been an active
area of research for many decades. In the context
of quantum physical systems, as represented by the
multidimensional Schrödinger equation,

− ℏ2

2m
∇2Ψ(−→r ) + V (−→r )Ψ(−→r ) = EΨ(−→r ), (1)

the generation of upper bounds to the individual dis-
crete state energies is readily obtainable through such
well known methods as that of Rayleigh-Ritz (RR) [1].
The challenge has been to find an equally effective
lower bound method. A well known lower bound
method is that associated with Temple [2]; however,
its convergence rate is slow. Nevertheless, it has served
as a spring board for other more effective lower bound
formulations. Among these is the work by Marmorino
et al. [3], and more recently, that of Martinazzo and
Pollak [4]. The latter are able to improve upon the
convergence rate of Temple’s lower bound formulation.

Despite these successes, two important facts remain.
The first is that all the above bounding methods
require the use of two different bounding formula-
tions. One for the upper bounds (RR), another for
the lower bounds. That is, they do not define a uni-
fied theoretical framework for simultaneously gener-
ating lower and upper bounds. Additionally, these
methods are based on a Hilbert space representation
for quantum systems, dependent on the existence of
hermitian hamiltonians. They are of little relevance
for bounding the real/complex eigenenergies of non-
hermitian systems, particularly those corresponding
to PT-symmetry breaking systems [5–8].

In this work we present a novel approach that
can generate tight bounds for the discrete states of
bosonic or fermionic, low dimension, systems, regard-
less if they are hermitian or not. It is referred to
as the Orthonormal Polynomial Projection Quantiza-
tion Bounding Method (OPPQ-BM), as developed by
Handy [9]; and based, in part, on a related method,
the OPPQ-Approximation Method by Handy and
Vrinceanu [10, 11]. Its general structure is outlined in
the following sections, through representative one di-
mensional systems, both hermitian and non-hermitian.
We outline the full OPPQ-BM theory within the con-
text of the one dimensional, double well, sextic anhar-
monic oscillator; and then demonstrate the existence
of the key structures necessary for its implementation
to the PT symmetry breaking problem with potential
V (x) = ix3 + iax.

Beyond the theoretical interest in bounds, they
are also of practical importance for delicate systems
where conventional computational methods may yield
widely varying results. That is, the availability of tight
bounds allows one to discriminate between competing
theories.

One famous problem of this type corresponds to the
Quadratic Zeeman (QZM) effect for superstrong mag-
netic fields. This problem was analyzed through many
different types of computational methods, resulting in
a wide range of values for the most challenging state
to compute: the ground state binding energy. This
was reviewed by Le Guillou and Zinn-Justin (LG-ZJ)
in the context of their order dependent conformal
transformation analysis [12]. Using novel, Moment
Problem [13] related, computational methods, Handy,
Bessis, et al. [14, 15]. were able to confirm the accu-
racy of the LG-ZJ analysis, by computing sufficiently
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tight bounds to the ground state binding energy. Sub-
sequent studies by Kravchenko et al. [16], and the
more recent work by Schimerczek and Wunner [17],
developed a different formulation that yielded vastly
improved estimates (not bounds). The work by Handy
extended OPPQ-BM to the QZM problem, yielding
bounds that significantly improved upon, or were com-
petitive with, the estimates by Kravchenko et al.

The QZM problem is an example of an important
class of problems for which bounding methods are
highly relevant. These are classified as singular per-
turbation – strongly coupled systems. Such systems
involve quantum particles subjected to very strong
forces, over relatively short length scales. This is in-
herently a multiscale problem, in keeping with the
objectives of wavelet analysis [18, 19], etc.

Our original immersion into the eigenenergy bound-
ing problem was through the study of strong coupling-
singular perturbation type systems, such as QZM.
The natural framework for regulating these systems is
through the use of a non-local, extensive, representa-
tion. The power moments provide such a representa-
tion. As such, the types of systems studied here are
those for which the Schrödinger operator configuration
space problem can be transformed into a moments’
equation counterpart for the power moments of the
bound state solutions. We refer to these as MER
type systems (i.e. those admitting a moment equation
representation). This will become clear below. This
condition can be relaxed, and essentially imposed on
systems that do not admit such MER formulations,
making the underlying OPPQ-BM principles applica-
ble to many different types of systems. The details of
this expanded analysis will be communicated shortly.

1.1. Singular-perturbation strong
coupling problems and moment
representations

It is not widely appreciated that power moments are
relevant in understanding the multiscale structure of
most systems. Thus, consider the scaling transform
of a given wavefunction (i.e. signal, where we have
simplified the notation to that of one dimension):

SΨ(a, b) ≡ 1
aν

∫ +∞

−∞
dx S(x − b

a
)Ψ(x), (2)

where

Lima→0+SΨ(a, b) = Ψ(b), (3)

and ν ≡
∫

dx S(x) ̸= 0.
Physicists are biased in favor of attaining an analyt-

ical understanding of problems. Therefore the natural
question to ask is, what is the analytical dependence
in the inverse scale (i.e. 1

a ) for this scaling transform,
if Ψ is a bounded, L2 state? It will become clear
from Eq. (4), that the power moments of the bound
state solution, determine the analytic structure of the

inverse scale expansion. These considerations underlie
the analysis by Handy [20].

Alternatively, engineers are more oriented towards
computational capabilities. If so, then it readily fol-
lows that the a → 0 limit can be replaced by the in-
tegral

∫ ∞
0 dα∂α

(
αS

(
α(x − b)

))
, where α ≡ 1

a , which
after a convolution substitution gives one the Contin-
uous Wavelet Transform [19].

For bound state configurations, if
lim|x|→∞ Ψ(|x|)S(|x|eiθ) = 0, exponentially, for
arbitrary θ, then the scaling transform becomes ana-
lytic in the inverse scale, 1

a . Under this assumption,
the scaling transform’s analytic expansion depends
on the moments [20]

SΨ(a, b) = 1
aν

∞∑

j=0

σj

j!aj

j∑

p=0

(
j
p

)
(−b)j−pµ(p), (4)

where ∂j
xS(0) ≡ σj , and

µ(p) ≡
∫ +∞

−∞
dx xpΨ(x). (5)

2. The moment equation
representation

The natural extension of the above considerations is
to study linear quantum systems whose differential
form is transformable into a moment equation. Thus
consider the sextic anharmonic oscillator potential,
where the physical parameters have been re-scaled:

−ϵ2∂2
xΨ(x) + (mx2 + gx6)Ψ(x) = EΨ(x). (6)

The nature of physical quantum systems is that the
discrete states decay exponentially, and therefore have
finite power moments. The unphysical solutions be-
come exponentially unbounded in one or both asymp-
totic directions, therefore their power moments are
infinite.

We can multiply the above equation by xp and inte-
grate by parts, assuming the underlying wavefunction
is that of a discrete state. We then obtain the moment
equation representation (MER):

gµ(p + 6) = − mµ(p + 2) + Eµ(p)
+ p(p − 1)ϵ2µ(p − 2), p ≥ 0. (7)

This homogeneous MER expression is a finite differ-
ence equation of effective order 1 + ms where ms = 5.
That is, for any E parameter value, the first six power
moments {µ0, µ1, . . . , µ5} (i.e. µ(ℓ) ≡ µℓ) are the
initialization moments, or missing moments, and gen-
erate all the other power moments through closed
form, energy dependent coefficients:

µ(p) =
ms∑

ℓ=0
ME(p, ℓ) µℓ, p ≥ 0. (8)
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If the coupling strength is large, g >> 1, the nat-
ural inclination is to attempt some kind of singular
perturbation analysis involving expansions around the
kinetic energy term; or, alternatively, a large pertur-
bative expansion/resummation analysis.

In configurations space, kinetic energy expansions
become singular (i.e. expanding in ϵ2) because the
order of the differential equation abruptly changes
from zero to two. However, the order of the MER
relation does not change as its kinetic energy counter-
part is set to zero. This is one simple evidence that
the MER transformation regulates singular perturba-
tion expansions (i.e. kinetic energy expansions). That
is, singular perturbation expansions in the moments’
representation are better behaved.

3. Generating eigenenergy bounds
within a moments’
representation

There are two methods for generating bounds within
a moment equation representation (MER). The first
method, referred to as the Eigenvalue Moment Method
(EMM), was developed by Handy and Bessis [14,
15], and is based on the Moment Problem [13].
Its theoretical-computational structure is based on
what is now referred to as semidefnite programming
(SDP) [21, 22]. As such, the SDP based formulation
of Handy and Bessis is the first use of such meth-
ods for quantum operators [22]. Its computational
implementation was done through the use of linear
programming [23], since SDP algorithms were not
known in the 1980s.

The second moment representation bounding for-
mulation is that presented in this work, OPPQ-BM.
Unlike EMM, OPPQ-BM is applicable to the low
lying discrete states of any system, hermitian, or non-
hermitian, bosonic, or fermionic, provided it admits
a moment equation representation (MER). EMM is ap-
plicable only for the multidimensional bosonic ground
state.

For systems admitting both EMM and OPPQ-BM,
it is our belief that at its basic level, EMM pro-
duces faster converging bounds (as shown in this work
through the analysis of the sextic anharmonic oscilla-
tor in Eq. (6)); however, if one optimizes the selection
of the reference/weight function, then OPPQ-BM can
yield significantly faster converging results.

The EMM formulation involves sophisticated, non-
linear, convex optimization analytical tools. How-
ever, OPPQ-BM is purely algebraic (i.e. eigenvalues,
eigenvectors, and algebra). Given the power of Math-
ematica, with unlimited precision, it can produce
spectacular results.

It is important to stress that EMM produces (when
applicable) tight bounds ab initio. The OPPQ-BM is
empirical. If the convergence of a particular parame-
ter is numerically observed, then one can confidently

generate bounds for the physical energies. We demon-
strate this.

4. The eigenvalue moment method

The bosonic ground state must be a positive (nonneg-
ative) configuration [24], Ψgr(−→r ) ≥ 0. If the corre-
sponding Schrödinger equation is transformable into
MER form, then one can impose the Moment Problem
positivity theorems and constrain the power moments,
and in turn the energy and missing moments. This
is the EMM-methodology. This was done, several
decades ago, by Handy and Bessis (HB) [14, 15].

The Eigenvalue Moment Method (EMM), achieves
geometric convergence rates for the bounds to the
ground state energy. The only limitation is that it can
only be applied to multidimensional bosonic systems,
and then only to the ground state. As previously
noted, it was used to solve the Quadratic Zeeman
(QZM) problem [15]. The bounding of bosonic ex-
cited states, through a moment representation, could
only be realized more recently through application of
OPPQ-BM [9].

One can extend the EMM quantization philosophy
to the probability density of one dimensional hermitian
Schrödinger operators. This is because the probability
density will satisfy a third order, linear, differential
equation (LODE). If the LODE representation ad-
mits a MER formulation, then one can generate tight
bounds to any discrete state. This is because all the
discrete states are associated with nonnegative, L2,
configurations.

If the underlying Sturm-Liouville problem is non-
hermitian, then the one dimensional Schrödinger equa-
tion can be transformed into a fourth order LODE
for the probability density. This approach was used
by Handy [8] in precisely computing the a-parameter
regimes where the system V (x) = ix3 + iax, violated
PT symmetry (i.e. PT symmetry breaking). These re-
sults were confirmed through a faster, moment based,
estimation procedure [25], that led to a more detailed
understanding for the onset of PT symmetry break-
ing. These results significantly improved upon the
predictions by Delabaere and Trinh [26], based on
asymptotic analysis. We revisit this problem in this
work.

The multidimensional probability density, S(−→r ) ≡
Ψ∗(−→r )Ψ(−→r ) will not generally satisfy a linear partial
differential equation; therefore, no MER relation can
be generated, and EMM cannot be applied. Never-
theless, through OPPQ-BM we can circumvent this
difficulty.
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5. The orthonormal polynomial
projection quantization
formalism

5.1. The OPPQ non-orthogonal basis
expansion

Let us expand the discrete state wavefunction in terms
of some appropriate, complete, non-orthonormal basis,
{Bn(x) ≡ Pn(x)R(x)}:

Ψ(x) =
∞∑

n=0
cnPn(x)R(x). (9)

We require a weighted polynomial basis, involving
orthonormal polynomials relative to some appropriate
positive weight R(x) > 0 (we adopt the one dimen-
sional notation for simplicity):

⟨Pm|R|Pn⟩ = δm,n. (10)

The weight is real, as are its orthonormal polynomials,
involving real polynomial coefficients:

Pn(x) =
n∑

j=0
Ξ(n)

j xj . (11)

For non-hermitian systems with complex bound
state wavefunctions, it is the projection coefficients,
{cn} that become complex.

The basis {Bn(x)R(x)} will be complete, but non-
orthogonal (i.e. ⟨Bm|Bn⟩ ≠ 0, if m ̸= n).

We can rewrite Eq. (10) as

m∑

j1=0

n∑

j2=0
Ξ(m)

j1
ω(j1 + j2)Ξ(n)

j2
= δm,n, (12)

where ω(j1 + j2) =
∫

dx xj1+j2R(x), the Hankel mo-
ment matrix of the weight, Wi,j ≡ ω(i + j).

Knowledge of the Hankel moment matrix allows
us to generate the orthonormal polynomials through
the Cholesky decomposition method, which involves
decomposing the positive Hankel matrix into the form
W = CC†. Let êj correspond to a unit vector in the
j-th component. We then solve for

−→Ξ
(j)

= (C†)−1êj . (13)

This generates the coefficient vector for Pn(x), or
−−→
Ξ(n).

The projection coefficients are obtainable from the
MER relation for the power moments of Ψ(x):

µ(p) ≡
∫

ℜ
dx xpΨ(x). (14)

Assume that the corresponding MER relation exists

µ(p) =
ms∑

ℓ=0
ME(p, ℓ)µℓ. (15)

It then follows that

cn = ⟨Pn|Ψ⟩,

=
n∑

j=0
Ξ(n)

j µ(j)

=
n∑

j=0
Ξ(n)

j

ms∑

ℓ=0
ME(j, ℓ)µℓ, (16)

cn(−→µ ) =
ms∑

ℓ=0
Λ(n)

ℓ (E)µℓ, (17)

where

Λ(n)
ℓ (E) =

n∑

j=0
Ξ(n)

j ME(j, ℓ). (18)

The MER relation suggested in Eq. (15) is a ho-
mogeneous relation for the power moments. Some
normalization condition needs to be imposed:

C(−→µ ) = 1. (19)

For one dimensional systems, the natural normaliza-
tion is the unit (nonlinear) normalization: |−→µ |2 = 1.
However, it need not be chosen as such. Alternative
choices [9] are linear normalizations such as µ0 = 1 or
µ0 + µ1 = 1, etc.

5.2. The OPPQ quantization condition
The OPPQ quantization condition requires that the
weight be chosen so that the following positive inte-
gral is bounded for discrete solutions and infinite for
unphysical solutions:

I[Ψ, R] =
∫

ℜ
dx

|Ψ(x)|2
R(x) , (20)

=
∞∑

j=0
|cj(E, −→µ )|2, (21)

where we have assumed Ψ is a bounded discrete state.
More generally, we note that depending on the

asymptotic behavior of the physical or unphysical (i.e.
unbounded) solutions, and the chosen asymptoic form
for the weight, the integral in Eq. (20) will satisfy the
quantization condition:

I[Ψ, R]

=
{

finite, ⇐⇒ E = Ephys and −→µ = −→µ phys

∞, ⇐⇒ E ̸= Ephys or −→µ ̸= −→µ phys.
(22)

The OPPQ quantization condition essentially be-
comes a shooting method in the E × −→µ , 1 + ms, pa-
rameter space (after imposing a normalization). This
is the essence of the OPPQ-BM bounding procedure.
The focus of the remaining OPPQ formalism is to re-
duce this shooting method to a minimization problem
in the energy parameter space.
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5.2.1. Selection of the OPPQ weight
The above formalism has two significant advantages.

The first is that it tells us that the weight should
not be chosen so that it asymptotically vanishes much
faster than the asymptotic form of the physical solu-
tions.

Thus, given a physical, discrete state, Ψ, let C(x)
satisfy the asymptotic relation:

Lim|x|→∞
Ψ(x)
R(x) = C(x). (23)

We then want
∫

dx|Ψ(x)C(x)| < ∞. (24)

In the works by Handy and Vrinceanu [10, 11],
which introduce a particular version of the OPPQ
formalism (i.e. to be referred to here to as the OPPQ-
Approximation Method (OPPQ-AM)), they argued
and demonstrated that the fastest convergence to the
discrete states is associated with weights that mimic
the asymptotic form of the desired discrete state:

Lim|x|→∞C(x) = const. (25)

The constant can be finite (i.e. zero), but not infinite
in a manner that violates Eq. (24).

5.2.2. Use of the ground state as a weight
Another advantage of the above formalism is that we
can take R(x) = Ψgr(x) even if we do not know the
functional form for the ground state.

As long as one does not require that the discrete
state wavefunction be reconstructed (i.e. one is only
interested in the eigenenergies) then the only infor-
mation required for the ground state is that its power
moments be known accurately. This then allows us
to generate the corresponding orthonormal polynomi-
als, allowing for the generation of rapidly converging
bounds to the discrete states. We demonstrate this
in this work (i.e. Table 8).

One can determine the power moments of the
ground state wavefunction either through EMM or
OPPQ-BM. Note that for bosonic systems, this is an
excellent use of EMM, since the ground state is usually
the only state that can be determined.

Using the ground state as a weight usually yields
the fastest convergence.

6. The OPPQ-approximation
method (OPPQ-AM)

From Eq. (21) and the OPPQ quantization condition
in Eq. (22) it follows that the physical energy and
missing moment values must satisfy

lim→∞cn(Ephys, −→µ phys) = 0. (26)

Since cn(E, −→µ ) =
−→
Λ

(n)
(E) · −→µ , from Eq. (17), the

1 + ms linear equations
ms∑

ℓ2=0
Λ(N−ℓ1)

ℓ2
(E) µℓ2 = 0, (27)

0 ≤ ℓ1 ≤ ms, can be used to approximate the physical
energies through the determinantal secular equation

Det
(

Λ(N−ℓ1)
ℓ2

(E)
)

= 0. (28)

This defines the OPPQ-Approximation Method
(OPPQ-AM). As indicated earlier, Handy and
Vrinceanu [10, 11] noted significant improvement in
the convergence rates when the weight, R, mimics the
asymptotic form of the desired physical states.

The OPPQ representation is very robust, and no
convergence irregularities emerge so long as the weight
does not decrease much faster than the asymptotic
form of the physical states. Provided this is satisfied,
the OPPQ-AM formalism will always converge to the
true physical energies; however, the rate of conver-
gence depends on the asymptotic properties of the
chosen weight.

Despite these impressive results, there is no guaran-
tee that, for hermitian systems, the energies generated
through Eq. (28) will be real. Spurious, small imagi-
nary parts may be produced from Eq. (28), that vanish
in the N → ∞ limit.

By way of contrast, the OPPQ-Bounding Method to
be described below, will always generate real energies
for hermitian systems. In addition, as its name sug-
gests, converging bounds to the discrete state energies
can be generated.

We make the last observation more explicit. As
will be shown below, OPPQ-BM generates, to each or-
der, an energy dependent function, LN (E). The local
minima, ∂ELN (E) = 0 will approximate the physi-
cal energies. These local minima can, essentially, be
bounded, through converging lower and upper bounds.
We refer to the local minima in LN (E) as the OPPQ-
BM estimates, in order to distinguish them from the
OPPQ-AM estimates from Eq. (28) and the OPPQ-
BM generated bounds.

7. The OPPQ-bounding method
We outline the structure of OPPQ-BM for one space
dimension problems. The major difference between
one dimensional and multidimensional MER type sys-
tems is that one dimensional problems have a fixed
number of missing moments: ms < ∞.

Multidimensional problems involve an infinite hi-
erarchy of missing moment subspaces of increasing
dimension. That is, ms → ∞. We develop the 1-
space dimension OPPQ formalism in a manner that
extends to multidimensions. How the normalization
prescription is chosen, plays an important role in the
formalism [9].

67



Carlos R. Handy Acta Polytechnica
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Figure 1. Log10(λN (E)) for sextic anharmonic oscil-
lator system in Eq. (47); N = 20, 40, 100, 120.

The OPPQ quantization condition in Eq. (22) is
dependent on the positive, (essentially) increasing,
sequence, defined by the partial sums:

I[Ψ, R] = LimN→∞SN (E, −→µ ), (29)

where

SN (E, −→µ ) =
N∑

j=0
|cj(E, −→µ )|2, (30)

= ⟨−→µ |PN (E)|−→µ ⟩, (31)

where PN (E) is an energy dependent, positive matrix
(if N ≥ ms) of dimension (1 + ms) × (1 + ms):

PN (E) =
N∑

j=0

(−→
Λ

(j)
(E)

)∗−→
Λ

(j)
(E), (32)

involving the sum over dyad matrix expressions.
For non-hermitian systems, the “bra” missing mo-

ment vector in Eq. (31) requires the complex conju-
gate expression for positive norms on complex vector
spaces.

It trivially follows, by definition, that

0 < SN (E, −→µ ) < SN+1(E, −→µ ) < . . . < I[E, −→µ ]. (33)

The OPPQ quantization condition in Eq. (22) tells
us that the physical energy and corresponding missing
moments correspond to (Ephys, −→µ phys) points within
the E × −→µ parameter space where the functional
I[Ψ, R] has a local minimum. Also, for fixed Ephys,
the corresponding physical missing moment values
are those corresponding to a global minimum in the
missing moment space. Therefore, to order N we can
focus on the global minimum within the constrained
(i.e. normalized) missing moment space:

LN (E) ≡ Inf−→µ {SN (E, −→µ )|Cnorm(−→µ ) = 1}, (34)

where some convenient normalization has been
adopted, C(−→µ ) = 1.

5 10 15 20
E

1

2

3

4

5

Log
10
(�n(E))

Figure 2. Log10(λN (E)) for sextic anharmonic oscil-
lator even states in Eq. (65); N = 4, 6, 8, 10, 12; based
on the weight RL(ξ) = ξ− 1

2 exp(−ξ).
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Figure 3. Log10(λN (E)) for sextic anharmonic oscil-
lator even states in Eq. (65); N = 4, 6, 8, 10, 12; based
on the weight RG(ξ) = ξ− 1

2 exp(−ξ2/2).

An important result is that

LN (E) < LN+1(E). (35)

This trivially follows from Eqs. (33-34).
An immediate consequence is that the counterpart

to the quantization condition in Eq. (22) now becomes
simpler:

lim
N→∞

LN (E) =
{

finite ⇐⇒ E = Ephys,

∞ ⇐⇒ E ̸= Ephys.
(36)

Combining this with Eq. (35) we obtain:

0 < LN (E) <LN+1(E) < . . .
{

finite, ⇐⇒ E = Ephys

∞, ⇐⇒ E ̸= Ephys.
(37)

Therefore, the LN (E) functions form an increasing,
nested, concaved upwards, sequence of positive func-
tions. This is demonstrated for the sextic anharmonic
harmonic oscillator problem (Figures 1-3), as well as
the non-hermitian ix3 + iax potential (Figure 4), on
the complex energy domain. Only at the exact physi-
cal energy will the limit be finite. Everywhere else it
will become infinite.
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Figure 4. Log10(λN (E)) for N = 20, 30, 40, 50,
V (x) = ix3 + iax, a = −2.70

Given the behavior of the LN (E), it is clear that
the local minima in the energy variable, at a given
order “N”, should approximate the physical energies.
Thus, for each physical discrete state, its correspond-
ing approximants, Ephys;N , will satisfy

∂ELN (E(min)
phys;N ) = 0, (38)

resulting in

lim
N→∞

E
(min)
phys;N = Ephys. (39)

More importantly, these local minima have a very
important property. The expressions LN (E(min)

phys;N )
form an increasing, positive sequence, bounded from
above by the physical counterpart. This follows from

LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1), (40)

which follows from:

LN (E(min)
phys;N ) < LN (E(min)

phys;N+1)

< LN+1(E(min)
phys;N+1). (41)

It now follows that the counterpart to the OPPQ
quantization condition in Eq. (22) becomes

0 < LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1) < . . .

< L∞(Ephys). (42)

Thus, the {LN (E(min)
phys;N )} form a monotonically in-

creasing positive sequence bounded from above by
the physical value. The minima do not necessarily
converge monotonically.

8. The OPPQ-bounding method
Upon reviewing Eq. (42) a bounding strategy emerges.
Assume that the sequence elements can be generated
to sufficiently high expansion orders, and that a rough
upper bound, BU can be discerned:

LN (E(min)
phys;N ) < LN+1(E(min)

phys;N+1) < . . .

< L∞(Ephys) < BU . (43)

Given the behavior of the LN (E) functions, as given
in Eqs. (35-37), one can readily determine energy
parameter values satisfying

LN (E(L)
phys;N ) = LN (E(U)

phys;N ) = BU , (44)

such that

E
(L)
phys;N < Ephys < E

(U)
phys;N , (45)

and

lim
N→∞

(
E

(U)
phys;N − E

(L)
phys;N

)
= 0+. (46)

As a point of comparison, the Rayleigh-Ritz (RR)
method solely produces upper bounds. Regardless of
how rapidly these bounds converge from above (to
the physical value), there is no theoretical criteria by
which the RR results can suggest a lower bound to
the physical energy. The OPPQ-BM method does.

9. The sextic anharmonic double
well potential

The sextic anharmonic oscillator (double well) poten-
tial problem is defined by

−∂2
xΨ(x) + (x6 + mx2)Ψ(x) = EΨ(x), (47)

where we will take g ≡ 1 and m = −4.
There are three different configuration space repre-

sentations for the sextic anharmonic oscillator prob-
lem, each with different MER relations of varying
order. The most immediate is simply working with
Ψ as given in Eq. (47). This leads to a sixth order
(i.e. 1 + ms = 6) finite difference MER relation, as
given in Eq. (48). We examine both OPPQ-AM and
OPPQ-BM as applied to this representation.

The next configuration space representation is that
of the Ψ2(x) presentation. It leads to a MER relation
of order 3 (i.e. 1 + ms = 3). We do not apply either
OPPQ formulation to this case. However, one can
use EMM to bound all the low lying discrete states;
thereby providing a test for the effectiveness of OPPQ.

The third, and last, sextic configuration space rep-
resentation is provided by the contact transformation,
Φ(x) = exp(− x4

4 )Ψ(x). This leads to the most effi-
cient MER representation, corresponding to a first
order (homogeneous) MER relation (i.e, 1 + ms = 1).
It results in the fastest OPPQ and EMM convergence.

9.1. EMM-Ψ
The first MER representation to be considered, for
the sextic anharmonic oscillator, results from a direct
MER analysis of the Schrödinger equation representa-
tion in Eq. (47). The power moments along the entire
real axis are referred to as the Hamburger moments
µ(p) =

∫
ℜ dx xpΨ(x).

Upon multiplying both sides of Eq. (47) by xp and
implementing an integration by parts analysis, implic-
itly assuming that one is working with a discrete state,
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there ensues a Hamburger moment equation relation
(MER) of the form:

µ(p + 6) = − m µ(p + 2) + Eµ(p)
+ p(p − 1)µ(p − 2), p ≥ 0. (48)

This is a MER equation of order 1 + ms = 6. The
MER relation in Eq. (48) applies to both even and
odd discrete states.

The generator form for the above MER becomes

ME(p + 6, ℓ) = − m ME(p + 2, ℓ) + EME(p, ℓ)
+ p(p − 1)ME(p − 2, ℓ), (49)

p ≥ 0; and 0 ≤ ℓ ≤ ms = 5. The initialization
conditions becomes

M(ℓ1, ℓ2) = δℓ1,ℓ2 , (50)

for 0 ≤ ℓ1,2 ≤ 5.
The OPPQ representation becomes

Ψ(x) =
∞∑

n=0
cnPn(x)R(x). (51)

One can take the weight to be the Gaussian, RG(x) =
exp(−x2), or the asymptotic form for the physical
states, RA(x) = exp(− x4

4 ). In the original formulation
of the OPPQ-Approximation Method (OPPQ-AM)
Handy and Vrinceanu examined both; and demon-
strated the superiority of RA(x). Our interest here
is to demonstrate this approach, and to implement
the OPPQ-Bounding Method with regards to the RA

formulation.
The orthonormal polynomials for the Gaussian,

RG(x), are determined by the Hermite polynomials

⟨Ĥm|exp(−x2)|Ĥn⟩ = δm,n, (52)

or

Ĥn(x) = 1√√
π2nn!

Hn(x). (53)

The orthonormal polynomials (i.e. their coefficients)
for RA(x) are determined through the Cholesky de-
composition of the Hankel moment matrix

Wm,n ≡
∫

ℜ
dx xm+nexp(−x4/4), (54)

or

Wm,n =
{

0, if m + n = odd,

2η− 1
2 Γ( η+1/2

2 ), if m + n = 2η, (even).
(55)

The projection coefficients are determined by

cn(E, µ0, . . . , µ5) =
ms=5∑

ℓ=0
Λ(n)

ℓ (E) µℓ, (56)

from Eq. (17-18), where

Λ(n)
ℓ (E) =

n∑

j=0
Ξ(n)

j ME(j, ℓ). (57)

The OPPQ-Approximation Method corresponds to
solving the secular equation

cN−ℓ1(E, −→µ ) = 0, (58)

for 0 ≤ ℓ ≤ 5 and N → ∞, or

Det
(

Λ(N−ℓ1)
ℓ2

(E)
)

= 0, (59)

a 6 × 6 determinantal secular equation.
In summary, having chosen N , we need to generate

{Λ(n)
ℓ (E)|N − ms ≤ n ≤ N}. This requires the or-

thonormal polynomials to order N and the generation
of ME(p + 6, ℓ), for 0 ≤ p ≤ N − 6. The Hankel mo-
ment matrix for the weight are required up to order
2N .

The results for both choices of weight are indicated
in Tables 1 and 2, for the first ten discrete state
energies. It is clear that the RA choice for the weight
is orders of magnitude faster than the simple Gaussian.

It is natural to normalize the missing moments
according to a unit normalization |−→µ |2 = 1, or

5∑

ℓ=0
µ2

ℓ = 1. (60)

Accordingly, the energy functional whose minimization
is part of the OPPQ-Bounding Method becomes:

LN (E) →
λN (E) ≡ Smallest Eigenvalue of PN (E), (61)

where the dyad matrix is given by

(
PN (E)

)
ℓ1,ℓ2

=
N∑

j=0
Λ(j)

ℓ1
(E)Λ(j)

ℓ2
(E). (62)

The λN (E) form a family of nested, increasing func-
tions, whose local minima approximate the eigenener-
gies, and serve to define a bounding formalism. We
depict this behavior for the RA(x) weight, in Figure 1.
The resolution is not too high and so it is difficult to
appreciate that the downward spikes actually are very
close to each other. This type of illustration becomes
easier to recognize in a subsequent reformulation of
the sextic anharmonic oscillator.

We can also apply EMM analysis to the system in
Eq. (47). The EMM procedure essentially imposes
the well known Hankel Hadamard Moment Problem
constraints in order to bound the discrete state ener-
gies associated with nonnegative configuration space
solutions. Since the only state of this type is the
ground state, which must also be of even parity, we
can further specialize the MER relation in Eq. (48) to
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N E0 E1 E2 E3 E4

25 -0.530376450630854 0.985067365669966 5.28830977093027 10.4934190522107 15.8338485774860
50 -0.523284216533135 1.00560182885171 5.37480811122565 10.5699924952422 16.7909114406834
75 -0.523268805558542 1.00576819439460 5.37496683348150 10.5725844031665 16.7952741272760
100 -0.523268623704744 1.00576834791848 5.37496999430605 10.5725850991710 16.7953468181267
125 -0.523268622109697 1.00576834035184 5.37497000920767 10.5725850451529 16.7953468448794
150 -0.523268622126032 1.00576834023041 5.37497000886154 10.5725850446303 16.7953468331754
175 -0.523268622127498 1.00576834022567 5.37497000884083 10.5725850445874 16.7953468327220
200 -0.523268622127550 1.00576834022555 5.37497000884007 10.5725850445860 16.7953468327042
25 -0.523268576015852 1.00576828117312 5.37497437050670 10.5726072299740 16.7951977796668
50 -0.523268622127552 1.00576834022554 5.37497000884005 10.5725850445859 16.7953468327034
100 -0.523268622127552 1.00576834022554 5.37497000884004 10.5725850445859 16.7953468327036
200. -0.523268622127552 1.00576834022554 5.37497000884004 10.5725850445859 16.7953468327036

Table 1. OPPQ-AM, for the first five states of V (x) = x6 − 4x2, ms = 5, RGauss = e−x2 and RA = e−x4/4 .

N E5 E6 E7 E8 E9

25 23.5770262257055 46.5131514442214
50 23.8599097864908 31.6506317849753 40.1684238879451 48.7083019153321 57.2184300245252
75 23.8838452220218 31.7416917119713 40.2993336329482 49.5062748750452 59.2851256940478
100 23.8839209143498 31.7425529172254 40.3026888622591 49.5114653542220 59.3258556535193
125 23.8839223617171 31.7425500612024 40.3027376770457 49.5115009782085 59.3262796515870
150 23.8839223760489 31.7425498440774 40.3027378004240 49.5115004143879 59.3262744628777
175 23.8839223758291 31.7425498374411 40.3027377924283 49.5115003807374 59.3262741019580
200 23.8839223758112 31.7425498371238 40.3027377918922 49.5115003775253 59.3262740863702
25 23.8828743775059 31.7384980035506 40.3209134822543 50.0634788389675
50 23.8839223758082 31.7425498371192 40.3027377921622 49.5115003777545 59.3262740709658
100 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373
150 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373
200 23.8839223758101 31.7425498371122 40.3027377918721 49.5115003773799 59.3262740857373

Table 2. OPPQ-AM, for the sixth-tenth states of V (x) = x6 − 4x2, ms = 5, RGauss = e−x2 and RA = e−x4/4 .

such states, yielding a reduced finite order difference
equation for the power moments (i.e. ms = 2). The
results produced bounds to the 8th decimal place for
the ground state energy. We obtain the EMM bounds:
−0.523268623844284 < Egr < −0.523268619253327,
based on an expansion order of approximately 29
power moments (i.e. {µ(p)|0 ≤ p ≤ 28}). This was
done on a simple PC with about 14 place precision.

We note that the EMM bounds quoted above were
accurate to approximately eight decimal places, based
on approximately 28-29 power moments. The missing
moment order used for the even state formulation was
ms = 2. The OPPQ-BM bounds quoted in Table 3,
based on an ms = 5 MER formulation, use an optimal
weight, but only give us two decimal place accuracy
on the basis of 25 power moments. Of course, the
bounds quickly improve, as N → 125. We continue
these EMM versus OPPQ comparisons below.

By way of contrast, the OPPQ-BM procedure can
produce bounds on all the low-lying states. To pro-
duce these, we must first generate the local minima,
∂EλN (E(min)

phys;N ) = 0. Fortunately, these derivatives
can be obtained algebraically through a recursion
procedure. Following this, we must discern a crude

upper bound (i.e. B(U)
phys) to the positive sequence

{λN (E(min)
phys;N )|N > 0} < B(U)

phys. We then deter-
mine the energy interval whose endpoints satisfy
λN (E(L)

phys;N ) = B(U)
phys = λN (E(U)

phys;N ). These become
the lower and upper bound estimates for that physical
energy.

The above bounding analysis is initiated in Table 4
for the ground and second excited state of the sextic
anharmonic oscillator. Since the use of the RA weight
yields very rapid convergence, we see that the coarse
upper bounds, B(U) are easily determined. Using these
we can generate the bounds for the ground state and
first excited state, as given in Table 3. We note that
the OPPQ-BM bounds generated in Table 3 (we could
have continued tightening the bounds), for the ground
state, used 125 power moments giving us bounds at
the 18th decimal place. In Eq. (69) we quote the EMM
bounds obtained on the basis of 61 power moments.
The accuracy is at the 33rd decimal place. However,
in Eq. (70), using an optimal (Stieljes representation)
weight, the OPPQ-AM converged to 50 decimal places,
using only 45 power moments.

71



Carlos R. Handy Acta Polytechnica

N E
(L)
0;N E

(U)
0;N E

(L)
2;N E

(U)
2;N

25 -0.524852943468474 -0.521778245307431 5.368449680815753 5.384374689469648
50 -0.523268749143883 -0.523268495112775 5.374969291406036 5.374970726288986
75 -0.523268622134517 -0.523268622120587 5.374970008804361 5.374970008875728
100 -0.523268622127553 -0.523268622127552 5.3749700088400432 5.3749700088400468
125 -0.52326862212755223948 -0.52326862212755223934 5.3749700088400449937 5.3749700088400449945

B(U) = −0.876 B(U) = −0.990

Table 3. OPPQ-BM upper and lower bounds for the ground and second excited states, using RA = e−x4/4.

N ∂Eλ(E(min)
0;N ) = 0 Log10

(
λ(E(min)

0;N )
)

∂Eλ(E(min)
2;N ) = 0 Log10

(
λ(E(min)

2;N )
)

25 -0.523315367444853 -0.877054685910968 5.37640170043752 -0.991603081677466
50 -0.523268622128326 -0.877042389134943 5.37497000884746 -0.991530473233468
75 -0.523268622127552 -0.877042389134815 5.37497000884004 -0.991530473233135
100 -0.523268622127552 -0.877042389134815 5.37497000884004 -0.991530473233135

B(U) = −0.876 B(U) = −0.990

Table 4. OPPQ-BM Analysis for determining coarse upper bounds, B(U), for the ground and second excited states,
using RA = e−x4/4 .

9.2. EMM-Ψ2

Another MER representation for the sextic anhar-
monic oscillator is possible by working with the prob-
ability density, S(x) = Ψ2(x). It is easy to show that
the probability density for real potentials satisfies
a third order LODE. For the sextic anharmonic os-
cillator problem, this 3rd order LODE yields a MER
relation of order 3 (i.e. ms = 2). We do not give
the details of this analysis, since the following MER
representation offers the easiest OPPQ implementa-
tion. The value of EMM-Ψ2 is that we can bound
the discrete states and use the results to gauge the
effectiveness of OPPQ. This is referenced below.

9.3. EMM e− x4
4 Ψ(x)

The third MER representation is obtained through
the contact transformation,

Φ(x) = exp(−x4

4 )Ψ(x). (63)

Since this involves a factor identical to the dominant
WKB asymptotic form for the physical states, the
MER representation for Φ will involve fewer missing
moments (i.e. none, after a normalization) than the
MER for Ψ, as given in Eq. (48), involving five (5)
missing moments (after imposing a normalization).
This is desirable since the lower the missing moment
order, the faster the convergence of either OPPQ or
EMM. We provide the details of both approaches
below.

9.4. OPPQ analysis of the (ms = 0) sextic
anharmonic double well oscillator

The double well anharmonic problem of interest is
that for the potential V (x) = x6 − 4x2, where x ∈ ℜ.
The physical solutions must die off, asymptotically,

according to the dominant WKB expression Ψ(x) ∼
exp(− x4

4 ).
If we work with the contact transformation in

Eq. (63) Φ(x) = exp(− x4

4 )Ψ(x), we note that the
discrete states remain normalizable and exponentially
bounded, in the Φ representation. Unphysical Ψ con-
figurations (i.e. non-normalizable due to their expo-
nentially unbounded form in one or both asymptotic
directions) map into non-normalizable Φ configura-
tions. The EMM formalism works in either represen-
tation, precisely because of this. We note that the
power moments for exponentially bounded configura-
tions exist; whereas they become infinite (or do not
exist) for unphysical configurations.

The Φ configurations must satisfy the differential
equation

Φ′′(x) + 2x3Φ′(x) + (7x2 + E)Φ(x) = 0. (64)

The Hamburger moment (i.e. µ(p) ≡
∫

ℜ dx xpΦ(x))
equation becomes

(2p − 1)µ(p + 2) = p(p − 1)µ(p − 2) + Eµ(p).

The even parity states will admit a MER for the even
order power moments, µ(2ρ) = u(ρ) or

(4ρ − 1)u(ρ + 1) = 2ρ(2ρ − 1)u(ρ − 1) + Eu(ρ). (65)

The odd parity states µ(2ρ + 1) ≡ ν(ρ) will satisfy
the MER :

(4ρ + 1)ν(ρ + 1) = 2ρ(2ρ + 1)ν(ρ − 1) + Eν(ρ). (66)

We note that the even order Hamburger moments
satisfy: µ(2ρ) = u(ρ) =

∫ +∞
0 dξ ξρ−1/2Φ(

√
ξ), where

x2 = ξ; however, the odd order Hamburger moments
satisfy µ(2ρ + 1) = ν(ρ) =

∫ +∞
0 dξ ξρΦ(

√
ξ). The

importance of these relations is that the respective
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N E0 E2 E4 E6 E8

10 -0.5234534028 5.354166238 16.82887249
20 -0.5232677208 5.375031586 16.79298386 31.63171200 49.94322409
30 -0.5232686293 5.374969341 16.79536744 31.74329539 49.45632020
40 -0.5232686220 5.374970019 16.79534604 31.74254727 49.51247497
50 -0.5232686221 5.374970009 16.79534686 31.74254902 49.51148774
60 -0.5232686221 5.374970009 16.79534683 31.74254987 49.51149946
70 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150043
80 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038
90 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038
100 -0.5232686221 5.374970009 16.79534683 31.74254984 49.51150038

Table 5. OPPQ-BM Estimates (i.e. ∂EλN (E(min)
phys;N ) = 0), Φ representation, (Eq. 65) RL(ξ) = ξ− 1

2 exp(−ξ).

moments, in the context of Eqs. (65, 66) allow us to
implement a Stieltjes moment analysis through EMM.

We will only apply OPPQ on the even Ψ configu-
rations, for simplicity. However, since the even order
power moments are the moments of Υ(ξ) ≡ Φ(

√
ξ)√

ξ
,

the OPPQ expansion must be relative to this con-
figuration. Thus, the relevant OPPQ expansion will
be

Υ(ξ) =
∞∑

n=0
cnPn(ξ)R(ξ), (67)

where Φ’s power moments will satisfy Eq. (65).
Since the physical configurations behave, asymptot-

ically, as Ψ(x) ∼ exp(− x4

4 ), the transformed expres-
sions behave as Φ(ξ) ∼ exp(− ξ2

2 ).
Since the transformed system involves a Stieltjes

configuration supported on the nonnegative axis, one
might take the weight to be the exponential function,
R̃L(ξ) = exp(−ξ), with Laguerre polynomials; or the
Gaussian R̃G(ξ) = exp(−ξ2/2), restricted to the non-
negative real axis. However, for the quantization
integral in Eq. (20) to apply, particularly with regards
to the generation of bounds, we need to take into
account the ξ− 1

2 that is inherent to the transformed,
even order, power moments.

Based on the previous arguments we will work with
RL(ξ) = ξ− 1

2 exp(−ξ) and RG(ξ) = ξ− 1
2 exp(−ξ2/2).

The corresponding power moments for the weights,
in order to generate the orthonormal polynomials are
obtained as follows.

The power moments wL(p) ≡
∫ ∞

0 dξ ξpRL(ξ) or
wL(p) = Γ[p + 1

2 ] satisfy the recursion relation
wL(p + 1) = (p + 1/2)wL(p); whereas wG(p) ≡∫ ∞

0 dξ ξpRG(ξ), or wG[p] = 2 2p−3
4 Γ[ 2p+1

4 ], satisfy the
recursion relation wG(p + 2) = (p + 1/2)wG(p).

In their original work on the OPPQ-Approximation
Method (i.e. Eq. (28)), Handy and Vrinceanu imple-
mented OPPQ-AM with both of these types of weights
(i.e. using their counterparts along the entire real axis,
x ∈ ℜ). They showed that superior (faster converging)
results were obtained for weights that emulated the
asymptotic form of the physical states.

The enhanced efficiency of working with RG(ξ) in-
stead of RL(ξ) is evident in Figure 3 compared to
Figure 2 (i.e. the functions for the former are converg-
ing much faster around the physical energies).

The numerical results for the ms = 0 sextic an-
harmonic oscillator problem are given in the follow-
ing section. We only give numerical results based
on using RL(ξ). Instead of working with RG(ξ), we
will use the actual ground state wavefunction (i.e.
its power moments), Rgr(ξ). The reason is that
both have the same asymptotic behavior. That is,
Rgr(ξ) = Φgr(ξ) ∼ RG(ξ); therefore, upon solving for
the power moments of the ground state wavefunction
(including the energy), we can use it to generate its
orthonormal polynomials, and quantize the excited
states, through OPPQ.

To be able to do this requires sufficient accuracy in
the determination of the ground state power moments,
since these must generate a positive Hankel matrix
for the weight (before implementation of a Cholesky
analysis). Although this can be done through OPPQ,
EMM inherently works with positive matrices and
therefore is more efficient for doing this type of analy-
sis.

9.5. OPPQ results for the ms = 0, sextic
anharmonic oscillator

The OPPQ-Φ formulation is a zero missing moment
problem (i.e. ms = 0) and converges very fast.

In Figure 2 we plot the nested sequence λN (E), for
N = 4, 6, 8, 10, 12. This calculation was done based on
the RL(ξ) weight. A similar result holds for the RG(ξ)
weight as depicted in Figure 3. It clearly reveals the
faster convergence afforded by a weight that emulates
the asymptotic form of the physical states.

In Table 5 we give the OPPQ-BM energy esti-
mates (i.e. the local minima, ∂EλN (E(min)

phys.;N ) = 0)
for the low lying, even parity, discrete state ener-
gies, based on Eq. (65), using the inferior weight
RL(ξ) = ξ− 1

2 exp(−ξ).
Table 5 only cites results (to ten significant figures)

for N ≤ 100. Not shown in Table 5 are the OPPQ-BM
estimation results for the ground state at N = 120:
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N ∂ESN (E(min)
N ) = 0 Log(SN (E(min)

N )) cN (EN ) = 0 E
(L)
N E

(U)
N

20 49.94322409213197 7.982552803 49.4426432537 48.893 50.857
30 49.45632020275004 7.997267757 49.4986057623 49.366 49.546
40 49.51247497421839 8.002499541 49.5123070944 49.504 49.520
50 49.51148774312169 8.002657778 49.5114731270 49.510 49.512
60 49.51149945726214 8.002665930 49.5115007312 49.51140 49.51159
70 49.51150043370514 8.002667120 49.5115003992 49.51148 49.51151
80 49.51150037650008 8.002667337 49.511500375879294 49.5114990 49.5115017
90 49.51150037729806 8.002667346 49.511500377394135 49.5115001949 49.5115005597
100 49.51150037738496 8.002667348 49.511500377382972 49.5115003518 49.5115004029
110 49.51150037737999 8.002667348 49.511500377379789 49.5115003736 49.5115003811
120 49.51150037737991 8.002667348 49.511500377379918 49.5115003768 49.5115003780

B = 8.01

Table 6. OPPQ Results for E8: RL = e−ξ√
ξ

.

Egr = −.52326862212755224. This result lies within
the bounds generated through an EMM-Φ analysis
(based on the first 29 power moments):

−.5232686221275616 <

Egr < −.5232686221275495. (68)

We can infer that the EMM bounds in Eq. (68) pre-
dict the exact answer to 13 decimal places. This result,
based on 29 moments, surpasses the OPPQ-BM esti-
mation analysis in Table 5 (N = 30) of −0.5232712343,
at the fourth-fifth decimal place. Thus EMM-Φ, by
this comparison, is approximately three times more
efficient.

Having said this, we remind the reader that whereas
EMM involves sophisticated analysis (i.e. nonlinear
convex optimization), OPPQ is purely algebraic, and
implementable to arbitrary accuracy through algebraic
software, such as Mathematica. Additionally, EMM is,
in practice, only applicable to the (multidimensional)
bosonic ground state; whereas OPPQ applies to any
multidimensional bosonic or fermionic (low dimension)
system, including non-hermitian systems.

9.5.1. Generating bounds for E8

We re-examine the results in Table 5 for E8, the slow-
est converging energy. As with other methods, such
as Rayleigh-Ritz (RR), the manifest convergence of
the results (i.e. the N → 120 sequence in Table 5) is
no guarantee of the accuracy of the apparent limit in
predicting the true energy. Whereas EMM produces
converging bounds from first principles; OPPQ defines
a procedure by which one can generate bounds pro-
vided a certain parameter is empirically determined,
specifically the coarse upper bound, B(U). Below we
describe the OPPQ-BM bounding procedure in detail,
although the same underlies the results in Tables 4
and 3, for the ms = 3 MER formulation in Eq. (48).
The only advantage of the current problem is that
it is a zero missing moment problem, and therefore
easier to implement.

In Table 6 we provide the OPPQ-BM eigenenergy
estimate for E8 (the second column). The third col-
umn contains the increasing, convergent, positive se-
quence from which a coarse upper bound, B(U), is to
be empirically determined. Using this coarse upper
bound, we can generate arbitrarily tight bounds (i.e.
the last two columns), as N → ∞. Note that we
continued generating these bounds in Table 7. This
entire procedure is based on the assumption that the
manifest convergence of the third column in Table 6
is correctly bounded, from above, by the empirically
determined coarse upper bound, B(U). The fourth
column contains the OPPQ-AM estimate.

It is important to appreciate that the coarseness
of B(U) has nothing to do with the tightness of the
bounds, in principle, assuming one can generate high
OPPQ expansion orders.

Below we compare the accuracy of the OPPQ-
BM formalism to order N − 120, both with re-
spect to the OPPQ-BM energy estimate (E8 =
49.5115003774, from Table 6) and the OPPQ-BM
bounds (49.5115003768 < E8 < 49.5115003780, also
from Table 6), as compared to the bounds generated
by an EMM analysis. The results are very good and
consistent.

It is important to note that the OPPQ-BM estimate
obtained at lower order, does not have to lie within the
OPPQ-BM bounds obtained at higher order. Thus
the entry in the second column in Table 6, corre-
sponding to OPPQ-BM energy estimate (i.e. the local
minima) of E = 49.51148774312169 (i.e. N = 50),
lies outside of the bounds generated in the last two
columns, for N > 80. However, all OPPQ-BM esti-
mates must lie within the bounds calculated at lower
order.

9.6. Comparison with EMM bounds
Generally, the EMM analysis will be more efficient in
generating bounds than OPPQ-BM. That is, fewer
moments will be required to generate the same level
of tightness of the bounds. However, this depends
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N E
(L)
8 E

(U)
8

150 49.511500377377302482 49.511500377382545933
160 49.511500377379459378 49.511500377380389040
170 49.511500377379839286 49.511500377380009132
180 49.511500377379908253 49.511500377379940166
190 49.511500377379921131 49.511500377379927287
200 49.511500377379923601 49.511500377379924818
210 49.511500377379924086 49.511500377379924333
220 49.511500377379924184 49.511500377379924235
230 49.511500377379924204 49.511500377379924215
240 49.511500377379924208 49.511500377379924210
250 49.511500377379924209048830 49.511500377379924209558953
260 49.511500377379924209246851 49.511500377379924209360932
270 49.511500377379924209290914 49.511500377379924209316869
280 49.511500377379924209300890 49.511500377379924209306893
290 49.511500377379924209303186 49.511500377379924209304597
300 49.511500377379924209303723 49.511500377379924209304060

B = 8.01

Table 7. Bounds for E8 based on chosen B(U).

N E0 E2 E4 E6 E8

1 -0.5232686221275529
5 -0.5232686221276021 5.37847969429 16.78604192264
10 -0.5232686221275522 5.37497046837 16.79542276464 31.74535880954 49.5248113799
20 -0.5232686221275523 5.37497000884 16.79534683270 31.74254983720 49.5115003841
30 -0.5232686221275523 5.37497000884 16.79534683270 31.74254983711 49.5115003772

Table 8. OPPQ-BM Estimates (i.e. ∂ESN (E) = 0) for V (x) = x6 − 4x2, ms = 0, R(x) = Φgr(x) based on the first
61, EMM generated, ground state power moments {ugr(p ≤ 60)}.

on the choice of weight, as the following case exem-
plifies. Thus, with regards to the ms = 2 missing
moment formulation given earlier, the EMM bounds
for the ground state −0.523268623844284 < Egr <
−0.523268619253327, were based on the first 29 power
moments. The same (approximately) level of tight-
ness was achieved with OPPQ-BM using more than 50
power moments, based on the results in Table 3. Thus,
in this example EMM is vastly superior to OPPQ-BM.
However, for the next example the situation signifi-
cantly improves for OPPQ-BM over EMM.

For the ms = 0 formulation being considered, using
the first 62 Stieljes power moments (i.e. {u(p)|p ≤
61}), EMM achieves the bounds:

− .52326862212755223941616949719078449 < EEMM

< −.52326862212755223941616949719078395 (69)

Using the weight RL the OPPQ-AM estimate achieves
this level of accuracy on the basis of approximately
220 power moments; whereas the weight RG gener-
ates an OPPQ-AM estimate that surpasses the EMM
accuracy based only on the use of 45 moments (OPPQ-
AM):

EOP P Q−AM = −0.523268622127552239416169497
19078406116564771630604 (70)

9.7. Using the ground state as a weight
In Table 8 we implement OPPQ-BM on a representa-
tion that uses the generated moments of the unknown
ground state R(x) = Ψgr(x). As expected, the con-
vergence is very fast in comparison with results based
on RL.

9.8. EMM results for the probability
density

Application of EMM to the probability density (i.e.
EMM-Ψ2, an ms = 2 problem) yields the bounds
−.52326866 < E0 < −.52326857, 1.0057681 <
E1 < 1.0057685, 5.3749699 < E2 < 5.3749701,
10.5725845 < E3 < 10.5725855, 16.795339 < E4 <
16.795351, 23.883886 < E5 < 23.883961, 31.74217 <
E6 < 31.74323, 40.301 < E7 < 40.305, 49.506 <
E8 < 49.533 all to the same moment expansion or-
der of 28. We also note that an EMM-Ψ{ms = 2}
bounding formulation on the ground state yields com-
parable bounds using the first 28 power moments:
−.5232686237 < Egr < −.5232686193 . With regards
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to E8, extension of EMM-Ψ2{ms = 2} analysis to
the first 48 moments (i.e. {u(p)|0 ≤ p ≤ 47}) yields
the bounds 49.5115003768 < E8 < 49.5115003798.
These serve to further confirm some of the results
previously cited.

10. A PT-symmetry breaking,
non-hermitian, problem

Consider the non-hermitian system

−∂2
xΨ(x) + (ix3 + iax)Ψ(x) = EΨ(x), (71)

which is known to break PT symmetry for negative
values of the ‘a’ parameter (a < −2.611809356, and
for a < −5.375879629) from Refs. [8, 25]. The case
a = 0 has purely real eigen-energies, as computed by
Bender and Boettcher [5], and theoretically confirmed
by Dorey et al. [6]. The EMM-Ψ∗Ψ formulation also
provided strong numerical evidence for this [27].

States that are PT symmetric satisfy Ψ∗(−x) =
Ψ(x), and have real energies, E ∈ ℜ. States that
break this symmetry have complex conjugate pairs
for the energies (i.e. Ψ∗(−x) ̸= Ψ(x), with complex
energies E∗ and E, respectively).

We work with the MER-Ψ representation for which
the complex power moments on the real axis satisfy

µ(p + 3) = − aµ(p + 1) − iEµ(p)
− ip(p − 1)µ(p − 2), p ≥ 0. (72)

The recursion relation for the energy dependent gen-
erator coefficients is

ME(p + 3, ℓ) = − aME(p + 1, ℓ) − iEME(p, ℓ)
− ip(p − 1)ME(p − 2, ℓ), (73)

for p ≥ 0, 0 ≤ ℓ ≤ 2, and ME(ℓ1, ℓ2) = δℓ1,ℓ2 . This
is an ms = 2 representation of order 3. Since the
asymptotic form of the physical states goes as Ψ(x) ∼
exp(− 2

5 |x| 5
2 ), we can use the Gaussian weight R(x) =

exp(−x2/2). The OPPQ-BM formalism ensues as
before:

Ψ(x) =
∞∑

j=0
cjPj(x)R(x), (74)

involving real weights and corresponding orthonormal
polynomials. The complex projection coefficients are
given by

cj(E, µ0, µ1, µ2) = ⟨Pj(x)|Ψ⟩, (75)

or

cj(E, µ0, µ1, µ2) =
ms=2∑

ℓ=0
Λ(j)

ℓ (E) µℓ, (76)

where the coefficients depend on the orthonormal
polynomial coefficients and the ME(p, ℓ)’s:

Λ(j)
ℓ (E) =

j∑

η=0
Ξ(j)

η ME(η, ℓ). (77)

The OPPQ-BM quantization condition is

I[Ψ, R] =
∫

ℜ
dx

Ψ∗(x)Ψ(x)
R(x)

=
{

finite ⇐⇒ E = Ephys and −→µ = −→µ phys,

∞ ⇐⇒ E ̸= Ephys or −→µ ̸= −→µ phys.
(78)

We adopt the vector notation for the missing moments−→µ ≡ (µ0, µ1, µ2).
Substituting the OPPQ representation we obtain:

I[Ψ, R] =
∞∑

j=0
c∗

j (E, −→µ )cj(E, −→µ ). (79)

Once again, the focus is on :

SN (E, −→µ )

=
ms∑

ℓ1=0

ms∑

ℓ2=0
µ∗

ℓ1

( N∑

j=0
Λ(j)

ℓ1
(E)∗Λ(j)

ℓ2
(E)

)
µℓ2 , (80)

involving the positive definite matrix

(
PN (E)

)
ℓ1,ℓ2

=
N∑

j=0
Λ(j)

ℓ1
(E)∗Λ(j)

ℓ2
(E). (81)

If we adopt a unit missing moment vector nor-
malization, then the focus for OPPQ-BM quantiza-
tion is on the behavior of the smallest eigenvalue,
λN (E) ≡ Smallest Eigenvalue

(
PN (E)

)
, viewed as

a function of the real and imaginary parts of the
energy variable. The focus is on determining the lo-
cal minima: ∂Er

λN (E(min)
N,phys) = ∂Ei

λN (E(min)
N,phys) = 0.

These derivatives can be obtained algebraically.
We outline the essential steps for algebraically gen-

erating the partial derivatives. First of all, we have
λN (E) = ⟨−→µ |PN (E)|−→µ ⟩, involving the normalized
missing moment (lowest) eigenvector. This is not an
analytic function in E, so we must work with the
partial derivatives with respects to Er,i. Thus, we
need ∂Er,iλN (E) = ⟨−→µ |∂Er,iPN (E)|−→µ ⟩. We can gen-
erate the required matrix expression from Eq. (80)
or ∂Er,i

PN (E) =
∑N

j=0

(
∂Er,i

Λ(j)(E)∗
)

Λ(j)(E) + c.c..
From Eq. (77), so long as the Ξ’s do not depend on
the energy parameter, we need ∂Er,i

ME(η, ℓ). How-
ever, this can be obtained recursively through the
expression in Eq. (72).

Our immediate interest is on the behavior of λN (E)
over the two dimensional complex energy plane, as
the parameter ‘a’ is varied, and N = 40. In
Figures 5-12 we show the convergence of two PT-
breaking (complex conjugate) energies (eventually be-
coming real) as we increase the a-parameter through
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Figure 5. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −3.30

Figure 6. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.90

Figure 7. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.70

Figure 8. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.50

Figure 9. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.30

Figure 10. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −2.10
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Figure 11. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = −1.70

Figure 12. Log10(λ40(E)) for PT-breaking regime,
−3.30 ≤ a ≤ −1.70 for V (x) = ix3 + iax, a = 0.00

−3.30, −2, 90, −2.70, −2.50, −2.30, −2.10, −1.70 and
0. These parameter values were chosen since it is
known that PT-symmetry breaking occurs at ac1 =
−2.611809356 (as well as at ac2 = −5.375879629) [8,
25].

Figure 7 shows the behavior of the physical energies
(i.e. defined by the local minima), for a = −2.70 ≈ ac1 ,
the critical value for the onset of symmetry breaking.
For this same a = −2.70, Figure 4 shows the behavior
of successive λN (E) surfaces for N = 20, 30, 40, 50.
Within the two dimensional graphical renderings, we
see similar behaviors to that in Figures 1-3. We can im-
plement the same OPPQ-BM bounding analysis used
previously, for hermitian systems, to bound the real
and imaginary parts of the discrete state real/complex
energies. The nesting of the respecive λN (Er, Ei) in
Figure 4 shows the viability of the previous OPPQ-BM
analysis for bounding the real and imaginary parts
of the complex-plane energies. This is the focus of
a future work.

We note that for a = 0, the local minima in Fig-
ure 12 correspond, approximately (due to the low
order, N = 40) to the PT-symmetric states with ener-
gies E0 = 1.15626707198811, E2 = 4.10922875280956,
E3 = 7.56227385497590 and E4 = 11.31442182025857
(not shown). These were determined by EMM [8] and
OPPQ-AM [10].

11. Conclusions
We have demonstrated the effectiveness of a new
eigenenergy bounding procedure implementable for
multidimensional discrete states regardless of the her-
mitian or non-hermitian character of the associated
Schrödinger operator. The discussion centered on
several one dimensional systems of this type. The
extension to multidimensions have been given else-
where [9]. The approach advocated here is purely
algebraic.
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Abstract. We consider the free massless Wess-Zumino Model in 4D which describes a supersymmetric
field theory that is invariant under the rigid or global supersymmetry transformations where the
transformation parameter ϵ (or ϵ̄) is a constant Grassmann spinor. We quantize the theory using
the Hamiltonian and path integral formulations.
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1. Introduction
Supersymmetry (SUSY) is a symmetry that rotates
bosons into fermions and fermions into bosons. It
is one of the beautiful symmetries of nature. Also,
a field theory (FT) which remains invariant under the
rigid or global supersymmetry transformations (where
the transformation paremeter is a constant Grassman
spinor) and which also satisfies the super Poincare
algebra (SPA) is usually referred to as a supersym-
metric field theory (SFT). In this article, we consider
the free massless Wess-Zumino Model (WZM) in 4D
which describes a SFT. It may be important to men-
tion here that the WZM is the first known example of
an interacting 4D quantum field theory with linearly
realised SUSY, studied by Wess and Zumino using
the dynamics of a single chiral superfield (composed
of a complex scalar and a spinor fermion). It may
be important to mention that the WZM represents
a typical SFT which is of central importance in the
theory of SUSY, supergravity and superstring theory
(SST) and for further details we refere to the work of
Refs. [1–8].

The WZM describes an example of a non-manifest
supersymmetry [5]. One could of course go to the
formalism of superspace and superfields to construct
a theory that has a manifest supersymmetry [5]. Tak-
ing this theory as an example, it is possible to formu-
late supersymmertic field theories in different dimen-
sions including in higher dimensions. The WZM also
provides a basic framework for the study of Ramond
Nievue Schwarz (RNS) SST [8] which is an example
of a SST with non-manifest SUSY. Further, start-
ing with the WZM, it is also possible to construct
a supergravity theory [1–6, 8].

SPA is a graded Lie algebra that includes anti-
commutation relations (ACR’s) involving the super-
charge Qa – the generator of the SUSY transforma-
tions. WZM is one of the simplest examples of a SFT.
In this article, we discuss the supersymmetry of WZM

and present some remarks with respect to the rigid
or global supersymmetry versus the local supersym-
metry (which happens to be a Supergravity theory).
Finally we consider the constraint quantization of this
theory [7]. It is important to mention that the su-
persymmetry has profound applications in conformal
hadron physics from light-front holography where it
even has some observational prospects [9–11].

As mentioned above, the supersymmetry is a sym-
metry that relates bosonic and fermionic variables (or
the bosons and fermions) so that:

δB = ϵ̄F , δF = ϵ ∂B ; ∂ ≡ ∂µ (1)

Here, δ is bosonic, B is bosonic and F is fermionic.
The transformation parameter ϵ (or ϵ̄) is a constant
Grassman spinor and is fermionic. Grassman vari-
ables are anti-commuting. Supergravity theory on the
other hand is a theory that has “local supersymmetry”
and it is invariant under local Susy transformations
where the transformation parameter depends on the
spacetime xµ. So the transformation parameter for
supergravity: ϵ(xµ) or ϵ̄(xµ) depends on xµ and hence
supergravity is a “gauge theory” of gravity. In con-
trast to this the WZM is a supersymmetric FT with
rigid or global (not local) Supersymmetry.

Let us us consider two consecutive infinitesimal rigid
supersymmetry transformations of a bosonic field B:

δ1 B = ϵ̄1F , δ2F = ϵ2∂B (2)

This then implies that the two internal SUSY trans-
formations lead us to a spacetime translation:

{δ1, δ2}B = aµ∂µB ; aµ = (ϵ̄2γµϵ1) (3)

Presence of a spacetime derivative of B on right hand
side (RHS) of above equation suggests that the Susy
is an extension of the Poincare spacetime symmetry:

{Qa, Q̄b} = 2(γµ)abPµ (4)
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Supercharge Qa (a = 1, 2, 3, 4 in 4D) is the gener-
ator of SUSY transformations. It is related to the
generator of spacetime translations Pµ and therefore
is not an internal symmetry generator. The SUSY
transformation is an extention of the Poincare space-
time symmetry. Supercharge Qa is a spinor. It is
fermionic and anti-commuting. Poincare algebra (PA)
after including the supersymmetry becomes the SPA.

2. The Wess-Zumino Model
The WZM is defined (on-shell) by the Lagrangian
density [5]:

L :=
[1

2(∂µA)∂µA− 1
2m

2A2 + 1
2(∂µB)∂µB

− 1
2m

2B2 −mgA(A2 +B2)

+ ψ̄(iγν∂ν −m)ψ − g (ψ̄ψ A+ iψ̄γ5ψB)

− 1
2g

2(A2 +B2)2
]

(5)

Here A is a scalar field, B is a pseudoscalar field,
ψ is a spin-1/2 Majorana field (ψ = ψC = Cψ̄T ). C
is the charge conjugation matrix and A = A† and
B = B†. All the fields here have the same mass m
and they couple with the same strength g. This is in
contrast to the non-SUSY FT’s.

This is due to the fact that states of a particular
representation of the super Poincare algebra (SPA) are
characterized by the eigenvalue m2 of P 2 (= PµP

µ)
and different values of spin s. Actually, all the fields
belong to the same mass multiplet in SPA.

Pauli-Ljubanski polarization vector is defined as:

Wµ := 1
2ϵµνρσP

νMρσ (6)

Here

P 2 = PµP
µ

W 2 = WµW
µ (7)

are Casimir operators of PA that satisfy:
[
P 2,Mµν

]
= 0

[
P 2, Pµ

]
= 0

[
W 2,Mµν

]
= 0

[
W 2, Pµ

]
= 0 (8)

We further have:

P 2 = m2 > 0
W 2 = −m2s(s+ 1). (9)

Where, m2 and (−m2s(s+1)) are the eigenvalues of P 2

and W 2. Here s denotes the spin of the representation
which assumes discrete values: s = 0, 1/2, 1, 3/2, . . .

This representation is specified in terms of the mass
m and spin s. Physically a state in a representation
(m, s) corresponds to a particle of rest mass m and

spin s. Also, since the spin projection S3 can take
any value from −s to +s, (massive particles fall into
(2s+ 1)-dimensional multiplets).

In WZM, all the fields namely, A, B, ψ, ψ̄ have the
same mass m and they couple with the same strength
g (in the unbroken SUSY) – in contrast to the non-
supersymmetric field theories. States of a particular
representation of SPA are characterized by the eigen-
value m2 of Casimir operator P 2 and different values
of spin s. Wµ is proportional to Pµ (generator of the
Poincare group):

Wµ = λPµ (10)

and

W0 = λP0 = −→P · −→J (11)

where

Pµ = (P0 ,
−→
P ). (12)

The constant of proportionality λ in Wµ = λPµ is
called Helicity and it is defined by:

λ :=
−→
P · −→J
P0

(13)

for massless particles with λ := ±s where s =
0, 1/2, 1, . . . is the spin of representation. N = 1 is
called as the Minimal Supersymmetry and N > 1
is called the Extended Supersymmetry.

For simplicity we set (g = 0) yielding the La-
grangian density of the free WZM [5]:

L :=
[1

2∂µA∂
µA− 1

2m
2A2 + 1

2∂µB∂
µB

− 1
2m

2B2 + ψ̄(iγν∂ν −m)ψ
]

(14)

Theory is seen to be invariant (up to a total derivative)
under the rigid SUSY transformation [5]:

δA = ϵ̄ ψ

δB = −i ϵ̄ γ5 ψ

δψ = − (iγν∂ν +m) (A− iγ5 B) ϵ

δψ̄ = ϵ̄ (A− iγ5 B) (iγν←−∂ ν −m) (15)

Here ϵ is a constant Grasmann variable (which does
not depend on spacetime x ≡ xµ) implying a global
or rigid SUSY transformations. However, δψ and
δψ̄ here, are seen to depend on spacetime derivatives
of A and B. This implies that this is an extention
of Poincare spacetime symmetry (different than an
internal symmetry).

Supercurrent jµ of the theory could be easily calcu-
lated to be [5]:

jµ =
[ i

2 ϵ̄(A− iγ
5 B) (iγν←−∂ ν −m)γµ ψ

]

≡
[ 1
β
ϵ̄ kµ

]
(16)
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Here β is a real constant which could be suitably
choosen. The spinor charges Qa are defined by [5]:

Qa :=
∫
d3x k0

a

k0
a = i

2β
[
{(A− iγ5 B)(iγν←−∂ ν −m)}γ0ψ

]
a

(17)

Here k0
a are the spinor charge densities with a =

1, 2, 3, 4. Spinor charges and spinor charge densities
being fermionic satisfy SPA and the spinor charges
are seen to satisfy the anti-commutation relation
(ACR) [5]:

{Qa, Q̄b} = 2Pµ(γµ)ab (18)

This explicitly shows that the WZM obeys the SPA
and it is a supersymmetric FT having a rigid or global
SUSY. Also, the supersymmetry of the theory is a non-
manifest supersymmetry.

We now set m = 0 for making the fields to be
massless, so that the free massless WZM is defined by
the Lagrangian density:

L :=
[1

2∂µA∂
µA+ 1

2∂µB∂
µB + ψ̄(iγν∂ν)ψ

]
(19)

This is the simplest example of a supersymmetric FT
in 4D with a non-manifest supersymmetry.

We obtain the free WZM by setting g = 0 and it is
seen to be invariant, up to a total derivative, under
the rigid SUSY transformations [5]:

δA = ϵ̄ ψ

δB = −i ϵ̄ γ5 ψ

δψ = − (iγν∂ν) (A− iγ5 B) ϵ

δψ̄ = ϵ̄ (A− iγ5 B) (iγν←−∂ ν) (20)

Here ϵ is a constant Grasmann variable (which does
not depend on spacetime x ≡ xµ). Here, δψ and δψ̄
are seen to depend on spacetime derivatives of A and
B which implies that this is an extention or gener-
alization of the Poincare spacetime symmetry. (ϵ, ϵ̄)
being constant, implies that the symmetry is a rigid
or global Susy.

It is also possible to consider it as a theory of a single
complex scalar field and a fermionic field by combining
the fields A and B as follows:

ϕ(x) := (A+ iB)/2
ϕ⋆(x) = (A− iB)/2 (21)

implying therefore: δϕ = ϵ̄ψ̄ and δϕ⋆ = ϵψ and

δψA = 2i(σµϵ̄)A∂µϕ⋆(x)

δψ̄Ȧ = −2i(σ̄µϵ)Ȧ∂µϕ(x) (22)

Since A is a scalar field and B is a pseudoscalar field,
the complex combination ϕ(x) transforms under the
parity transformation like complex conjugation. Here,

ψ and ψ̄ are not independent fields as they are the Ma-
jorana spinor fields in the Weyl formulation. Hence
the transformations of δψ and δψ̄ are not independent
and one could be obtained from the other. Supercur-
rent jµ of the theory is obtained as:

jµ =
[
i

2 ϵ̄(A− iγ
5 B) (iγν←−∂ ν)γµ ψ

]
≡

[ 1
β
ϵ̄ kµ

]
(23)

Here β is a real constant. Spinor charge Qa are:

Qa :=
∫
d3x k0

a

k0
a = i

2β
[
{(A− iγ5 B) (iγν←−∂ ν)}γ0 ψ

]
a

(24)

Here k0
a are the spinor charge densities with a =

1, 2, 3, 4. WZM being a supersymmetric FT, spinor
charges and the spinor charge densities are seen to
satisfy SPA and the spinor charges satisfy the ACR:

{Qa, Q̄b} = 2Pµ(γµ)ab (25)

This implies that the WZM obeys SPA and it is a su-
persymmetric FT with a rigid Susy. SPA reads [5]:

[Pµ, Pν ] = 0 (26)

[Mµν , Pρ] = −i (ηµρ Pν − ηνρ Pµ) (27)

[Mµν ,Mρσ] =− i(ηµρMνσ + ηνσMµρ)
+ i (ηµσMνρ + ηνρMµσ) (28)

[Pµ, Qa] = 0 (29)

[Mµν , Qa] = −(σ4
µν)ab Qb (30)

σ4
µν := i

4 [γµ, γν ]

{Qa, Q̄b} = 2(γµ)ab Pµ
{Qa, Qb} = −2 (γµ C)ab Pµ
{Q̄a, Q̄b} = 2 (C−1γµ)ab Pµ (31)

SPA has 14 generators: 4 generators of Lorentz trans-
lations Pµ , 6 generators of Poincare transformations
Mµν and 4 spinor charges Qa (the Majorana spinors).
Here the indices a and b run from 1 to 4 in 4D.

3. Free massless WZM
We now set m = 0 for making the fields to be mass-
less, so that the free massless WZM is defined by the
Lagrangian density:

L :=
[1

2∂µA∂
µA+ 1

2∂µB∂
µB + ψ̄(iγν∂ν)ψ

]
(32)
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We break up the Lagrangian density of the free mass-
less WZM into bosonic and fermionic parts:

L = LB + LF
LB = 1

2∂µA∂
µA+ 1

2∂µB∂
µB

LF = ψ̄(iγν∂ν)ψ (33)

Further, LF (= LF ) could be written in two differ-
ent looking but conceptually equivalent forms (which
differ by a total derivative (t.d.)) as follows:

LF1 = iψ̄γµ∂µψ

LF2 = i

2

[
ψ̄γµ(∂µψ)− (∂µψ̄)γµψ

]
(34)

LF1 − LF2 = i

2∂µ(ψ̄γµψ) = i

2∂µj
µ

jµ = (ψ̄γµψ) (35)

Theory described by LF1 is seen to possess a set of two
second class constraints:

ρ1 = (π + iψ̄γ0) ≈ 0
ρ2 = π̄ ≈ 0 (36)

Here, Fermi fields ψ and ψ̄ are to be treated as inde-
pendent fields. Theory described by LF2 is also seen
to possess a set of two second class constraints:

χ1 = (π + i

2 ψ̄γ
0) ≈ 0

χ2 = (π̄ + i

2γ
0ψ) ≈ 0. (37)

The Fermi fields ψ and ψ̄ in this later case are not
independent fields. This is consistent with the defini-
tion of Majorana spinor fields (we remind ourselves
here that in WZM, the fermionic fields are Majorana
spinor fields).

We now study the Hamiltonian formulation of the
theory [7]. The canonical momenta following from
the Lagerangian density of WZM defined by L :=
(LB +LF ) with LF = LF2 (working with the signature
ηµν := diag(+1,−1,−1,−1)) are:

ΠA := ∂L
∂(∂0A) = ∂0A

ΠB := ∂L
∂(∂0B) = ∂0B (38)

π := ∂L
∂(∂0ψ) = − i2 ψ̄γ

0

π̄ := ∂L
∂(∂0ψ̄)

= − i2γ
0ψ (39)

Theory thus has 2 primary constraints (PC’s):

χ1 = (π + i

2 ψ̄γ
0) ≈ 0

χ2 = (π̄ + i

2γ
0ψ) ≈ 0 (40)

In principle, χ1, χ2 represent an infinite number of
PC’s which could be labeled say by α, β (which run
from one to infinity). We however, ignore these fur-
ther labelings in our considerations. The canonical
Hamiltonian density of the theory is obtained as:

Hc =(∂0A) ΠA + (∂0B) ΠB + (∂0ψα) πα
+ (∂0ψ̄α) π̄α − LB − LF (41)

Hc = 1
2

[
Π2
A + Π2

B − iψ̄γk∂kψ + i(∂kψ̄)γkψ
]

(42)

The total Hamiltonian density is:

HT := Hc + χ1 u+ χ2 v (43)

Demanding that the constraints χ1 and χ2 are pre-
served in the course of time one does not get any
secondary constraints and therefore these are the only
2 constraints that the theory possesses. Non-vanishing
matrix elements of the 2 × 2 matrix of the PB’s of
these above constraints among themselves are:

R12 = −R21 = iγ0δ(x1 − y1)δ(x2 − y2)δ(x3 − y3). (44)

The non-vanishing equal-time (ET) commutation
relations (CR’s) (denoted by a square bracket) and
ET anti-commutation relations (ACR’s) (denoted by
a curly bracket) of the bosonic and ferminic variables
of the theory are found to be:

[A(x, t),ΠA(y, t)] = i δ(x− y) (45)

[B(x, t),ΠB(y, t)] = i δ(x− y) (46)

{ψα(x, t), ψ̄β(y, t)} = γ0δαβ δ(x− y) (47)

δ(x− y) := δ(x1 − y1)δ(x2 − y2)δ(x3 − y3) (48)

These relations appear to be similar to the usual
ones. However, the fermionic spinor field ψ here is
not a Dirac spinor but it is a Majorana spinor having
real components: (ψ = ψC). We need to remember
here that the Dirac spinor is a 4-component spinor
which has complex elements and it could be expressed
in terms of two, 2-component Weyl spinors having
complex elements. However, if the elements of these
Weyl spinors are taken as real (ψ = ψC) then it
becomes a Majorana spinor (having real elements).

In path integral quantization (PIQ) [7], transition
to quantum theory is made by writing the vacuum
to vacuum transition amplitude for the theory, called
the generating functional Z[Jk] of the theory which in
the presence of the external sources Jk for the present
theory is [7]:

Z[Jk] =
∫

[dµ] exp
[
i

∫
dxdy[JkΦk + ΠA∂0A

+ ΠB∂0B + π∂0ψ + π̄∂0ψ̄

+ Πu∂0u+ Πv∂0v −HT ]
]

(49)
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Here Φk ≡ (A,B, ψ, ψ̄, u, v) are the phase space
variables of the theory with the corresponding
respective canonical conjugate momenta: Πk ≡
(ΠA,ΠB , π, π̄,Πu,Πv). The functional measure [dµ]
of the theory (with the above generating functional
Z[Jk]) is:

[dµ] =
[
[δ(x1 − y1)δ(x2 − y2)δ(x3 − y3)][dA]

[dB][dψ][dψ̄][du][dv][dΠA]
[dΠB ][dπ][dπ̄][dΠu][dΠv]

δ[(π + i

2 ψ̄γ
0) ≈ 0]

δ[(π̄ + i

2γ
0ψ) ≈ 0]

]
(50)

4. Conclusions and summary
Some important remarks may be helpful. In relativis-
tic quantum mechanics, the Dirac equation (DE) is
a single particle relativistic wave equation where ψ
represents a wave function. In FT, DE is an Euler-
Lagrange field equation which is obtained from the
Dirac action or the Dirac Lagrangian by using the vari-
ational principle.

WZM is the simplest example of a supersymmetric
field theory in 4D. This is also an example of a FT
with non-manifest supersymmetry. Taking the ex-
ample of free massless WZM, one could study many
important theories in different dimensions including
in higher dimsimensions. The theory also provides
a basic framework for the study of Ramond Nievue
Schwarz (RNS) superstring theory (SST) which is an
example of a SST with non-manifest SUSY. Starting
with the WZM, it is possible to construct a super-
gravity theory by gauging its global (rigid) SUSY into
a local SUSY through the Noether’s procedure.

Just to summarize in brief, we have studied in this
work, the WZM [5], which is a supersymmetric FT
that has rigid or global supersymmetry. The theory
has a supercharge Qa (a = 1, 2, 3, 4 in 4D) which is
a Grassmann spinor having anti-commuting proper-
ties. Theory is invariant under rigid supersymmetry
transformations where the transformation parame-
ter is a constant Grassmann spinor [5]. Finally, we
have also studied the Hamiltonian and path integral
quantization of the theory [7].
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Abstract.
We consider the three dimensional electrodynamics described by a complex scalar field coupled

with the U(1) gauge field in the presence of a Maxwell term, a Chern-Simons term and the Higgs
potential. The Chern-Simons term provides a velocity dependent gauge potential and the presence
of the Maxwell term makes the U(1) gauge field dynamical. We study the Hamiltonian formulation of
this Maxwell-Chern-Simons-Higgs theory under the appropriate gauge fixing conditions.
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gauge-theories.

1. Introduction
We study the Hamiltonian formulation [1] of the
three dimensional (3D) electrodynamics [2–22], in-
volving a Maxwell term [20], a Chern-Simons (CS)
term [19, 21, 22], and a term that describes a cou-
pling of the U(1) gauge field with a complex scalar
field in the presence of a Higgs potential [22]. Such
theories in two-space one-time dimension ((2+1)D)
can describe particles that satisfy fractional statistics
and are referred to as the reletivistic field theoretic
models of anyons and of the anyonic superconductiv-
ity [21, 22].

A remarkable property of the CS action [21, 22],
is that it depends only on the antisymmetric tensor
ϵµνλ and not on the metric tensor gµν . As a result,
the CS action in the flat spacetime and in the curved
spacetime remains the same [21, 22]. Hence CS action,
in both the Abelian and in the non-Abelian cases
represents an example of a topological field theory [21,
22].

The systems in two-space, one-time dimensions
(2+1)D (i.e., the planar systems, display a variety
of peculiar quantum mechanical phenomena ranging
from the massive gauge fields to soluble gravity [19–
22]. These are linked to the peculiar structure of the
rotation group and the Lorentz and Poincare groups in
(2+1)D. The 3D electrodynamics models with a Higgs
potential, namely, the Abelian Higgs models involv-
ing the vector guage field Aµ with and without the
topological CS term in (2+1)D have been of a wide
interest [19–22].

When these models are considered without a CS
term but only with a Maxwell term accounting for the
kinetic energy of the vector gauge field and they repre-
sent field-theoretical models which could be considered
as effective theories of the Ginsburg-Landau-type [22]
for superconductivity. These models in (2+1)D or
in (3+1)D are known as the Nielsen-Olesen (vortex)
models (NOM) [20]. These models are the relativistic

generalizations of the well-known Ginsburg-Landau
phenomenological field theory models of superconduc-
tivity [2, 20, 22].

The effective theories with excitations, with frac-
tional statistics are supposed to be described by gauge
theories with CS terms in (2+1)D and a study of these
gauge field theories and the models of quantum elec-
trodynamics involving the CS term represent a broad
important area of investigation [21, 22].

The CS term provides a velocity dependent gauge
potential [21, 22], and the presence of the Maxwell
term in the action makes the gauge field dynami-
cal [20]. We study the Hamiltonian formulation [1] of
this Maxwell-Chern-Simons-Higgs theory under the
appropriate gauge fixing conditions [20, 22].

The quantization of field theory models with con-
straints has always been a challenging problem [1].
Infact, any complete physical theory is a quantum
theory and the only way of defining a quantum theory
is to start with a classical theory and then to quan-
tize it [1]. Theory presently under consideration is
also a constrained system. In the present work, we
quantize this theory using the Dirac’s Hamiltonian
formulation [1] in the usual instant-form (IF) of dy-
namics (on the hyperplanes defined by: x0 = t =
constant) under appropriate gauge-fixing conditions
(GFC’s) [1, 19–22].

2. Hamiltonian formulation
The Maxwell Chern-Simons Higgs Theory in two space
one time is defined by the following action:

S =
∫

L(Φ, Φ∗, Aµ) d3x, (1)
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where the Lagrangian density L (with κ = θ
2π2 ;

θ being the CS parameter) is given by:

L =
[

− 1
4FµνF µν + (D̃µΦ∗)(DµΦ) − V (|Φ|2)

+κ

2 ϵµνλAµ∂νAλ

]
(2)

V (|Φ|)2 = γ + β|Φ|2 + α|Φ|4

= λ(|Φ|2 − Φ2
0)2 ; (Φ0 ̸= 0). (3)

Where the covariant derivative is defined by:

Dµ = (∂µ + i eAµ)
D̃µ = (∂µ − i eAµ)
gµν = diag(+1, −1, −1)
ϵ012 = ϵ012 = +1
µ, ν = 0, 1, 2. (4)

In the above Lagrangian density the first term is the
kinetic energy term of the U(1) gauge field and second
term represents the coupling of U(1) gauge field with
the complex scalar field as well as kinetic energy for
the complex scalar field. Third term describes Higgs
potential and the last term is the CS term.

The model without the CS term describes an
Abelian Higgs model and is defined by the Lagrangian
density L = L

(
Φ, Φ∗, Aµ

)
where L is a function of

a complex scalar field and an Abelian gauge vector
field Aµ(x) defined by the above Lagrangian density.
In (2+1)D this theory is called as the Nielsen Olsen
(vortex) model (NOM). These models possesses sta-
ble, time independent (i.e., static), classical solutions
(which could be called 2D solitons). In fact, the model
admits the so-called topological solitons of the vortex
type [4].

Further, in this model, if we choose the parameters
of the Higgs potential to be such that the scalar and
vector masses become equal i.e., if we set the Higgs
boson and the vector boson (photon) masses to be
equal i.e., if we set: mHiggs = mP hoton = eΦ0 then
that implies:

V (|Φ|)2 = 1
2e2(|Φ|2 − Φ2

0)2. (5)

The above model then reduces to the so-called Bo-
gomol’nyi model which describes a system on the
boundary between type-I and type-II superconductiv-
ity [4].

In component form, the above Lagrangian density
can be written as:

L =
(

κ

2

)[
A0F12 + A1(∂2A0) − A2(∂1A0)

]

+
(

κ

2

)[
A2(∂0A1) − A1(∂0A2)

]
− 1

2F 2
12

+
[

1
2(∂1A0 − ∂0A1) + 1

2(∂0A2 − ∂2A0)
]

+
[

(∂0Φ∗)(∂0Φ) + i e(∂0Φ∗)A0Φ

− i e(∂0Φ)A0Φ∗ + e2A2
0Φ∗Φ

]

+
[

− (∂1Φ∗)(∂1Φ) − i e(∂1Φ∗)A1Φ

+ i e(∂1Φ)A1Φ∗ − e2A2
1Φ∗Φ

]

+
[

− (∂2Φ∗)(∂2Φ) − i e(∂2Φ∗)A2Φ

+ i e(∂2Φ)A2Φ∗ − e2A2
2Φ∗Φ

]

− V (|Φ|2). (6)

Canonical momenta obtained from the above La-
grangian density are:

Π = ∂L
∂(∂0Φ) = (∂0Φ∗ − i eA0Φ∗)

Π∗ = ∂L
∂(∂0Φ∗) = (∂0Φ + i eA0Φ)

Π0 = ∂L
∂(∂0A0) = 0 (7)

E1(:= Π1) := ∂L
∂(∂0A1)

= −(∂1A0 − ∂0A1) + κ

2 A2

E2(:= Π2) = ∂L
∂(∂0A2)

= (∂0A2 − ∂2A0) − κ

2 A1. (8)

Here Π, Π∗, Π0, E1, E2 are the momenta canonically
conjugate respectively to Φ, Φ∗, A0, A1, A2. The the-
ory is thus seen to possess only one primary constraint
(PC):

χ1 = Π0 ≈ 0. (9)

The canonical Hamiltonian density of the theory is
obtained using the Legendre transformation from the
Lagrangian density of the theory in the usual manner.
Every term in the Lagrangian density (including the
CS term) is equally important. The calculational de-
tails are omitted here for the sake of brevity. The total
Hamiltonian density of the theory is then obtained
from the canonical Hamiltonian density by including
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in it the primary constraint of the theory with the
help of the Lagrange multiplier field u ≡ u(xµ) (which
is dynamical) as follows:

HT = Π0u + Π Π∗ − ieA0(ΠΦ − Π∗Φ∗)

+ 1
2(E1

2 + E2
2)

+ 1
2F 2

12 +
[
E1(∂1A0) + E2(∂2A0)

]

+ 1
2

(
κ

2

)2
(A1

2 + A2
2)

−
(

κ

2

)[
A2E1 − A1E2 + A0F12

]

+
[

(∂1Φ∗)(∂1Φ) + i e(∂1Φ∗)A1Φ

− i e(∂1Φ)A1Φ∗ + e2A2
1Φ∗Φ

]

+
[

(∂2Φ∗)(∂2Φ) + i e(∂2Φ∗)A2Φ

− i e(∂2Φ)A2Φ∗ + e2A2
2Φ∗Φ

]
, (10)

where

HT =
∫

HT d2x, (11)

with the total Hamiltonian density given by:

HT =
[
Hc + Π0u

]
. (12)

.
It is to be noted here that in the construction of

the canonical Hamiltonian density of the theory, all
the fields of the theory play an equally important role
through the Legendre transformation and through
the Lagrangian density of the theory that defines
the theory. Also, it is worth mentioning here that
the Hamilton’s equations of motion of the theory (that
are omitted here for the sake of brevity) obtained from
the total Hamiltonian density of the theory preserve
the constraints of the theory for all time. After pre-
serving the Primary constraint χ1 in the course of
time, one obtains a secondary constraint

χ2 =
[
ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)
]

≈ 0. (13)

The matrix of Poisson Brackets (PB’s) among the
constraints χi is a null matrix and thereby theory is
a gauge invariant theory and is invariant under the
following local vector gauge transformations:

δΦ = iβΦ, δΦ∗ = −iβΦ∗, δΠ0 = 0
δA0 = −∂0β ; δA1 = −∂1β ; δA2 = −∂2β

δΠ = −iβ(∂0Φ∗) − eβA0Φ∗ + i(e − 1)(∂0β)Φ∗

δΠ∗ = iβ(∂0Φ) − eβA0Φ − i(e − 1)(∂0β)Φ

δE1 = −κ

2 ∂2β; δE2 = κ

2 ∂1β; δu = −∂0∂0β. (14)

Here, β is the gauge parameter β ≡ β(xµ) and
the vector gauge current satisfies: ∂µJµ = 0. The
components of Jµ are:

J0 = J0 = (iβΦ)
[
∂0Φ∗ − i eA0Φ∗]

− (iβΦ∗)
[
∂0Φ + i eA0Φ

]

− (∂1β) F01 − (∂2β) F02

− κ

2
[
(∂1β)A2 − (∂2β)A1

]

J1 = −J1 = (iβΦ)
[

− ∂1Φ∗ + i eA1Φ∗]

− (iβΦ∗)
[

− ∂1Φ − i eA1Φ
]

− (∂0β) F10 − (∂2β) F21

+ κ

2
[
(∂0β)A2 − (∂2β)A0

]

J2 = −J2 = (iβΦ)
[

− ∂2Φ∗ + i eA2Φ∗]

− (iβΦ∗)
[

− ∂2Φ − i eA2Φ
]

− (∂0β) F20 − (∂1β) F12

− κ

2
[
(∂0β)A1 − (∂1β)A0

]
. (15)

For quantizing the theory using Dirac’s procedure
we choose the following two gauge-fixing conditions
(GFC’s):

ξ1 = Π ≈ 0
ξ2 = A0 ≈ 0. (16)

Here the gauge A0 ≈ 0 represents the time-axial
or temporal gauge and the gauge Π ≈ 0 represents
the coulomb gauge. These gauges are acceptable and
consistent with our quantization procedure and also
physically more interesting. Corresponding to this set
of gauge fixing conditions the total set of constraints
now becomes:

χ1 = Π0 ≈ 0
χ2 =

[
ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)
]

≈ 0

χ3 = ξ1 = Π ≈ 0
χ4 = ξ2 = A0 ≈ 0. (17)

The non-vanishing matrix elements of the matrix
Rαβ (:= {χ1, χ2}P ) of the equal-time Poisson brackets
of the above constraints are:

R14 = −R41 = − δ(x1 − y1)δ(x2 − y2)
R23 = −R32 = ieΠ δ(x1 − y1)δ(x2 − y2). (18)

The above matrix is nonsingular and the set of
constraints χi ; i = 1, 2, 3, 4 is now second class and
the theory is a gauge non-invariant theory. The non-
vanishing matrix elements of the matrix R−1

αβ (which
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is the inverse of the matrix Rαβ) are given by:

R−1
14 = −R−1

41 = δ(x1 − y1)δ(x2 − y2) (19)
(eΠ)R−1

23 = −(eΠ)R−1
32 = i δ(x1 − y1)δ(x2 − y2).

Following the standard Dirac quantisation proce-
dure, the non-vanishing equal time Dirac Brackets
(DB’s) of the theory are obtained as:

(Π) {Π∗(x0, x1, x2) , Φ(x0, y1, y2)}D

= (−Π∗)δ(x1 − y1)δ(x2 − y2)

{Π∗(x0, x1, x2) , Φ∗(x0, y1, y2)}D

= {Π∗(x0, x1, x2) , Φ∗(x0, y1, y2)}P

= −δ(x1 − y1)δ(x2 − y2)

(ieΠ) {E1(x0, x1, x2) , Φ(x0, y1, y2)}D

=
(κ

2

)
δ(x1 − y1) ∂2δ(x2 − y2)

{E1(x0, x1, x2) , A1(x0, y1, y2)}D

= {E1(x0, x1, x2) , A1(x0, y1, y2)}P

= − δ(x1 − y1)δ(x2 − y2)

(ieΠ) {E2(x0, x1, x2) , Φ(x0, y1, y2)}D

= −
(κ

2

)
∂1δ(x1 − y1)δ(x2 − y2)

{E2(x0, x1, x2) , A2(x0, y1, y2)}D

= {E2(x0, x1, x2) , A2(x0, y1, y2)}P

= −δ(x1 − y1)δ(x2 − y2)

(Π) {Φ(x0, x1, x2) , Φ∗(x0, y1, y2)}D

= (−Φ∗)δ(x1 − y1)δ(x2 − y2)

(Π) {Φ(x0, x1, x2) , A0(x0, y1, y2)}D

= (Φ) δ(x1 − y1)δ(x2 − y2)

(ieΠ) {Φ(x0, x1, x2) , A1(x0, y1, y2)}D

= ∂1δ(x1 − y1)δ(x2 − y2)

(ieΠ) {Φ(x0, x1, x2) , A2(x0, y1, y2)}D

= δ(x1 − y1) ∂2δ(x2 − y2). (20)

Here one finds that the product of the canonical
variables appear in the expressions of the constraints
as well as in the expressions of the DB’s and therefore
for achieving the canonical quantisation of the theory,
one encounters the problem of operator ordering while
going from DB’s to the commutation relations, this
problem could however be resolved by demanding that

all the fields and the field momenta after quantisation
become Hermitian operators and that all the canonical
commutation relations need to be consistent with
the Hermiticity of these operators. This completes
the Hamiltonian formulation of the theory under the
choosen gauge fixing conditions.

It may be worthwhile to mention here that our
choice of GFC’s is by no means unique. In principle,
one can choose any set of GFC’s that would convert
the set of constraints of the theory from first-class
into a set of second-class constraints. However, it is
better to choose the GFC’s that are physically more
meaningful and nore relevant like the ones that we
have choosen. In our case the gauge A0 ≈ 0 represents
a time-axial or temporal gauge and the gauge Π ≈ 0
represents a Culomb gauge and both of them are
physically important GFC’s. Another important point
is that one can not choose covariant GFC’s here simply
because the constraints of the theory are not covariant
and therefore it would not work.

In path integral quantization (PIQ) [23], transition
to quantum theory is made by writing the vacuum
to vacuum transition amplitude for the theory, called
the generating functional Z[Jk] of the theory which in
the presence of the external sources Jk for the present
theory is [23]:

Z[Jk] =
∫

[dµ] exp
[
i

∫
d3x [JkΦk + Π∂0Φ

+ Π∗∂0Φ∗ + Π0∂0A0 + E1∂0A1

+ E2∂0A2 + Πu∂0u − HT ]
]
. (21)

Here Φk ≡ (Φ, Φ∗, A0, A1, A2, u) are the phase
space variables of the theory with the correspond-
ing respective canonical conjugate momenta: Πk ≡
(Π, Π∗, Π0, E1, E2, Πu). The functional measure [dµ]
of the theory (with the above generating functional
Z[Jk]) is:

[dµ] =
[
(ieΠ)δ(x1 − y1)δ(x2 − y2)

[dΦ][dΦ∗][dA0][dA1][dA2][du][dΠ]
[dΠ∗][dΠ0][dE1][dE2][dΠu]δ[(Π0) ≈ 0]
δ[[ie(ΠΦ − Π∗Φ∗) + (∂1E1 + ∂2E2)

+ κ

2 (∂1A2 − ∂2A1)] ≈ 0]

δ[Π ≈ 0]δ[A0 ≈ 0]
]
. (22)
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Abstract.
In this talk, we briefly review the rational extension of many particle systems, and is based on

a couple of our recent works. In the first model, the rational extension of the truncated Calogero-
Sutherland (TCS) model is discussed analytically. The spectrum is isospectral to the original system and
the eigenfunctions are completely expressed in terms of exceptional orthogonal polynomials (EOPs). In
the second model, we discuss the rational extension of a quasi exactly solvable (QES) N-particle Calogero
model with harmonic confining interaction. New long-range interaction to the rational Calogero model
is included to construct this QES many particle system using the technique of supersymmetric quantum
mechanics (SUSYQM). Under a specific condition, infinite number of bound states are obtained for
this system, and corresponding bound state wave functions are written in terms of EOPs.

Keywords: Exceptional orthogonal polynomials, rational extensions, many particle systems, SUSYQM.

1. Introduction
Orthogonal polynomials play very useful and important roles in studying physics, particularly in electrostatics
and in quantum mechanics. In quantum mechanics, only a few of the commonly occuring bound states problems,
which have a wide range of applications and/or extensions, are solvable. Such systems generally bring into
physics a class of orthogonal polynomials.These classical orthogonal polynomials have many properties common,
such as (i) each constitutes orthogonal polynomials of successive increasing degree starting from m = 0, (ii) each
satisfy a second order homogeneous differential equations, (iii) they satisfy orthogonality over a certain interval
and with a certain non-negative weight function, etc. In 2009, new families of orthogonal polynomials (known
as exceptional orthogonal polynomials (EOP)) related to some of the old classical orthogonal polynomials were
discovered [1–3]. Unlike the usual classical orthogonal polynomials, these EOPs start with degree m = 1 or
higher integer values and still form a complete orthonormal set with respect to a positive definite inner product
defined over a compact interval. Two of the well known classical orthogonal polynomials, namely Laguerre
orthogonal polynomials and Jacobi orthogonal polynomials, have been extended to EOPs category. Xm Laguerre
(Jocobi) EOP means the complete set of Laguerre (Jacobi) orthogonal polynomials with degree ≥ m. m is
positive integer and can have values of 1, 2, 3, . . . Attempts were made to also extend the classical Hermite
polynomials [4]. Soon after this remarkable discovery, the connection of EOPs with the translationally shape
invariant potential were established [5–9]. The list of exactly solvable quantum mechanical systems is enlarged
and the wave functions for the newly obtained exactly solvable systems are written in terms of EOPs. Such
systems are known as rational extension of the original systems. The study for the exactly solvable potentials
has been boosted greatly due to this discovery of EOPs over the past decade [10–37].

There are several commonly used approaches to build the rationally extended models, such as SUSYQM
approach [38, 39], Point canonical transformation approach [40, 41], Darboux-Crum transformation approach [42,
43], group theoretical approach [44], etc. These approaches have been used to study different problems in this
field leading to a discovery of a large number of new exactly solvable systems, which are isospectral to the
original system and the eigenfunctions are written in terms of EOPs. Further, quasi-exactly solvable (QES)
systems [45–49] and conditionally exactly solvable (CES) systems [50, 51] attracted attention in literature due
to the lack of many exactly solvable systems. Several works have been devoted to the rational extension of
these QES/ CES systems [22, 24, 37]. Nowadays, the parity time reversal (PT) symmetric non-Hermitian
systems [52–62] are among the exciting frontier research areas. Rational extensions have also been carried out for
non-Hermitian systems [6, 19, 29–32]. Even though most of the rational extensions are for the one dimensional
and/or one particle exactly solvable systems, the research in this field has also been extended to many particle
systems [24, 25, 27]. We have done several works on rational extensions for many particle systems. In one of
the works, the well known Calogero-Wolfes type 3-body problem on a line was extended rationally to show
that exactly solvable wave functions are written in terms of Xm Laguerre and Xm Jacobi EOPs [26]. However,
this article is based on two of our earlier works on rational extension of many particle systems [24, 25], which
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were central to the talk presented during the AAMP meeting. In the first work [25], we discuss the rational
extension of the truncated Calogero-Sutherland model using a PCT approach. We indicate how to obtain
rationally extended solutions, which are isospectral to the original system in terms of Xm Laguerre EOPs. In
the second model [24], we discuss the rational extension of a QES N-particle Calogero model with a harmonic
confining interaction. New long-range interactions to the rational Calogero model are included to construct this
QES many particle system using SUSYQM. The wavefunctions are expressed, again, in terms of exceptional
orthogonal Laguerre polynomials.

Now, we present the organisation of the article. In the next section, we present the TCS model and its
solutions in brief to set the things for the section 3, where we consider the rational extension of the TCS model.
In section 4, the QES solutions for the rationally extended Calogero type many particle system are presented.
Section 5 is reserved for conclusions.

2. TCS model
In his work, Jain-Khare (JK) [63] exactly solved some variant of Calogero-Sutherland model (CSM) on the full
line by taking only the nearest and next-to-nearest neighbor interactions through 2-body and 3-body interactions.
Later, Pittman et al. [64] generalized this model by considering an N-body problem on a line with harmonic
confinement with tunable inverse square as well as the three-body interaction extends over a finite number of
neighbors and were able to solve it exactly. This model is known as truncated Calogero-Sutherland model (TCS).
N -body TCS model [64], where particles are interacting through 2-body and 3-body potentials, is given by

H =
N∑

i=1

[
− 1

2
∂2

∂x2
i

+ 1
2ω

2x2
i

]
+

∑

i<j
|i−j|≤r

λ(λ− 1)
| xi − xj |2 +

∑

i<j<k
|i−j|≤r
|j−k|≤r

λ2(xi − xj)x · (xj − xk)x
|xj − xj |2|xj − xk|2 (1)

with λ ̸= 0 and x = (x1, x2, . . . , xN ) ∈ RN . The 2- body interaction is attractive for 0 < λ < 1 and is repulsive
for λ ≥ 1. Here, r is the integer parameter and for r = 1, this system reduces to that of the Jain-Khare [63]
model. However, for r = N − 1, it corresponds to the CSM [65–67] model.

Using standard techniques in the case of many particle systems, the time independent Schrodinger equation
(TISE) corresponding to the above system can be written in radial and angular parts as

Φ′′(ρ) +
(
N + 2s− 1 + λr(2N − r − 1)

)
1
ρ

Φ′(ρ) + 2(E − 1
2ω

2ρ2)Φ(ρ) = 0 , (2)

(where ρ =
∑N
i x

2
i , is the radial coordinate and the prime denotes the differentiation with respect to its

arguments and this convention is adopted throughout this manuscript) and
[ N∑

i=1

∂2

∂x2
i

+ 2λ
N−1∑

i<j

1
xi − xj

(
∂

∂xi
− ∂

∂xj

)]
Ps(x) = 0. (3)

(where the function Ps denotes the homogeneous polynomial of angular variables of degree s = 0, 1, 2, . . . ). To
obtaine these Eqs. we have substituted the wave function

Ψ(x) =
∏

i<j

(xi − xj)λ Φ(ρ) Ps(x) (4)

in the TISE, HΨ = EΨ .
This model is solved exactly and the solution is given by,

the spectrum: En = ω
(
2n+ s+ N

2 + λr

2 (2N − r − 1)
)
, (5)

and the corresponding radial wave function in terms of classical Laguerre polynomials is given as

Φ(ρ) ≃ exp(−ωρ2

2 )L(α)
n (ωρ2); n = 0, 1, 2, . . . (6)

where α =
(
s− 1 + N

2 + λr
2 (2N − r− 1)

)
. This result is consistent with JK and CSM models in the appropriate

limit [64]. In the next section, we will extend this model by adding some interaction terms. Then, the extended
model will be cast as a rational extension of the TCS model.
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3. Extended TCS model (ETCS)
We would like to find another system related to the TCS model, which is isospectral to the TCS and possibly,
its wave functions are written in terms of EOPs. To find the rational extension of the TCS model, we start by
adding a new interaction term, [25]

He = H + (α1 + α2ω
2ρ2)

(β1 + β2ω2ρ2)2 = H + Vnew, (7)

where α1,2 and β1,2 are unknown constants and will be fixed later. We would like to show that this He will
correspond to the rational extension of this TCS model for some specific values of the parameters α1,2 and β1,2.
Since Vnew depends only on radial coordinate, ρ, only the radial equation will be modified and angular equation
will be the same as in the case of the TCS model. The radial part is obtained having the same substitution as
in Eq. (4) in the earlier section for the Hamiltonian He

Φ′′
ext(ρ) +

(
N + 2s− 1 + λr(2N − r − 1)

)1
ρ

Φ′
ext(ρ) + 2

(
E − (1

2ω
2ρ2 + Vnew)

)
Φext(ρ) = 0, (8)

with Ps(x) satisfying the same generalised Laplace equation as in Eq. (3). Note that here, a prime on Φext(ρ)
indicates a derivative with respect to ρ.
We further substitute,

Φext(ρ) = f(ρ)ζ(g(ρ)), (9)

in Eq. 8 where f(ρ) and g(ρ) are two undermined functions and ζ(g) is a special function to obtain

ζ ′′(g) +
(

2f ′(ρ)
f(ρ)g′(ρ) + g′′(ρ)

g′(ρ)2 + τ

ρg′(ρ)

)
ζ ′(g) + 1

g′(ρ)2

(
f ′′(ρ)
f(ρ) + τf ′(ρ)

ρf(ρ) + 2(Eext − Vext)
)
ζ(g) = 0, (10)

where, τ =
(
N + 2s− 1 + λr(2N − r − 1)

)
and Eext is exactly same as En given in Eq. (5)

We now compare this differential equation satisfied by ζ(g(ρ)) with the differential equation satisfied by the
X1 Laguerre polynomial L̂(α)

n (g)

L̂
′′(α)
n (g(ρ)) − (g − α)(g + α+ 1)

g(g + α) L̂
′(α)
n (g(ρ)) + 1

g

(
(g − α)
(g + α) + n− 1

)
L̂(α)

n (g(ρ)) = 0; n ≥ 1, (11)

to obtain (with n → n+ 1,)

Vext = 1
2ω

2ρ2 + 4ω
(2ωρ2 + τ − 1) − 8ω(τ − 1)

(2ωρ2 + τ − 1)2 , (12)

and

f(ρ) ≃ (g′(ρ))− 1
2 ρ− α

2 exp
(

1
2

∫ g

[− (g − α)(g + α+ 1)
g(g + α) ]dg

)
. (13)

for a given g(ρ) as defined in the case of a conventional model

g(ρ) = ωρ2; α = τ

2 − 1
2 . (14)

The energy eigenvalues Eext for the new system with the potential in Eq. 12 turn out to be the same as that of
the conventional TCS model as discussed in Section 2 and are given by Eq. (5). However, the corresponding
eigenfunction Φext(ρ) is completely different. Using f(ρ) and replacing ζ(g) → L̂

(α)
n+1(g) in Eq. (9), the expressions

for the energy eigenfunctions are obtained in terms of X1 exceptional orthogonal Laguerre polynomials (L̂(α)
n+1(g))

as

Φext(ρ) ≃ exp(−ωρ2

2 )
(2ωρ2 + α) L̂

(α)
n+1(ωρ2); n = 0, 1, 2, . . . (15)

Note that the X1 Laguerre polynomial (L̂(α)
n+1(g)) is related to the classical Laguerre polynomials by

L̂
(α)
n+1(g) = −(g + α+ 1)L(α)

n (g) + L
(α)
n−1(g). (16)
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The constant parameters α1,2 and β1,2 for which the Hamiltonian (7) is exactly solvable can easily be determined
by comparing Eqs. (7) and (12), and one finds that

α1 = −4ω(τ − 1); α2 = 8,
β1 = τ − 1; and β2 = 2/ω. (17)

In the special cases of r = 1 and r = N − 1, we then obtain the rational extension of the JK model and the
CSM, respectively.

Xm case:
Similar to the X1 case, we redefine Eqs. (8) and (9) by replacing Φext(ρ) → Φm,ext(ρ) and f(ρ) →

fm(ρ), ζ(g) → ζm(g), respectively. Now the differential Eq. (8) will also be m dependent and can be written as

Φ′′
m,ext(ρ) +

(
N + 2s− 1 + λr(2N − r − 1)

)1
ρ

Φ′
m,ext(ρ) + 2

(
E − (1

2ω
2ρ2 + Vm,new)

)
Φm,ext(ρ) = 0. (18)

Now, we proceed with the steps as in the case of X1, by substituting Φm,ext(ρ) = fm(ρ)ζm(g(ρ)) in the above
equation to obtain the differential equation for ζm(g), which is exactly same as in Eq. (10).Then, we compare
that equation with the Xm exceptional Laguerre differential equation

L̂
′′(α)
n,m (g(ρ)) +Qm(g)L̂

′(α)
n,m(g(ρ)) +Rm(g)L̂(α)

n,m(g(ρ)) = 0, (19)

with

Qm(g) = 1
g

[
(α+ 1 − g) − 2g

L
(α)
m−1(−g)

L
(α−1)
m (−g)

]

and Rm(g) = 1
g

[
n− 2α

L
(α)
m−1(−g)
L

(α)
m (−g)

]
(20)

to get (replacing n by n+m)

Vm,new = −2ω2ρ2L
(α+1)
m−2 (−g)

L
(α−1)
m (−g)

+ 2ω(α+ ωρ2 − 1)
L

(α)
m−1(−g)

L
(α−1)
m (−g)

+ 4ω2ρ2
(
L

(α)
m−1(−g)

L
(α−1)
m (−g)

)2
− 2mω, (21)

and

f(ρ) ≃ (g′(ρ))− 1
2 ρ− α

2 exp
(

1
2

∫ g

Qm(g)dg
)
. (22)

We note that the spectrum for the potential in Eq. (21) is exactly same as that for the potential in Eq. (12) and
for a usual TCS system. However, the eigen functions in all three cases are different. For a usual TCS model,
these are in terms of classical Laguerre polynomials, in case of the potential in Eq. (12), that is, in the X1 case,
these are in terms of X1 Laguerre polynomials and finally the wave functions for the system with the potential
in Eq. (21) are in terms of Xm Laguerre polynomials. The wave functions for the system described by the
potential in Eq. (21) are given by

Φm,ext(ρ) ≃ exp(−ωρ2

2 )
L̂

(α−1)
m (−ωρ2)

L̂
(α)
n+m(ωρ2); n,m = 0, 1, 2, . . . (23)

where the Xm Laguerre polynomial (L̂(α)
n+m(g)) is related to the classical Laguerre polynomials by

L̂
(α)
n+m(g) = L(α)

m (−g)L(α−1)
n (g) + L(α−1)

m (−g)L(α)
n−1(g). (24)

As expected, for m = 1, the above results reduce to the corresponding X1-case, while for the m = 0 case one
gets back the conventional TCS model. In the next section, we will consider a rational extension of Calogero
like many particle systems.
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4. QES many particle system
In this section, we would like to discuss a rational extension of Calogero like many particle systems [24]. We
start with a many particle Calogero like Hamiltonian with an arbitrary potential U(

√
Nρ), which depends only

on the ‘radial’ coordinate ρ

H = −
N∑

i=1

∂2

∂x2
i

+
N∑

i<j

λ

(xi − xj)2 + U(
√
Nρ); λ ≥ −1

2 , ρ =

√√√√ 1
N

N∑

i<j

(xi − xj)2 (25)

Our aim is to construct a possible structure of U(
√
Nρ), for which the many particle model is exactly solvable.

To this end, we follow the standard method [65–67] and take a trial wavefunction for ψ(x) in a sector of the
configuration space corresponding to a definite ordering of particles (e.g., x1 ≥ x2 ≥ · · · ≥ xN ) as

ψ(x) =
∏

i<j

(xi − xj)a+ 1
2Pk,q(x)ϕ(ρ),with a = 1

2
√

1 + 2λ (26)

and obtain the radial part differential equation,

−[ϕ′′(ρ) + 2(k + b+ 1)1
ρ
ϕ′(ρ)] + [U(

√
Nρ) − E]ϕ(ρ) = 0 (27)

with b = N(N−1)
2 a+ N(N+1)

4 − 2. The angular part is described by Pk,q(x), which are translationally invariant,
symmetric, k-th order homogeneous polynomials satisfying the differential equations

N∑

j=1

∂2Pk,q(x)
∂x2

j

+
(
a+ 1

2

) ∑

j ̸=k

1
(xj − xk)

(
∂

∂xj
− ∂

∂xk

)
Pk,q(x) = 0 . (28)

Note that the index q in Pk,q(x) can take any integral value ranging from 1 to λ(N, k), where λ(N, k) is the
number of independent polynomials. The existence of such translationally invariant, symmetric and homogeneous
polynomial solutions of (28) has been discussed in the original work by Calogero [65, 66].

For our purpose, we will look for a solution of the radial part and proceed with the substitution

ϕ(ρ) = ρ−(l+1)χ(ρ), with l = k + b (29)

in Eq. (27) to obtain

− d2

dρ2χ(ρ) + Uk(
√
Nρ)χ(ρ) = Eχ(ρ) (30)

where Uk(
√
Nρ) is k dependent (through l) and is written as

Uk(
√
Nρ) = l(l + 1)

ρ2 + U(
√
Nρ) . (31)

Our aim here is to find a solution of Eq. (30) with a possible general structure of U(
√
Nρ). This will provide an

exact solution of a many particle system given in Eq. (25). This can be done in various ways, but we would like
to use the technique of SUSYQM, details of which can be found in [38, 39]

We consider a specific superpotential of the form [22]

W (ρ) = ρ+ 2g1ρ

1 + g1ρ2 + α+ 1
ρ

, g1(α) = 2
2α+ 3 . α ∈ R+ (32)

for which one of the partner potentials is a radial oscillator. The partner potentials can be calculated as,

V+(ρ) = ρ2 + α(α+ 1)
ρ2 + 2α+ 7 , (33a)

V−(ρ) = ρ2 + (α+ 1)(α+ 2)
ρ2 − 4g1

1 + g1ρ2 + 8g2
1ρ

2

(1 + g1ρ2)2 + 2α+ 5 . (33b)
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The potential V+ is the potential for a radial oscillator model with a constant term. The complete solution for
this potential is given by

E+
n = 4

(
n+ α+ 5

2

)
, n = 0, 1, 2, . . . (34)

χ+
n (ρ) =

√
n!

Γ(n+ α+ 3
2 )
ρα+1e−ρ2/2Lα+1/2

n (ρ2) . (35)

Where Lα+1/2
n (ρ2) is a usual Laguerre polynomial. Using the results of SUSYQM, we can obtained the solution

for the partner potential V−(ρ) given in Eq. (33b) as

E−
n = 4

(
n+ α+ 5

2

)
, (36)

which is the same as in the case of V+, the radial oscillator potential. The radial part of the wave function is
written as

χ−
n (ρ) =

√
4(n!)

E+
n Γ(n+ α+ 3

2 )
ρα+2e−ρ2/2 1

L
α+1/2
1 (−ρ2)

L̂
α+3/2
n+1,1 (ρ2). (37)

This solution for V−(ρ) is possible only when the parameter g1 depends on α in a particular fashion and hence,
the model with V− is conditionally exactly solvable. Note that V+(ρ) can be used to generate the exactly
solvable Calogero model with a harmonic confining interaction as in this case

U(
√
Nρ) = Uk(

√
Nρ) − l(l + 1)

ρ2 = ρ2 + α(α+ 1) − l(l + 1)
ρ2 , (38)

apart from an overall constant term. Now, l = k + b and α are free parameters and we can chose the parameter
α = l such that U(

√
Nρ) = ρ2 is independent of k. Calogero has shown that the many particle system (25) with

U(
√
Nρ) = ρ2 can be solved exactly for all possible values of k. However, unlike this case, V−(ρ) represents

a QES many particle system as we explain below.

U(
√
Nρ) = ρ2 + (α+ 1)(α+ 2) − l(l + 1)

ρ2 − 4g1
1 + g1ρ2 + 8g2

1ρ
2

(1 + g1ρ2)2 + 2α+ 5 , (39)

In this case, α depends on g1 and hence can’t be chosen as such that U(
√
Nρ) is independent of k. Hence, the

many particle system with U(
√
Nρ) is QES as it is solvable only for a particular value of k. The eigenvalues are

En = 4
(
n+ α+ 5

2

)
, n = 0, 1, 2, . . . . (40)

and the corresponding (unnormalized) QES eigenfunctions in terms of X1 Laguerre polynomials are written as

ψn(x) = ρα−l+1e−ρ2/2 1
L
α+1/2
1 (−ρ2)

L̂
α+3/2
n+1,1 (ρ2)

∏

i<j

(xi − xj)a+ 1
2Pk̃,q(x) . (41)

Note that the solution of the angular part Pk̃,q(x) is only for a specific value of the degree of the polynomial,
i.e. for k = k̃. We can’t find the solution of the radial part for k ̸= k̃. Thus, the solution is not complete, we
have obtained a part of it and thus, in this sense, we called the solutions QES. Now, we have obtained another
potential given in Eq. (33b), which is isospectral to a radial oscillator potential but the wave functions are
completely different and are written in terms of X1 Laguerre polynomials. Thus, we have achieved the rational
extension of Calogero like many particle system with a U(

√
Nρ) given in Eq. (39).

We would like to point out that exactly same result can also be obtained using the other method, like PCT
method. Furthermore, using the PCT approach, one can obtain the most general rationally extended radial
oscillator potential

Vm(ρ) = ρ2 + l(l + 1)
ρ2 − 4ρ2L

l+3/2
m−2 (−ρ2)

L
l−1/2
m (−ρ2)

+ 2(2ρ2 + 2l − 1)
4ρ2L

l+1/2
m−2 (−ρ2)

L
l−1/2
m (−ρ2)

+ 8ρ2[
4ρ2L

l+3/2
m−2 (−ρ2)

L
l−1/2
m (−ρ2)

]2 − 4 (42)
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whose bound state solutions for the energy eigenvalues En = (4n+ 2l + 3) n = 0, 1, 2, . . . and eigenfunctions
are written in terms of Xm exceptional Laguerre Polynomials as

χn,m(ρ2) = [ (n−m)!
(l + 1/2 + n)Γ(l + 1/2 + n−m) ]1/2x

l+1 exp(−ρ2/2)
L
l−1/2
m (−ρ2)

L̂
l+1/2
n+m,m(ρ2) (43)

Where L̂l+1/2
n+m,m(ρ2) is Xm exceptional orthogonal Laguerre polynomial, m = 0 corresponds to usual Laguerre

polynomials. Now, we note that m = 1 corresponds to the case we discus, in the context of Calogero Model as
the potential

V1 = ρ2 + l(l + 1)
ρ2 − 8

2ρ2 + 2l + 1 + 32ρ2

(2ρ2 + 2l + 1)2 (44)

calculated from Eq. (42) is the same as our V−(ρ) in Eq. (33b) when l = (α+ 1) and g1 = 2
(2α+3) apart from an

overall constant term. The solution obtained through the PCT approach in Eq. (43) for m = 1 is exactly the
same as we obtained through the supersymmetric approach.

5. Conclusions
In this article, we have reviewed two of our old works [24, 25] on a rational extension of many particle systems.
In the first model [25], we have considered the TCS model with pairwise 2-body and 3-body interactions, and
using the well known PCT approach, we have extended the model rationally. The spectrum is isospectral to the
original TCS system and the wave functions are written in terms of Xm Laguerre polynomials. This means that
we have a family of isospectral systems for m = 1, 2, . . . related to the TCS model with different potentials.
The eigen functions are different and are written in terms of EOPs. In the other model, we have considered the
QES Calogero like many particle system, and using SUSYQM techniques, obtained the general structure of
the QES potential for which we can find the QES solutions. The wave functions are written in terms of EOPs.
We have considered broken SUSYQM in our approach. We feel it would be of interest to investigate similar
many particle systems for which supersymmetry is unbroken.
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Abstract. The paper advances Odake and Sasaki’s idea to re-write eigenfunctions of rationally
deformed Morse potentials in terms of Wronskians of Laguerre polynomials in the reciprocal argument.
It is shown that the constructed quasi-rational seed solutions of the Schrödinger equation with the Morse
potential are formed by generalized Bessel polynomials with degree-independent indexes. As a new
achievement we can point to the construction of the Darboux-Crum net of isospectral rational potentials
using Wronskians of generalized Bessel polynomials with no positive zeros. One can extend this
isospectral family of solvable rational potentials by including ‘juxtaposed’ pairs of Romanovski-Bessel
polynomials into the aforementioned polynomial Wronskians which results in deleting the corresponding
pairs of bound energy states.

Keywords: Translationally form-invariant Sturm-Liouville equation, generalized Bessel polynomials,
Romanovski-Bessel polynomials, rational Darboux-Crum transformations, polynomial Wronskians.

1. Introduction
In recent publication [1] Alhaidari pointed to a new form of ‘quasi-rational’ [2] solutions (q-RSs) of the
Schrödinger equation with the Morse potential in terms of generalized Bessel polynomials [3–6], instead of using
the conventional q-RSs composed of weighted Laguerre polynomials [7–11]; though, to be more accurate, the
possibility to quantize the Morse potential by Romanovski-Bessel (R-Bessel) polynomials [12, 13] has been
already recognized by Quesne [14], with reference to Cotfas’ papers [15, 16] (see also [17]). It should be also
emphasized that Odake and Sasaki in their in-depth study [18, 19] on rational Darboux-Crum [20, 21] transforms
(RDCT s) of translationally shape-invariant (TSI) potentials did implicitly express eigenfunctions of the Morse
potential in terms of R-Bessel polynomials with degree-independent indexes as a substitute for commonly used
classical Laguerre polynomials [22]. (Though the Bochner-type differential equation for generalized Bessel
polynomials was also listed in Table 1 in [7] on the line linked to the Morse potential the authors used the
conventional representation for eigenfunctions [22] to construct rationally deformed Morse potentials.)

The remarkable feature of the new rational realization for the Morse oscillator is that the resultant rational
canonical Sturm-Liouville equation (RCSLE) can be converted by an energy-independent gauge transformation
to the Bochner-type eigenequation with a linear coefficient function of the first derivative independent of degrees
of sought-for polynomial solutions. Using terminology of our recent study [23] on translationally form-invariant
(TFI) CSLEs this implies that the given RCSLE belongs to TFI Group A and we should give full credit to
Odake and Sasaki[18, 19] who initially came up with this breakthrough idea to treat the Morse oscillator as
a rational TSI potential of Group A.

Keeping in mind that the TFI equation under consideration has only two basic solutions the net of its
RDCT s is uniquely specified by a single series of Maya diagrams [24] and therefore any rationally deformed
Morse potential can be re-expressed in terms the Wronskian of generalized Bessel polynomials with a common
degree-independent index, as it has been done in [19] though in slightly different terms. The novel representation
of seed eigenfunctions [19] is in a sharp contrast with their conventional representation in terms of classical
Laguerre polynomials with degree-dependent indexes [10, 11].

The main purpose of this work is to present new simplified expressions for eigenfunctions of the Schrödinger
equation with a rationally deformed Morse potential by re-writing them in terms of finite exceptional orthogonal
polynomial (EOP) sequences formed by Wronskian transforms of R-Bessel polynomials.
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2. TFI Sturm-Liouville equations
2.1. Liouville-Darboux transformations
Let ϕτ [ξ;Q] be a solution of the generic CSLE

{
d2

dξ2 + I0[ξ;Q] + ετ (Q)ρ[ξ]
}
ϕτ [ξ;Q] = 0 (1)

at an energy ετ (Q), where the index τ specifies the factorization function (FF) in question. In the problems
of our current interest I0[ξ;Q] is a rational function of ξ termed ‘reference polynomial fraction’ (RefPF). We
prefer to keep this notation in the general case when I0[ξ;Q] is an arbitrarily chosen real function of ξ also
dependent on some parameters Q. We will replace Q by ⇀

a , b after restricting the analysis solely to TFI CSLEs.
In [23] we identified four families of RefPFs associated with rational TSI potentials termed ‘Jacobi’, ‘Laguerre’,
‘Routh’ and ‘Bessel’ (or J Ref, L Ref, RRef, and BRef for briefness) so the corresponding q-RSs are composed
of polynomials (with degree-dependent indexes in general) from one of four conventional differential polynomial
systems (DPSs) [25, 26]. The density function ρ[ξ] plays a crucial role in our analysis because, as indicated by
Eq. (4) below, it determines the change of variable converting CSLE (1) to the Schrödinger equation [27, 28].

It was Rudjak and Zakhariev [29] who extended the intertwining technique [30] from the Schrödinger equation
to the CSLE. Here we however use a slightly different definition of the socalled [31, 32] ‘generalized’ Darboux
transformations introducing them via the requirement that the function

∗ϕτ [ξ;Q] ∝ ρ−1/2[ξ]/ϕτ [ξ;Q] (2)

is a solution of the transformed CSLE at the same energy ετ (Q), i.e.,
{
d2

dξ2 + I0[ξ;Q | τ ] + ετ (Q)ρ[ξ]
}

∗ϕτ [ξ;Q] = 0. (3)

Rudjak and Zakhariev’s reciprocal formula (2) thus plays a crucial role in our approach to the theory of TFI
CSLEs.

Since various authors give the term ‘generalized Darboux transformation’ completely different meanings it
seems preferable to refer to these operations as ‘Liouville-Darboux’ transformations keeping in mind that they
can be performed in three sequential steps:

(1.) The Liouville transformation ξ(x):
ξ′(x) = ρ−1/2[ξ(x)] (4)

from the CSLE {
d2

dξ2 + I0[ξ;Q] + ερ[ξ]
}

Φ[ξ;Q; ε] = 0 (5)

to the stationary 1D Schrödinger equation with the potential [27, 28]

V [ξ(x);Q] = −ρ−1[ξ(x)]I0[ξ(x);Q] − 1/2 {ξ, x} (6)

where {ξ, x} stands for the ‘Schwarzian derivative’;
(2.) the Darboux deformation of Liouville potential (6) using the FF

ψτ (x;Q) = ρ1/4[ξ(x)]ϕτ [ξ(x);Q]; (7)

(3.) reverse Liouville transformation from the Schrödinger equation to the new CSLE
{
d2

dξ2 + I0[ξ;Q | τ ] + ερ[ξ]
}

Φ[ξ;Q; ε | τ ] = 0. (8)

Obviously any TFI theorem proven for Liouville-Darboux transformations of CSLE (5) can be directly
applied to the resultant Liouville potential thus linking the new technique to the conventional Darboux-Crum
theory of TSI potentials [11, 19, 33].
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2.2. Translational from-invariance of Sturm-Liouville equation
We call a CSLE ‘translationally form-invariant’ if it has two ‘basic’ solutions ϕ+,0[ξ,⇀a , b] and ϕ−,0[ξ,⇀a , b]

{
d2

dξ2 + I0[ξ;⇀a , b] + ε±,0(⇀a , b)ρ[ξ]
}
ϕ±,0[ξ;⇀a , b] = 0 (9)

related via the following reciprocal formulas:

ϕ±,0[ξ;⇀a ±
⇀
1 , b] = ρ−1/2[ξ]/ϕ±,0[ξ;⇀a , b]. (10)

It has been proven [23] that

I0[ξ;⇀a , b | ±, 0] = I0[ξ;⇀a ±
⇀
1 , b] + E±1(⇀a , b)ρ[ξ], (11)

where
E±1(⇀a , b) ≡ ε∓,0(⇀a ±

⇀
1 , b) − ε±,0(⇀a , b). (12)

The Liouville transformations of the CSLEs with zero-energy free terms I0[ξ; a, b] and I0[ξ; a, b | ±, 0] then
brings us to Gendenshtein’s conventional definition of a TSI potential [34]

V [ξ;⇀a , b | +, 0] = V [ξ;⇀a +
⇀
1 , b] − E+1(⇀a , b) (13)

or
V [ξ;⇀a , b | −, 0] = V [ξ;⇀a −

⇀
1 , b] − E−1(⇀a , b) (14)

depending on which basic solution ϕ+,0[ξ;⇀a , b] or ϕ−,0[ξ;⇀a , b] represents the lowest energy eigenfunction.
Note that the Russian word ‘форма’ used by Gendenshtein [34] has two meanings ‘form’ and ‘shape’. The term

‘form invariant’ with reference to CSLEs was adopted by us from the English translation of Gendenshtein’s joint
paper with Kreve [35] while the commonly accepted term ‘shape-invariance’ is preserved for the corresponding
Liouville potentials. The shift of the translational parameters ⇀

a by 1 thus retains the analytical form of the
TFI CSLE while preserving the ‘shape’ of its Liouville potential. It is true that the Liouville transformation of
the TFI CSLE results in a ’translationally shape-invariant (TSI) potential. However the Class of TFI SLEs is
defined via (10) with no reference to the associated Schrödinger equation.

2.3. Equivalence theorem for Darboux-Crum transforms of a TFI CSLE with two
basic solutions

It has been proven [23] that any TFI CSLE has at least two infinite sets of solutions

ϕ±,m+1[ξ;⇀a , b] = ρ−1/2[ξ]W [ξ;⇀a ±
⇀
1 , b | ∓, 0; ±,m]/ϕ±,0[ξ;⇀a ±

⇀
1 , b], (15)

where
W [ξ;⇀a , b | ±,m; ∓,m′] ≡ W

{
ϕ±,m[ξ;⇀a , b]ϕ∓,m′ [ξ;⇀a , b]

}
. (16)

The cited ‘raising’ recurrence relations can be conveniently re-written as

f±,m+1[ξ;⇀a ±
⇀
1 ; b] = ḟ±,m[ξ;⇀a , b], (17)

where
f±,m+1[ξ;⇀a , b] ≡ ϕ±,m[ξ;⇀a , b]/ϕ∓,0[ξ;⇀a , b] (18)

and dot denotes the first derivative with respect to ξ.
The solutions ϕ±,m[ξ;⇀a , b] also obey the ´lovering´ recurrence relations:

ϕ±,m[ξ;⇀a , b] ≡ ρ−1/2[ξ]w[ξ; a, b | ±
...0,m]/ϕ±,0[ξ;⇀a , b] =

= −E±,m−1(⇀a ±
⇀
1 , b)ϕ±,m−1[ξ;⇀a ±

⇀
1 ;

⇀

b ] for m ≥ 1,
(19)

where
E±,m(⇀a , b) ≡ ε±,m(⇀a , b) − ε∓,0(⇀a , b). (20)

Solutions from both infinite sets can be then used as seed functions for Darboux-Crum transformations (DCTs)
of the given TFI CSLE which results in an infinite net of solvable SLEs specified by a single series of Maya
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diagrams [24]. Following the arguments presented in [33] for rationally deformed TSI potentials we [23] proved
that any CSLE in this net can obtained using only seed solutions of the same type.

Let us parametrize a set of seed functions of the same type,

M(∆1→L) = m1, . . . ,m|δ1→L|, (21)

by two partitions of an equal size L:
∆1→L ≡ δ1→L; δ′1→L (22)

such that
mk = δ′

1 + k − 1 for 1 < k ≤ δ1, (23)

m|δ1→l−1|+1 = m|δ1→l−1| + δ′
l + 1 = | ∆1→l−1 | +δ′

l + 1 for 1 < l ≤ L, (24)

m|δ1→l−1|+k = m|δ1→l−1|+1 + k − 1 for 1 < l ≤ L, 1 < k ≤ δl, (25)

One can easily verify that the largest element in partition (21) coincides with the sum of the partition lengths
| δ1→L | and | δ′1→L |, i.e.,

m|δ1→L| =| ∆1→L |≡| δ1→L | + | δ′1→L | . (26)

It has been proved in [23] that use of the conjugated set of seed solutions of opposite type,

∆′
L→1 ≡ δ′

L→1; δL→1 ≡ δ′
L, δ

′
L−1, . . . , δ

′
1; δL, δL−1, . . . , δ1, (27)

results in an equivalent CSLE so the corresponding Liouville potential V [ξ;⇀a (δ), b | ∓,M(∆′
L→1)] computed at

shifted values of the translational parameters,
⇀
a (δ) ≡ ⇀

a + δ
⇀
1 , (28)

where δ is a nonzero integer, differs from the Liouville potential V [ξ;⇀a , b | ±,M(∆′1→L)] only by a zero-point
energy.

In [23] we have derived the following relation between the Wronskians of two equivalent sets of seed solutions
of the same type

w[ξ;⇀a , b | +
...M(∆1→L)]

ρ1/4|δ1→L|(|δ1→L|−1)[ξ]
L∏
l=1

χ−δl
[ξ;⇀a

(|∆′
l→1|−δl)

, b]

∝ w[ξ;⇀a
(|∆′

L→1|)
, b | −

...M(∆′
L→1)]

ρ1/4|δ′
L→1|(|δ′

L→1|−1)[ξ]
L∏
l=1

χδl
[ξ;⇀a

(|∆′
l−1→1|+δ′

l)
, b]
,

(29)

where

χ∓|N |[ξ;
⇀

a, b] ≡
|N |−1∏

k=0
ϕ±,0[ξ; ⇀

a
(±k)

, b]. (30)

For any CSLE from Group A the derived relation turns into the equivalence relations between the Wronskians
of the corresponding seed polynomials discovered in the breakthrough paper by Odake and Sasaki [19]. We
illuminate these relations in more details in subsection 3.4 below using Wronskians of generalized Bessel
polynomials as an example.

If the given rational TSI potential has only a finite number of eigenfunctions then the set of seed functions
+,m or −,m which starts from these eigenfunctions (−,m in case of our current interest) also contains infinitely
many q-RSs vanishing at only one quantization end (virtual state wavefunctions in Odake and Sasaki’s terms
[18, 19]), with the Gendenshtein (Scarf II) potential [34] as the sole exception (including its symmetric limit
represented by the sech-squared potential well). The DCTs using nodeless q-RSs of the selected type results
in a net of isospectral potentials. Therefore, except for the Gendenshtein potential, we don’t need to include
‘state-inserting‘ solutions (’pseudo-virtual state wave functions’ in Odake and Sasaki’s terms) into the given set
of seed functions– a remarkable corollary of the ‘extended’ Krein-Adler theorem [11].

If the given partition ∆1→L is composed of alternating even and odd integers staring from an even integer
δ′

1 then all the integers
δ′
l = m|δ1→1|+1 −m|δ1→1| − 1 > 0 for any l < L (31)
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must be also even which implies that the set of seed solutions ±,M(∆′
L→1) is composed of L segments of even

lengths [11, 19] or in other words is formed by ‘juxtaposed’ [36–38] pairs of seed solutions ±,m′,±,m′ + 1.
Similarly if the set of seed solutions, ±,M(∆′)L→1 is formed by ‘juxtaposed’ pairs of seed solutions ±,m,±,m+1
then the conjugated set is formed by seed solutions ∓,m′ with only even gap lengths, again starting from an
even number. We refer the reader to subsection 3.4 below for a scrupulous analysis of this issue in connection
with juxtaposed pairs of eigenfunctions of the Schrödinger equation with the Morse potential in the BRef
representation [19].

3. Quantization of rationally deformed Morse potentials by Wronskian
transforms of R-Bessel polynomials

3.1. Schrödinger equation with Morse potential in Bessel form
In this paper we focus solely on the TFI CSLE

{
d2

dy2 + I0[y; a] + ε∞ρ⋄[y]
}

∞
Φ[y; a; ε] = 0 (32)

with the RefPF
I0[y; a] = 2ay−3 − y−4 + 1/4y−2 (33)

and the density function
∞ρ⋄[y] ≡ ∞σ

−1[y] = y−2 (34)
One can directly verify that CSLE (32) has a pair of ’basic’ solutions

∞ϕ±,0(y; a) = y1±ae±1/y (y > 0) (35)

at the energies
∞ε±,0(a) = −(a± 1/2)2. (36)

Examination of solutions (35) shows that they obey the following symmetry relations

∞ϕ±,0[y; a+ k] = y±k
∞ϕ±,0[y; a] (37)

for any integer k and
∞ϕ+,0(y; a)∞ϕ−,0(y; a) = y2 (38)

whereas the function
f±,0[ξ;⇀a , b] ≡ ϕ∓,0[ξ;⇀a , b]/ϕ±,0[ξ;⇀a , b] (39)

takes form
∞f±,0[ξ; a] ≡ y∓2ae∓2/y. (40)

We thus proved that the pair of basic solutions in question satisfy the TFI condition [23]

∞ϕ∓,0[y; a± 1] = ∞ρ
−1/2
⋄ [y]/∞ϕ±,0(y; a). (41)

One can directly verify that
∞ε∓,0(a± 1) = ∞ε±,0(a) (42)

and thereby
∞E±1(a) ≡ ∞ε∓,0(a± 1) − ∞ε±,0(a) = 0 (43)

so the symmetry condition [23]
E∓1(a± 1) = −E±1(a). (44)

trivially holds.
The gauge transformations

∞Φ[y; a; ε] = εϕ±[y; a]∞F±[y; a; ε] (45)
convert CSLE (32) to a pair of Bochner-type eigenequations

{
y2 d

2

dy2 + ∞τ±[y; a] d
dy

+ [ε−∞ ε±,0(a)]
}

∞F±[y; a; ε] = 0, (46)

with
∞τ

±[y; a] = 2(1 ± a)y ∓ 2. (47)
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We define generalized Bessel polynomials as

Y (α,β)
n (y) ≡ Y (α)

n (y/β), (48)

where the polynomial Y (α)
n (x) is given by (2) in [4] and thereby coincides with polynomial (9.13.1) in [6]

Y (α)
n (x) ≡ yn(x;α). (49)

Note that Chihara’s relation (4.3) in [5] is apparently based on Brafman’s definition [39] for the polynomial
yn(x;α, β) such that yn(x;α + 2, 2) = yn(x;α). Adding the second index to the conventional notation [4, 5]
allows us to avoid uncertainties in the definition of the variable used to differentiate a polynomial in the reflected
argument, keeping in mind that

Y (α)
n (−y) ≡ Y (α,−2)

n (y). (50)

Eq. (37) for the Bessel DPS in [40] thus corresponds to the polynomials Y (α−2,β)
n (y) in our terms. (We prefer to

preserve symbol ‘B’ for their orthogonal subset composed of R-Bessel polynomials [12, 13].) It is also worth
mentioning that Alhaidari [1] introduced a slightly modified notation for generalized Bessel polynomials:

Jan(1/2y) ≡ Y (2a)
n (y) = (2n+ 2a)n(y/2)n1F1(−n; −2a− n; 2/y), (51)

with the Pochhammer symbol (a)n standing for the falling factorial. And indeed it would be possibly more
convenient to use the parameter a as the polynomial index keeping in mind that the forward and backward shift
relations change the polynomial index by 1. However we prefer to stick to the more conventional notation.

The basic solution ∞ϕ±,0[y; a] is thus nothing but a constant solution of eigenequation (46) converted back
by gauge transformation (45). Similarly the reverse gauge transformation of each of the DPSs composed of
polynomials Y (±2a,∓2)

m (y) results in pairs of infinite sequences of q-RSs of CSLE (32):

∞ϕ±,m[y; a] = ∞C±,m(a)∞ϕ±,0[y; a]Y (±2a,∓2)
m (y). (52)

The multiplier lC±,m will be chosen below in such a way that q-RSs (52) satisfy recurrence relations (15).
The crucial advantage of expressing q-RSs in terms of generalized Bessel polynomials, instead of Laguerre
polynomials [7–11], is that the weight function ∞ϕ±,0[y; a] in the right-hand side of (52) does not depend on the
polynomial degree – the direct consequence of the fact that the given TFI CSLE belongs to Group A [18, 19, 23],
in contrast with the conventional representation of eigenfunctions of the Schrödinger equation with the Morse
potential in terms of classical Laguerre polynomials [22].

According to the general theory of Bochner-type eigenequations [41] differential equation (46) has a polynomial
solution of degree m at

ε = ∞ε±,m(a) = ∞ε±,0(a) −m[2(1 ± a) +m− 1], (53)
which, coupled with (36), gives

∞ε±,m(a) = −(m+ 1/2 ± a)2. (54)
This brings us to the simplified version of the raising ladder relations [23] for the energies of q-RSs (15):

∞ε±,m+1(a) = ∞ε±,m(a± 1) (55)

with E±1(a) ≡ 0 .
To be historically accurate, it is worth mentioning that Cotfas’ Eq. (10) in [16] with the leading coefficient

σ(s) = s2 does list Al-Salam’s [4] formula

Y (α)
n (y) = n! (−y/2)nL(−α−2n−1)

n (2/y) (56)

for the generalized Bessel polynomials in terms of Laguerre polynomials in the reciprocal argument 2/y (though
without mentioning the former polynomials by name). Actually Cotfas discusses only eigenfunctions of the
corresponding Sturm-Liouville problem so the cited formula specifies R-Bessel polynomials expressed in terms of
classical Laguerre polynomials in 2/y:

B(A)
n (y) ≡ Y (−2A−1)

n (y) = n! (−y/2)nL(2A−2n)
n (2/y) for n < A, (57)

with Cotfas’ parameter α standing for 1 − 2A here. The remarkable feature of this finite subsequence of
generalized Bessel polynomials is that the polynomials in question are orthogonal on the positive semi-axis as
prescribed by orthonormality relations (9.13.2) in [6]:

∫ ∞

0
∞ρ⋄[y]∞ϕ2

−,0[y;A+ 1/2]B(A)
n (y)B(A)

˜
n (y)dy ≡

∫ ∞

0
y−2A−1e−2/yB(A)

n (y)B(A)
˜
n (y)dy =

n! Γ(2A+ 1 − n)
2A− 2n− 1 δn

˜
n.

(58)
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Making use of (39) we can represent backward shift relation (9.13.8) in [6] as

d

dy

î
∞f+,0[ ξ; a] Y (−2a,2)

m (y)
ó

= 2∞f+,0[ξ; a+ 1]Y (−2a−2,2)
m+1 (y) (59)

so the functions
∞f+,m[ξ; a] = ∞C−,m(a)∞f∞,0[ξ; a]Y (−2a)

m (y) (60)

satisfy raising relation (17) provided we choose

∞C−,m+1(a) = 2∞C−,m(a− 1) ≡ 2m+1 (61)

keeping in mind that ∞C−,0(a) ≡ 1.
Substituting (54) into (20) gives

∞E−,m−1(a− 1) = −m(m+ 1 − 2a) (62)

so recurrence relation (19) can be re-written as

2myẎ (−2a,2)
m (y) = m(m+ 1 − 2a)∞ϕ−,m−1[y; a− 1]/∞ϕ−,0[y; a]. (63)

Combining (52), (61), and (37) with k = 1 brings us to ’forward shift operator’ (9.13.6) in (6)

Ẏ (−2a,2)
m (y) = 0.5m(m+ 1 − 2a)Y (2−2a,2)

m−1 (y). (64)

To formulate the Sturm-Liouville problem of our interest it is worthy to convert CSLE (32) to its ‘prime’ [42]
form at ∞ using the gauge transformation

∞ ̸Ψ [y; a; ε] = y−1/2
∞Φ[y; a; ε] (65)

and then to solve the resultant RSLE
{
d

dy
y
d

dy
− y−3 + 2ay−2 + εy−1

}
∞ ̸Ψ [y; a; ε] = 0 (66)

under the Dirichlet boundary conditions (DBCs):

lim
y→0 ∞ ̸Ψ [y; a; εn] = lim

y→∞ ∞ ̸Ψ [y; a; εn] = 0. (67)

The main advantage of converting CSLE (32) to its prime form with respect to the regular singular point at
infinity comes from our observation [42] that the characteristic exponents for this singular end have opposite
signs and therefore the corresponding principal Frobenius solution is unambiguously selected by the DBC. Prime
RSLE (66) can be also re-written in the form of the ‘algebraic’ [42] Schrödinger equation

{
y
d

dy
y
d

dy
− y−2 + 2ay−1 + ε

}
∞ ̸Ψ [y; a; ε] = 0. (68)

(As discussed in the following subsections this is the common remarkable feature of RCSLEs with density
function (34) assuming that the singular point at infinity is regular.) Reformulating the given spectral problem
in such a way allows us to take advantage of powerful theorems proven in [43] for zeros of principal solutions of
SLEs solved under the DBCs at singular ends.

The eigenfunctions of RSLE (66) thus take form

∞ ̸ψ−,n [y; a] = y−1/2
∞ϕ−,n[y; a] = 2ny1/2−ae−1/yB(a−1/2)

n (y) for n = 0, . . . , N(a). (69)

One can then directly verify that each eigenfunction obeys the DBC at both singular ends. Since R-Bessel
polynomials (57) form an orthogonal sequence the eigenfunction ∞ ̸ψ−,n [y; a] must have exactly n nodes and
therefore [43] the sequence of eigenfunctions (69) corresponds to ⌈A⌉ = N(a) + 1 lowest eigenvalues of RSLE
(66) with

N(a) = ⌊a− 1/2⌋ ≡ ⌊A⌋. (70)

Note also that eigenfunctions (69) are orthogonal with the weight y−1 and that any solution normalizable with
this weight must vanish at infinity.
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The presented argumentation does not exclude existence of eigenfunctions with the number of nodes larger
than N(a) − 1. To confirm that the problem in question is indeed exactly solvable one can simply take advantage
of the conventional analysis of the Schrödinger equation with the Morse potential [22] in the L Ref representation.

The reader can argue that the problem must be exactly solvable since the Morse potential is TSI. However
the author [44] has an issue with this assertion. Though the Gendenshtein’s claim [34] concerning the exact
solvability of shape-invariant potentials is most likely correct it has been never accurately proven to our knowledge.
The catch is that Gendenshtein’s arguments decreasing the translational parameter a one by one bring us to the
Sturm-Liouville problem with | a |< 1/2 and then we still need to prove that the resultant SLE has no discrete
energy spectrum.

The change of variable y(x) = ex converts BRef CSLE (32) into the Schrödinger equation with the Morse
potential ∞V [y(x); a], where

∞V [y; a] = −y2I0[y; a] + 1/4 (71)

= −2ay−1 + y−2. (72)

Comparing (72) with (1) in [10] shows that ∞V [y(x);A+ 1/2] = VA,1(x) in Quesne’s notation.
According to the general theorem presented in [43] for singular SLEs solved under the DBCs any principal

solution ∞ ̸ψ−,m [y; a] near the singular end point y = 0 has nodes at the positive semi-axis iff it lies above the
ground energy level. Examination of the inequality

∞ε−,m(a) < ∞ε−,0(a) (73)

thus shows that the q-RS ∞ ̸ψ−,m [y; a] with m ̸= 0 preserves its sign on the positive semi-axis iff

m > 2a− 1 = 2A (74)

(cf.(12) in [10]). It will be proven in next subsection that one can use any combination of admissible q-RSs
∞ ̸ψ−,m [y; a] as seed functions to construct an exactly solvable RDCT of the BRef CSLE.

According to (9.13.1) in [6]

Y (−2a,+2)
m (y) = 2−m(2m− 2a)mŶ (−2a,+2)

m (y) (75)

where, in following [5], we use hut to indicate that the polynomial in question is written in its monic form. It is
essential that the multiplier

(2m− 2a)m =
m−1∏

l=0
(2m− 2a− l) =

m∏

l′=1
(m− 2a+ l′) (76)

necessarily differs from 0 if either 2m− 2a < −1 (R-Bessel polynomials) or m = m > 2a− 1 (generalized Bessel
polynomials with no positive zeros) so the polynomial degree is equal to m in both cases of our primary interest.

3.2. RDCT s of principal solutions near singular end points
Using an arbitrary set Mp = m1, . . . ,mp of seed functions ∞ϕ±,mk

[y; a] of the same type (0 < mk < mk+1 for k =
1, . . . , p− 1) we can represent the corresponding RDCT of BRef CSLE (32) as

{
d2

dy2 + ∞I
0[y; a | ±

...Mp] + εy−2
}

∞Φ[y; a; ε | ±
...Mp] = 0, (77)

where

∞I
0[y; a |

...Mp] = ∞I
0[y; a] + 2

y

d

dy
(y ld∞w[y; a | ±

...Mp]) (78)

with

∞w[y; a | ±
...M1] ≡ ∞ϕ±,m1 [y; a], (79)

∞w[y; a | ±
...Mp] ≡ W

{
∞ϕ±,m1 [y; a], . . . ,∞ϕ±,mp

[y; a]
}

for p > 1, (80)

and the symbolic expression ld standing for the logarithmic derivative. When deriving (78) we also took into
account that the so-called [42] ‘universal correction’

∆I {ρ(y)} ≡ 0.5
»
ρ(y) d

dy

ld ρ(y)√
ρ(y)

(81)
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in Schulze-Halberg’s [45] generic formula for zero-energy free term of the transformed CSLE vanishes in the case
of our current interest: ρ(y) = y−2.

The common remarkable feature of Wronskians (80) for TFI CSLEs from group A (originally noticed by
Odake and Sasaki [19] in their scrupulous study on RDCT s of the corresponding TSI potentials) is that each
can be represented as the weighted polynomial Wronskian

∞w[y; a | ±
...Mp] = ∞ϕ

p
±,0[y; a]∞WNMp

[y; a | ±
...Mp], (82)

where the Wronskian

∞WNMp
[y; a | ±

...Mp] ≡ W
{
Y (±2a,∓2)
m1 (y), . . . , Y (±2a,∓2)

mp
(y)

}
(83)

is a polynomial of degree
NMp

=| Mp | −0.5p(p− 1) (84)

(see (61) in [19]). When it seems appropriate we will drop the index specifying the degree of polynomial
Wronskians in question. Substituting (82) into (78), coupled with (33) and (35), one finds

∞I
0[ y; a | ±

...Mp] = 2(a± p)y−3 − y−4 + 1/4y−2 + 2
y

d

dy

Å
y ld∞W[y; a | ±

...Mp]
ã
. (85)

Each RCSLE under consideration can be alternatively obtained via sequential RDTs with the FFs

∞Φ±,m
˜
p [y; a | ±

...M
˜
p−1] = yp−1 ∞w[y; a | ±

...M
˜
p]

∞w[y; a | ±
...M

˜
p−1]

(
˜
p = 1, . . . , p) (86)

so RefPFs (85) can be determined via the following sequence of recurrence relations

∞I
0[y; a | ±

...Mp] = ∞I
0[y; a | ±

...Mp−1] + 2
y

d

dy

Å
y ld∞Φ±,mp [y; a | ±

...Mp−1]
ã

(87)

(a natural extension of the renown Crum formulas [21] to the CSLEs).
For an arbitrary choice of the partition Mp RefPF (85) generally has poles on the positive semi-axis and

therefore RCSLE (77) cannot be quantized analytically. So let us choose a set M±
p = m±

1 , . . . ,m±
p of seed

solutions of the sane type, ∞ϕ±,mk
[y; a] (0 < mk = m±

k < mk+1 = m±
k+1 for k = 1, . . . , p− 1), in such a way

that the seed function ∞ϕ±,m1 [y; a] and all Wronskians ∞w[y; a | ±
...M±

p ] for
˜
p = 2, . . . , p preserve their sign on

the positive semi-axis. In particular Odake and Sasaki [19] and nearly the same time Gomez-Ullate et al [11]
constructed the subnet of rationally deformed Morse potentials

∞V [y; a | +
...M+

p ] = ∞V [y; a] + y2
{

∞I
0[y; a] − ∞I

0[y; a | +
...M+

p ]
}

(88)

using seed solutions infinite at both quantization ends. In next subsection we will introduce another subnet of
rationally deformed Morse potentials

∞V [y; a | −
...M_

p ] = ∞V [y; a] + y2
{

∞I
0[y; a] − ∞I

0[y; a | −
...M_

p ]
}

(89)

constructed by means of FFs vanishing at the origin. The subnet starts from the potential ∞V [y; a | −
...m] with

a positive integer m > 2a− 1 – potential function (16) in [10] with A = a− 1/2, B = 1.
Substituting (82) into (86) and also making use of (37) with k = p, shows that RCSLE (77) has an infinite

set of q-RSs

∞Φ±,m[y; a | ±
...Mp] = ∞ϕ±,0[y; a± p] ∞W[y; a | ±

...Mp,m]

∞W[y; a | ±
...Mp]

. (90)

Apparently q-RS (90) with the label ‘−’ represents the principal solution approaching 0 as yδ−(Mp)e−1/y in the
limit y → +0. On other hand q-RS (90) labelled by ‘+’ infinitely grows as yδ+(Mp)e1/y in this limit. In both
cases

ld∞Φ±,m[y; a | ±
...Mp] ≈ ∓y−2 (91)
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and consequently

ld ∗Φ±,m[y; a | ±
...Mp] ≡ ld y − ld∞Φ±,m[y; a | ±

...Mp] ≈ ±y−2 (92)
for 0 < y << 1, where we dropped subscript ∞ in the notation of the FF for the reverse RDT:

∗Φ±,m[y; a | ±
...Mp] ≡ y/∞Φ±,m[y; a | ±

...Mp] . (93)

Note that the last summand in sum (85) has a simple pole at y = 0 so an arbitrary principal solution of RCSLE
(77) near its irregular singular point at y = 0 can be approximated as

∞Φ0[y; a; ε | ±
...Mp] ∝ y∆±(a;Mp)e−1/y for y << 1, (94)

where ∆±(a;Mp) stands for a finite power exponent which particular value is non-essential for our discussion.
Examination of the quasi-rational function

∞Φ0[y; a; ε | ±
...Mp+1] =

y W

{
∞Φ±,mp+1 [y; a | ±

...Mp] ,∞Φ0[y; a; ε | ±
...Mp]

}

∞Φ±,mp+1 [y; a | ±
...Mp]

=

y ∞Φ̇0[y; a; ε | ±
...Mp] − y ld∞Φ±,mp+1 [y; a; |

...Mp] ∞Φ0[y; a; ε | ±
...Mp]

(95)

representing the RDT of the principal solution of RCSLE (77) near its irregular singular point at y = 0 confirms
that it is a principal solution of the transformed RCSLE near the singular point in question. Vice versa the
quasi-rational function

y W

{
∗Φ±,mp

[y; a | ±
...Mp] ,∞Φ0[y; a; ε | ±

...Mp+1]
}

∗Φ±,mp+1 [y; a | ±
...Mp]

=

y ∞Φ̇0[y; a; ε | ±
...Mp+1] − y ld∗Φ±,mp+1 [y; a | ±

...Mp+1] ∞Φ0[y; a; ε | ±
...Mp+1]

(96)

representing the reverse RDT of the principal solution (95) is the principal solution of RCSLE (77) near its
irregular singular point at y = 0.

To study a behavior of Frobenius solutions near a regular singular point of RCSLE (77) at infinity it is
convenient to convert this equation to its ‘prime’ form [42] using the gauge transformation

∞ ̸Ψ [y; a; ε±
...Mp] = y−1/2

∞Φ[y; a; ε |
...Mp] (97)

which gives
{
d

dy
y
d

dy
− y−3 + 2(a± 1)y−2 + 2 d

dy
(y ld∞W[y; a | ±

...Mp] ) + εy−1
}

∞ ̸Ψ [y; a; ε | ±
...Mp] = 0 (98)

As explained above the main advantage of this representation comes from the fact that the characteristic
exponents of two Frobenius solutions of RSLE (98) near this singular end have opposite signs, with the principal
Frobenius solution decaying as y−√−ε when y → ∞. Again RSLE (98) is nothing but the ‘algebraic’ [42] form of
the Schrödinger equation with the rationally deformed Morse potentials (88) or (89) accordingly – the common
feature of RCSLEs with density function (34) as far as the given SLE has a regular singular point at infinity.
Apparently

∞ ̸Ψ [y; a; ε | ±
...Mp+1] ≡ y−1/2

∞Φ[y; a; ε | ±
...Mp+1] =

y W

{
∞ ̸Ψ [y; a; ε±,mp+1(a) | ±

...Mp], ∞ ̸Ψ [y; a; ε | ±
...Mp]

}

∞ ̸Ψ [y; a; ε±,mp+1(a) | ±
...Mp]

(99)

Here we are only interested in cases when the FF appearing in the denominator of PF (99) is the non-principal
Frobenius solution of RSLE (98) near the singular point at infinity so

∞ ̸Ψ [y; a; ε | ±
...Mp+1] ≈ − [

√
−ε+

»
−ε±,mp+1(a)]y−√−ε for y >> 1 (100)
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if ∞ ̸Ψ [y; a; ε | ±
...Mp] is an arbitrary principal Frobenius solution of this RSLE near the singular end in question.

We thus proved that the RDT of any principal Frobenius solution for each of the singular end points is itself
the principal Frobenius solution of the transformed RSLE near the singular point in question.

Suppose that RSLE (98) with Mp replaced for M±
p+1 has an additional eigenfunction ∞ ̸Ψ [y; a; ε∗(a) |

±
...M±

p+1] at the energy ε∗(a) < 0. Applying the reverse RDT with the FF

y1/2/∞Φ[y; a; ε±,mp+1(a) | ±
...M±

p ] = ∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±
...M±

p ] (101)

to the new eigenfunction we would come to the solution which obeys the DBC at infinity:

W

{
∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±

...M±
p ],∞ ̸Ψ [y; a; ε∗(a) | ±

...M±
p+1]

}

∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±
...M±

p ]

≈ [
»

−ε±,mp+1(a) −
»

−ε∗(a)]y−
√

−ε±,mp+1 (a) for y >> 1

(102)

assuming that ε∗(a) ̸= ε±,mp+1(a). On other hand, the quasi-rational function on the left is related to principal
solution (96) via gauge transformation (97) with ε = ε∗(a) and therefore the solution in question would obey
both DBCs which contradicts the assumption that ε∗(a) is a new eigenvalue. The only exception corresponds to
the case ε∗(a) = ε±,mp+1(a), when the RDT with FF (100) insert the new bound energy state below the ground
energy level of rationally deformed Morse potential (88) or (89) accordingly.

3.3. Isospectral family of rationally deformed Morse potentials with a regular
spectrum

Let us prove that any set M_
p of seed solutions ϕ−,mk

[y; a] (0 < m1 < mk < mk+1 ≤ p) is admissible if the
generalized Bessel polynomial Y (−2a)

mk (y) does not have positive zeros so each seed function ∞ϕ−,mk
[y; a] preserves

its sign on the positive semi-axis. According to (73), this is possible if m > 2a− 1 for any m ∈ M_
p . In other

words we have to prove that polynomial Wronskian (83) does not have positive zeros if this is true for each
polynomial Y (−2a)

mk (y). This assertion is obviously trivial for
˜
p = 1. It also directly follows from the arguments

presented in previous subsection that the RDT of BRef CSLE (32) with the FF ϕ−,m1 [y; a] preserves the discrete
energy spectrum so the prime RSLE

{
d

dy
y
d

dy
+ y∞I

0[y; a | −
...m1] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...m1] = 0 (103)

solved under the DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn(a) | −

...m1] = lim
y→∞ ∞ ̸Ψ [y; a; εn(a) | −

...m1] = 0 (104)

has exactly N(a) eigenfunctions

∞ ̸Ψ [y; a; εn(a) | −
...m1] ≡ ∞ ̸Ψ−,n [y; a | −

...m1] = y−1/2
∞Φ−,n[y; a | −

...m1] (105)

at the energies ∞ε−,n(a) with n varying from 0 to N(a) − 1. Making use of (90) with p = 1 and m = n, they
can be also re-written in the quasi-rational form

∞ ̸Ψ−,n [y; a | −
...m1] = ∞ ̸ψ−,0 [y; a− 1] ∞W[y; a | −

...m1, n]
Y

(−2a)
m1 (y)

(106)

Keeping in mind that the PF in the right-hand side of the latter expression is proportional to yn−1 for y >> 1
one can immediately confirm that eigenfunctions (105) vanish in the limit y → ∞ for any n < a− 1/2.

Let us now use the mathematical induction to prove that the polynomial ∞W[y; a | −
...M_

˜
p+1] does not have

positive zeros if this assertion holds for the polynomial ∞W[y; a | −
...M_

˜
p ]. Again it is suitable to convert RCSLE

(77) to its prime form
{
d

dy
y
d

dy
+ y∞I

0[y; a | −
...M_

˜
p ] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...M_

˜
p ] = 0 (107)
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solved under the DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn(a) | −

...M_

˜
p ] = lim

y→∞ ∞ ̸Ψ [y; a; εn(a) | −
...M_

˜
p ] = 0. (108)

Making use of (90) with p =
˜
p we can again re-write the eigenfunctions

∞ ̸Ψ−,n [y; a | −
...M_

˜
p ] ≡ ∞ ̸Ψ [y; a; εn(a) | −

...M_

˜
p ] = y−1/2

∞Φ−,n[y; a | −
...M_

˜
p ] (109)

in the quasi-rational form

∞ ̸Ψ [y; a | −
...M_

˜
p ] = ∞ ̸ψ−,0 [y; a−

˜
p]

∞W[y; a | −
...M_

˜
p+1]

∞W[y; a | −
...M_

˜
p ]

(110)

Examination of q-RS (110) reveals that it vanishes at the origin and therefore represents a principal solution of
prime SLE (103) near its irregular singular point. Since this solution lies below the lowest eigenvalue it must be

nodeless [43] and therefore no Wronskian ∞W[y; a | −
...M_

p ] has positive zeros.
All the q-RSs

∞ ̸Ψ−,n [y; a | −
...M_

p ] = ∞ ̸ψ−,0 [y; a− p] ∞W[y; a | −
...M_

p , n]

∞W[y; a | −
...M_

p ]
(111)

vanish at infinity for n < N(a) = ⌊A⌋ since the power exponent of the PF in the right-hand side of (111) is
equal to n− p in the limit y → ∞. This confirms that the Direchlet problem for SLE (103) has exactly N(a)
eigenfunctions defined via (111) with n < N(a). Since these eigenfunctions must be orthogonal [43] with the

weight y−1 the polynomial Wronskians ∞W[y; a | −
...M_

p , n] with n varying from 0 to N(a) − 1 are orthogonal
with the positive weight

∞W [y; a | −
...M_

p ] = ∞ ̸ψ2
−,0 [y; a− p]

y ∞W2[y; a | −
...M_

p ]
. (112)

If the Morse potential has at least 2 energy levels the sequence starts from a polynomial of degree

| M_
p | −0.5 p(p+ 1) ≥ 2p. (113)

keeping in mind
| M_

p |> (2a− 1)p+ 0.5p(p+ 1) > 2p+ 0.5p(p+ 1) (114)

in this case. The finite EOP sequence in question thus starts from a polynomial of at least second degree and
therefore [46] does not obey the Bochner theorem [47].

Re-writing (85) with Mp = M_
p as

∞I
0[y; a | −

...M_
p ] = ∞I

0[y; a− p] + 2
y

d

dy

Å
y ld∞W[y; a | −

...M_
p ]
ã

(115)

we can then explicitly express corresponding Liouville potential (89) in terms of the admissible Wronskian

∞W[y; a | −
...M_

p ] as follows

∞V [y; a | −
...M_

˜
p ] = ∞V [y; a− p] − 2y d

dy

Å
y ld∞W[y; a | −

...M_
p ]
ã

(116)

As mentioned in previous subsection this net of isospectral rational potentials starts from potential function (16)
in [10] with A = a− 1/2 , B = 1, after the latter is expressed in terms of the variable y = ex.
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3.4. Subnet of rationally deformed Morse potentials quantized via Wronskians of
R-Bessel polynomials

Another family of solvable RDCT s of CSLE (32) can be constructed using juxtaposed pairs of eigenfunctions
∞ϕ−,nk

[y; a], ∞ϕ−,nk+1[y; a] (0 < nk < nk+1 − 1 < N(a) for k = 1, . . . , J). The simplest double-step
representative of this finite family of rationally deformed Morse potentials with n1 = 1, J = 2 was constructed
by Bagrov and Samsonov [38, 48] in the late nineties based on the conventional L Ref representation of the
Schrödinger equation with the Morse potential. The extensions of their works to an arbitrary number of
juxtaposed pairs of eigenfunctions in both L Ref and BRef representations were performed more recently in
[11] and [19] accordingly.

For any TFI RCSLE from Group A one can by-pass an analysis of the pre-requisites for the Krein-Adler
theorem [49, 50] by taking advantage of the fact that the Wronskians of eigenfunctions are composed of weighted
orthogonal polynomials with the common degree-independent weight and therefore the numbers of their positive
zeros are controlled by the general Conjectures proven in [51] for Wronskians of positive definite orthogonal
polynomials. In particular we conclude that any Wronskian formed by juxtaposed pairs of R-Bessel polynomials
of non-zero degrees may not have positive zeros.

Let N2J be a set of R-Bessel polynomials of degrees

N2J = M(∆′
L→1) =

n1 : n1 + 2j1 − 1, n2j1+1 : n2j1+1 + 2j2 − 1, . . . , n2J−2jL+1 : n2J(n1 > 0, n2J < N)
(117)

with even
δ′
l = 2jl (l = 1, . . . , L). (118)

Examination of the q-RS functions

∞ ̸Ψ−,n [y; a | −
...N2J ] = y−1/2

∞Φ−,n[y; a | −
...N2J ] =

∞ ̸ψ−,0 [y; a− 2J ] ∞W[y; a | −
...N2J , n]

∞W[y; a | −
...N2J ]

(n /∈ N2J)
(119)

shows that they all represent principal solutions near the irregular singular point of the prime RSLE
{
d

dy
y
d

dy
+ y∞I

0[y; a | −
...N2J ] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...N2J ] = 0 (120)

assuming again that the latter equation is solved under DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn | −

...N2J ] = lim
y→∞ ∞ ̸Ψ [y; a; εn | −

...N2J ] = 0. (121)

Note that the PF in the right-hand side of (119) is proportional to yn−2J for y >> 1 so each solution with
n /∈ N2J < N(a) represents an eigenfunction of RSLE (120).

Again these eigenfunctions must be orthogonal with the weight y−1 and therefore N(a) − 2J Wronskians

∞W[y; a | −
...N2J , n] with n /∈ N2J < N(a) form a polynomial set orthogonal with the positive weight

∞W [y; a | −
...N2J ] = ∞ ̸ψ2

−,0 [y; a− 2J ]

y∞W2[y; a | −
...N2J ]

(122)

If sequence (117) starts from n1 = 1 then the finite EOP sequence in question lacks the first-degree polynomial.
Otherwise it always starts from a polynomial of non-zero degree

| N2J | −J(2J + 1) > (n1 − 1)(δ′
1 − 1) ≥ 1. (123)

In both cases the pre-requisites of the Bochner theorem are invalid as expected [46].
The Liouville potentials in question can be thus expressed in terms of the admissible Wronskians ∞W[y; a |

−
...N2J ] as follows

∞V [y; a | −
...N2J ] = ∞V [y; a− 2J ] − 2y d

dy
(y ld∞W[y; a | −

...N2J ]). (124)

We refer the reader to Conjectures in [51] to verify that the number of zeros of each Wronskian in the constructed
orthogonal polynomial set changes exactly by 1 even if a jump in the polynomial degree is larger than 1. However
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even if we take advantage of these elegant results we still need to prove that there are no additional eigenfunctions
with a number of nodes larger than N(a) − 2J − 1. In contrast with the analysis presented in the previous
section, this proof is complicated by the fact that the RDT at each odd step results in a non-solvable RSLE
with singularities on the positive semi-axis. Luckily we deal with the TFI CSLE so its RDCT using juxtaposed
pairs of eigenfunctions can be alternatively obtained via sequential RDTs with seed solutions from the second
sequence +,m [11, 19]. Namely, as already mentioned in the end of section 2 the conjugated partition

M+
|δ1→L| = M(∆1→L) (125)

is formed by alternating even and odd integers starting from an even integer δ′
1. The reverse is also true: if the

partition
M+
p = M(pδ1→Lp

; pδ′
1→Lp

) (126)

is composed of alternating even and odd integers starting from an even integer δ′
1 then each segment of the

conjugated partition
pN2Jp

= M(pδ′
Lp→1; pδLp→1) (127)

must have an even length, with the largest element

m+
|pδ′

1→Lp |
=| p∆1→Lp

| −1 = m|pδLp→1| ∈ pN2Jp
, (128)

where p∆1→Lp
≡ pδ1→Lp

; pδ′
1→Lp

.
Making use of (37) one can verify that quasi-rational functions (30) can be decomposed as

∞χ∓N [y; a] = y1/2N(N−1)∓Nδ[ξ]∞ϕN±,0[y; a(δ)] (129)

and therefore the denominators of the fractions in equivalence relations (29) take form

y−1/2|δL|(|δL|−1)
L∏

l=1
∞χ−δl

[y; a(|∆′
l→1|−δ)] = yΣL ∞ϕ

|δL|
−,0 [y; a] (130)

y−1/2|δ′
L|(|δ′

L|−1)
L∏

l=1
∞χ−δ′

l
[y; a(|∆′

l→1|−δ′)] = yΣL ∞ϕ
|δ′

L|
−,0 [y; a(|∆1→L|)] (131)

accordingly, where | ∆1→L |=| ∆′
L→1 | and

ΣL =
L∑

l=1
δ′
l(δl +

L∑

˜
l=l+1

δ
˜
l) =

L∑

l=1
δl(δ′

l +
l−1∑

˜
l=1

δ′
˜
l). (132)

We thus come to the following equivalence theorem for the Wronskians of generalized Bessel polynomials

∞Ŵ[y; a | +
...M(∆1→L)] = ∞Ŵ[y; a(|∆1→L|) | −

...M(∆′
L→1)]. (133)

Note that decomposition (129) holds for any TFI CSLE of Group A provided that we replace y2 for the leading
coefficient lσ[y] of the corresponding counter-parts of differential eigenequations (46). This brings us to the
equivalence relations for polynomial Wronskians discovered by Odake and Sasaki [19] in their pioneering analysis
of TSI potentials from Group A.

If a > 1/2 then, according to (128), the largest element of the partition pN2Jp
is smaller than a+

| p∆l→Lp
| −1/2 and therefore the Wronskian in the right-hand side of (133) with ∆′

L→1 replaced for p∆′
Lp→1

is formed by juxtaposed pairs of R-Bessel polynomials. This confirms that none of the polynomial Wronskians

∞Ŵ[y; a | +
...M+

p ] has zeros on the positive semi-axis and therefore each partition M+
p specifies an admissible

sequence of seed solutions ∞ϕ+,mk
[y; a] (mk ∈ M+

p for k = 1, . . . , p). Based on the arguments presented
in subsection 3.2 we thus assert that the RDTs in question may insert only one bound energy level at the
energy ∞ε+,mp+1(a) which by definition lies below the ground energy level ∞ε+,mp

(a) of the Liouville potential
∞V [a | M+

p ]. On other hand all the existent energy levels remain unchanged.
As the simplest example we can cite the partition

1, 2, . . . , 2J = M(2J, 1) = M
†(1, 2J) for 2J ≤ ⌊A⌋ (134)
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As a direct consequence of the equivalence theorem we find that

Ŷ
(2a−2J−1,−2)

2J (y) = ∞Ŵ[y; a | −
...1 : 2J ] (2J ≤ ⌊A⌋), (135)

where the Wronskian on the right is formed by 2J sequential R-Bessel polynomials of non-zero degrees smaller
than A and therefore may not have positive zeros for a > −1/2 [51]. As initially proven in [7] and then illuminated
in more details in [8] using the so-called ‘Kienast-Lawton-Hahn’s theorem’ [52–54] the latter assertion holds for
any positive J despite the fact that the seed functions ∞ ̸ψ−,m [y; a(2J+1)] have nodes on the positive semi-axis
for

a(2J+1) + 1/2 < m < 2A. (136)
Indeed, representing (56) as

Y (2a,−2)
m (y) ≡ Y (2a)

m (−y/2) = m! (−y/2)mL(−2a−2m−1)
m (−2/y) (137)

shows that the absolute value of the negative m-dependent Laguerre index

αm = −2a− 2m− 1 < 0 (138)

is larger than the polynomial degree and therefore the polynomial in question may not have zeros at negative
values of its argument.

3.5. Isospectral rational extensions of Krein-Adler SUSY partners of Morse
potential

Since any RDCT of the Morse potentials using pairs of juxtaposed eigenfunctions N2J keeps unchanged
the ground-energy level a set of seed functions ∞ϕ+,m[y; a] is admissible iff all m ∈ N2J ,M

_
p , where M_

p is
an admissible set of seed polynomials specified in subsection 3.3. We can then use the same arguments as
in subsection 3.3 to prove that any Liouville potential

∞V [y; a | −
...N2J ,M

_
p ] = ∞V [y; a− 2J − p] − 2y d

dy

Å
y ld∞W[y; a | −

...N2J ,M
_
p ]
ã

(139)

has exactly the same discrete energy spectrum as rationally deformed Morse potential (124) constructed by
means of juxtaposed pairs of R-Bessel polynomials of non-zero degrees. Its eigenfunctions expressed in terms of
the variable y = ex can be represented as

∞ ̸ψ−,n [y; a | −
...N2J ,M

_
p ] = ∞ ̸ψ−,0 [y; a− 2J − p] ∞W[y; a | −

...N2J , n,M
_
p ]

∞W[y; a | −
...N2J ,M

_
p ]

for n /∈ N2J < N(a) (140)

keeping in mind that the corresponding prime RSLE is nothing but the Schrödinger equation re-written in its
algebraic form.

4. Conclusions
The presented analysis illuminates the non-conventional approach [19] to the family of rationally deformed
Morse potentials using seed solutions expressed in terms of Wronskians of generalized Bessel polynomials in the
variable y = ex. As a new achievement compared with Odake and Saski’s [19] study on RDCT s of the Morse
potential (see also [11] where a similar analysis was performed within the conventional L Ref framework) we
constructed a new RDC net of isospectral potentials by expressing them in terms of the logarithmic derivative
of Wronskians of generalized Bessel polynomials with no positive zeros. The constructed isospectral family
of rationally deformed Morse potentials represents a natural extension of the isospectral RDT s of the Morse
potential discovered by Quesne [10]. An important element of our analysis often overlooked in the literature
is the proof that the sequential RDTs in question do not insert new bound energy states. The widespread
argumentation in support of this (usually taken-for-granted) presumption is based on the speculation that the
theorems of the regular Sturm-Liouville theory [55] are automatically applied to singular SLEs. We can refer
the reader to the scrupolous analysis performed in [43] for SLEs solved under the DBCs as an illustration
that this is by no means a trivial issue. To be able to prove the aforementioned assertion we converted the
given RCSLE to its prime form such that the characteristic exponents of Frobenius solutions for the regular
singular point at ∞ have opposite signs and therefore the principal Frobenius solution near this singular end
is unambiguously selected by the corresponding DBC. (In the particular case under consideration the prime
RSLE accidently coincides with the Schrödinger equation re-written in the ‘algebraic’ [42] form but this is
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not true in general.) Re-formulating the given spectral problem in such a very specific way allowed us to take
advantage of powerful theorems proven in [43] for zeros of principal solutions of SLEs solved under the DBCs at
singular ends. We [42] also used this simplified version of the conventional spectral theory to prove that any
RDT of a principal (non-principal) Frobenius solution near the regular singular point at ∞ is itself a principal
(non-principal) Frobenius solution of the transformed RSLE. This assertion plays a crucial role in our proof of
the exact solvability of the constructed DC net of isospectral rational potentials. It is commonly presumed that
the Krein-Adler theorem [49, 50] is applied to an arbitrary potential regardless its behavior near the singular
end points. In [42] we examined this presumption more carefully for the Dirichlet problems of our interest again
taking advantage of the theorems proven in [43] for zeros of juxtaposed eigenfunctions. However one can by-pass
this analysis for any TFI RSLE from Group A keeping in mind that the Wronskians in questions are formed by
orthogonal polynomials with degree-independent indexes and therefore the numbers of their positive zeros are
controlled by the general Conjectures proven in [51]. In particular this implies that any Wronskian formed by
juxtaposed pairs of R-Bessel polynomials of non-zero degrees may not have positive zeros.
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Abstract. We extensively motivate the studies of higher-derivative gravities, and in particular we
emphasize which new quantum features theories with six derivatives in their definitions possess. Next,
we discuss the mathematical structure of the exact on the full quantum level beta functions obtained
previously for three couplings in front of generally covariant terms with four derivatives (Weyl tensor
squared, Ricci scalar squared and the Gauss-Bonnet scalar) in minimal six-derivative quantum gravity
in d = 4 spacetime dimensions. The fundamental role here is played by the ratio x of the coupling
in front of the term with Weyl tensors to the coupling in front of the term with Ricci scalars in the
original action. We draw a relation between the polynomial dependence on x and the absence/presence
of enhanced conformal symmetry and renormalizability in the models where formally x → +∞ in the
case of four- and six-derivative theories respectively.

Keywords: Quantum Gravity, higher derivatives, beta functions, UV-finiteness, conformal symmetry.

1. Introduction and motivation
Six-derivative Quantum Gravity (QG) is a model of
quantum dynamics of relativistic gravitational field
with higher derivatives. It is a special case of gen-
eral higher-derivative (HD) models which are very
particular modifications of Einsteinian gravitational
theory. The last one is based on the theory with up
to two derivatives (an addition of the cosmological
constant term brings terms with no derivatives on the
metric field at all) and it is simply based on the action
composed of the Ricci curvature scalar R understood
as the function of the spacetime metric. In this setup,
we consider that gravitational field is completely de-
scribed by the symmetric tensor field gµν being the
metric tensor of the pseudo-Riemannian smooth differ-
ential manifold of a physical spacetime. In Einstein’s
theory the scalar R contains precisely two ordinary
(partial) derivatives of the metric. The action obtained
by integrating over the spacetime volume the densi-
tized Lagrangian

√
|g|R we call as Einstein-Hilbert

action. The QG models based on it were originally
studied in [1–3]. Below we consider modifications of
two-derivative gravitational theory, where the number
of derivatives on the metric is higher than just two.

It must be remarked, however, that the kinematical
framework of general relativity (GR) (like metric struc-
ture of the spacetime manifold, the form of Christoffel
coefficients, the motion of probe particles, or geodesic
and fluid dynamics equations) remains intact for these
modifications. Therefore these higher-derivative (HD)
models of gravitational field are still consistent with
the physical basis of GR, the only difference is that
their dynamics – the dynamics of the gravitational
field – is described by classical equations of motion
with higher-derivative character. Thence these modi-

fications of standard Einsteinian gravitational theory
are still in the set of generally relativistic models of
the dynamics of the gravitational field. They could
be considered both on the classical and quantum lev-
els with the benefits of getting new and deeper in-
sights in the theory of relativistic gravitational field.
Our framework on the classical level can be summa-
rized by saying that we work within the set of metric
theories of gravity, where the metric and only the
metric tensor characterizes fully the configurations of
the gravitational fields which are here represented by
pseudo-Riemannian differential manifolds of relativis-
tic four-dimensional continuous spacetimes. Therefore,
in this work we neglect other classical modifications
of GR, like by adding torsion, non-metricity, other
geometric elements or other scalars, vectors or ten-
sor fields. This choice of the dynamical variables for
the relativistic gravitational field bears impact both
on the classical dynamics as well as on the quantum
theory.

Theories with higher derivatives come naturally
both with advantages and with some theoretical prob-
lems. This happens already on the classical level when
they supposed to describe the modified dynamics of
the gravitational field (metric field gµν(x) living on
the spacetime manifold). These successes and prob-
lems get amplified even more on the quantum level.
The pros for HD theories give strong motivations
why to consider seriously these modifications of Ein-
stein’s gravitation. We will briefly discuss various
possibilities of how to resolve the problems of higher-
derivative field dynamics in one of the last sections
of this contribution, while here we will consider more
the motivations.
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On the classical level, the set of HD gravitational
theories can be viewed as one of the many possible
modifications of two-derivative gravitational theory.
It is true that now observations, mainly in cosmology
and on the intergalactic scales, point to some possible
failures of Einsteinian theory of gravity or to our lack
in understanding the proper nature of the sources
of gravity in these respective situations. There are
various views possible on this situation and its expla-
nations by gravitational theories. In the first view,
researchers say that Einstein-Hilbert theory is still
fine, but we need to add locally new exotic (meaning
coming with some non-standard properties) matter
source. Since we do not know what these sources for
energy-momentum tensor (EMT) of matter are built
out of (for example – from which quantum fields of
particle physics as understood nowadays), we call the
missing sources as dark energy and dark matter respec-
tively. Contrary to this approach, in the other, the
gravitational source is standard, that is we describe
what we really see in the galaxies and in the universe,
without any “dark” components, but the gravitational
theory should be modified. In this second path, the
internal dynamics of the gravitational field is changed
and that is why it reacts differently to the same classi-
cal visible EMT source of standard matter. One of the
promising options is to add higher derivatives of the
metric on the classical level, but in such a way to still
preserve the local Lorentz symmetry of the dynamics
that is to be safe with respect to the general covari-
ance. Hence all HD terms in the action of the theory
must come from generally densitized scalars which are
HD analogs of the Ricci scalar. They can be in full
generality built as contractions of the metric tensors
(both covariant gµν and contravariant gµν), Riemann
curvature tensor Rµνρσ and also of covariant deriva-
tives ∇µ acting on these Riemann tensors1. Initially
this may look as presumably unnecessary complica-
tion since classical equations of motion (EOM) with
higher derivatives of the gravitational field are even
more complicated than already a coupled system of
non-linear partial differential equations for the com-
ponents of the metric tensor field in Einstein’s gravity.
However, on the cosmological and galactic scales some
gravitational models with higher derivatives give suc-
cesses in explaining: the problem of dark matter halos,
flat galactic rotation curves, cosmological dark energy
(late-time exponential expansion of the universe) and
also primordial inflation without a necessity of having
the actual inflaton field. These are amongst all of
observational pieces of evidence that can be taken for
HD models.

Since our work is theoretical we provide below some
conceptual and consistency arguments for HD gravi-
ties. First, still on the classical level, within the class
of higher-derivative gravitational theories, there are
models that are the first, which besides relativistic

1We do not need to consider covariant derivatives on the
metric tensor because of the metricity condition, ∇µgνρ = 0.

symmetries, enjoy also invariance under conformal
symmetry understood in the GR framework. Prop-
erly this is called as Weyl symmetry of the rescaling
of the covariant metric tensor, according to the law:
gµν → Ω2gµν with Ω = Ω(x) being an arbitrary scalar
parameter of these transformations. To understand
better this fact, one may first recall that the metric
tensor gµν is taken here as a dimensionless quantity
and all energy dimensions are brought only by partial
derivatives acting on it. Next, the prerequisite for full
conformal symmetry is scale-invariance of the classical
action, so the absence of any dimensionful parameter
in the definition of the theory. From these facts, one
derives that in four spacetime dimensions (d = 4) the
gravitational conformal models must possess terms
with precisely four derivatives acting on the metric.
In general, in d dimensions, for conformal gravita-
tional theory the classical action must be precisely
with d derivatives on the metric. (One sees due to the
requirement of general covariance that this considera-
tion of conformal gravitational theories makes sense
only in even dimensions d of spacetime.) Another in-
teresting observation, is that the gravitational theory
with Einstein-Hilbert action is classically conformally
invariant only in two-dimensional framework. For 4-
dimensional scale-invariant gravitational theory one
must use a combination of the squares of the Riemann
tensors and various contractions thereof. (The term
□R is trivially a total derivative term, so cannot be
used.) Therefore for d-dimensional conformal gravi-
tational theories (d > 2) we inevitably must consider
HD metric theories. The conformally invariant gravi-
tational dynamics is very special both on the classical
level and also on the quantum level as we will see in
the next sections.

The main arguments for higher-derivative gravita-
tional theories in dimensions d > 2 come instead from
quantum considerations. After all, it is not so surpris-
ing that it is the quantum coupling between quantum
field theory (QFT) of matter fields and quantum (or
semi-classical) gravity or self-interactions within pure
quantum gravity that dictates what should be a con-
sistent quantum theory of gravitational interactions.
Our initial guess (actually Einstein’s one) might not
be the best one when quantum effects are taken fully
into account. Since it is the classical theory that is
emergent from the more fundamental quantum one
working not only in the microworld, but at all en-
ergy scales (equivalent to various distances), then
the underlying fundamental quantum theory must
necessarily be mathematically consistent, while some
different classical theories may not possess the same
strong feature. Already here we turn the reader’s
attention to the fact that the purely mathematical
requirement of the consistency on the quantum level
of gravitational self-interactions is very strongly con-
straining the possibilities for quantum gravitational
theories. It is more constraining than it was origi-
nally thought of. Moreover, not all macroscopic, so
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long wavelength limit, classical theories are with these
quantum correspondence features, only those which
emerge as classical limits of consistent quantum grav-
ity theories. Following this path, at the end, we must
also correct our classical gravitational theory, and
likely it will not be Einsteinian gravity any more.

From a different side, we know that matter fields
are quantum, they interact and they are energetic,
so they are “charged” under gravitation since energy-
momentum content is what the gravity couples to. If
we did not know nothing about gravity, then we could
discover something about it from quantum consider-
ations of gravitationally “charged” matter fields and
their mutual interactions consistent with quantum me-
chanics. In this way we could make gravity dynamical
and quantum with a proper form of graviton’s propa-
gation. Actually, it is the quantum consideration that
makes the gauge bosons mediating the interactions
between quantum charged particles dynamical. These
gauge bosons are emanations or quantum realizations
of classical dynamical gauge fields that must be in-
troduced in the classical dynamics of matter fields or
particles for the overall consistency. Below we will
present a few detailed arguments why we need HD
gravities in d > 2 giving rise to dynamical gravita-
tional fields with HD form of the graviton’s propa-
gators in the quantum domain. They are all related
and in a sense all touch upon the issue of coupling of
a potential unknown dynamical quantum gravity the-
ory to some energetic quantum matter fields moving
under the influence of classical initially non-dynamical
gravitational background field. (The background grav-
itational field does not have to be static, stationary or
completely time-independent, what we only require
here is that it is not a dynamical one.) These last
classical fields can be understood as frozen expecta-
tion values of some dynamical quantum gravitational
fields. As one can imagine for this process of quantum
balancing of interactions the issue of back-reaction of
quantum matter fields on the classical non-dynamical
geometry is essential.

Firstly, we recall the argument of DeWitt and
Utiyama [4]. Due to quantum matter loops some
UV divergences in the gravitational sector are gen-
erated. This is so even if the original matter theory
is with two-derivative actions (like for example stan-
dard model of particle physics). The reasons for these
divergences are pictorially Feynman diagrams with
quantum matter fields running in the perturbative
loops, while the graviton lines are only external lines
of the diagrams since they constitute classical back-
grounds. In such a way we generate the dynamics
to the gravitational field due to quantum matter in-
teractions with gravity, so due to the back-reaction
phenomena. If the latter was neglected we would have
only the impact of classical gravitational field on the
motion and interactions of quantum matter particles.
We can be very concrete here, namely for example
in d = 4 spacetime dimensions, the dynamical action

that is generated for gravity takes the form

Sdiv =
∫

d4x
√

|g|
(
αCC2 + αRR2)

, (1)

so we see that counterterms of the GR-covariant form
of C2 and R2 are being generated. (In the equation
above, the R2 and C2 terms denote respectively the
square of the Ricci scalar and of the Weyl tensor,
where the indices are contracted in the natural order,
i.e. C2 = CµνρσCµνρσ. Collectively, we will denote
these curvatures as R2, so R2 = R2, C2.) This is true
no matter what was our intention of what was the
dynamical theory of the gravitational field. We might
have thought that this was described by the stan-
dard two-derivative Einstein-Hilbert action, but still
the above results persist. One notices that in these
two counterterms C2 and R2 one has four derivatives
acting on a metric tensor, so these are theories of
a general higher-derivative type, differently from orig-
inally intended E-H gravitational theory whose action
is just based on the Ricci scalar R. These C2 and R2

terms appear in the divergent part of the dynamically
induced action for the gravitational fields. We must be
able to absorb these divergences to have a consistent
quantum theory of the gravitational field coupled to
the quantum matter fields present here on such curved
(gravitational) backgrounds [5]. This implies that in
the dynamics of the gravitational field we must have
exactly these terms with higher derivatives as in (1).
Finally, we can even abstract and forget about matter
species and consider only pure gravitational quantum
theory. The consistency of self-interactions there on
the quantum level puts the same restriction on the
form of the action of the theory. In such a situation in
the language of Feynman diagrams, one considers also
loops with quantum gravitons running inside. These
graphs induce the same form of UV divergences as
in (1). Then in such a model, we must still consider
the dynamics of the quantum gravitational field with
higher derivatives. Hence, from quantum considera-
tions higher derivatives are inevitable.

We also remark here that in the special case, where
the matter theory is classically conformally invari-
ant with respect to classical gravitational background
field (the examples are: massless fermion, massless
Klein-Gordon scalar field conformally coupled to the
geometry, electrodynamic field or non-Abelian Yang-
Mills field in d = 4), then only the conformally covari-
ant counterterm C2 is generated, while the coefficient
αR = 0 in (1). This is due to the fact that the quanti-
zation procedure preserves conformal symmetries of
the original classical theory coupled to the non-trivial
spacetime background. Such argument can be called
as a conformal version of the original DeWitt-Utiyama
argument. Then the R2 counterterm is not needed but
still the action of a quantum consistent coupled con-
formal system requires the higher-derivative dynamics
in the gravitational sector [6]. Here this is clearly the
gravitational dynamics only in the spin-2 sector of
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metric fluctuations, which is contained entirely in the
(conformal) C2 sector of the generic four-derivative
theory presented in (1).

An intriguing possibility for having higher deriva-
tives in the gravitational action was first considered by
Stelle in [7] and some exact classical solutions of such
a theory were analyzed in [8–10]. In d = 4 spacetime
dimensions, the minimal number of derivatives is ex-
actly four, the same as the number of dimensions [11].
This reasoning coincides with the one presented earlier
that we need to have in even number of dimensions
d, precisely d derivatives in the gravitational action
to have first scale-invariant model of gravitational dy-
namics (later possible to be promoted to enjoy also
the full conformal invariance). However, as proven by
Asorey, Lopez and Shapiro in [12], there are also pos-
sible theories with even higher number of derivatives,
and they still have good properties on the quantum
level and when coupled to quantum matter fields.
Similarly, in the literature there are various known
motivations for conformal gravity in d = 4 spacetime
dimensions, one can consult representatives in [13, 14].

Secondly, we emphasize that to have a minimal (in
a sense with the smallest number of derivatives) per-
turbatively renormalizable model of QG in dimensions
d, one also has to consider actions with precisely d
derivatives. The actions with smaller number are not
scale-invariant and have problems on the quantum
level to control all perturbative UV divergences, and
not all of them are absorbable in the counterterms
coming from the original classical actions of the the-
ories – such models with less than d derivatives are
not multiplicatively renormalizable. The first case
for renormalizability is when the action contains all
generic terms with arbitrary coupling coefficients with
d (partial) derivatives on the metric for d dimensions.
The special cases when some coefficients and some
coupling parameters vanish may lead to restricted
situations in which full renormalizability is not real-
ized. We discuss such special limiting cases in further
sections of this paper. The argument with the first
renormalizable theory is a very similar in type to
the quantum induced action from matter fields, but
this time the particles which run in the perturbative
loops of Feynman diagrams are quantum gravitons
themselves. So this argument about renormalizability
applies to pure quantum gravity cases. Unfortunately,
the original Einstein-Hilbert action for QG model is
not renormalizable (at least not perturbatively) in
d = 4 dimensions [15–18]. The problems show up
when one goes off-shell, couples some matter, or goes
to the two-loop order, while at the first loop order with
pure E-H gravitational action on-shell all UV diver-
gences could be successfully absorbed [15] on Einstein
vacuum backgrounds (so on Ricci-flat configurations).
Actually, in such a case in vacuum configurations the
theory at the one-loop level is completely UV-finite.

There are also other ways how one can on the quan-
tum level induce the higher-derivative terms in the

gravitational actions, although these further argu-
ments are all related to the original one from DeWitt
and Utiyama. One can, for example, consider inte-
grating out completely quantum matter species on
the level of functional integral which represents all
accessible information of the quantum theory. In the
situation, when these matter species are coupled to
some background gravitational field, then the resulting
partition function Z is a functional of the background
gravitational field. Not surprisingly, this functional is
of the higher-derivative nature in terms of number of
derivatives of the fundamental metric field, if we work
in the dimension d > 2. This reasoning was for exam-
ple popularized by ’t Hooft [19–21], especially since
in d = 4 it can give rise to another motivations for
conformal gravity as a quantum consistent model of
conformal and gravitational interactions, when mass-
less fields are integrated out in the path integral.

In this way we can discover the quantum consis-
tent dynamics of the gravitational field even if we did
not know that such quantum fields mediating gravi-
tational interactions between particles existed in the
first place. The graviton becomes a propagating parti-
cle and with higher-derivative form of the propagator,
which translates in momentum space to the enhanced
suppression of the fall-off of the propagator for large
momenta in the UV regime. This is due to the addi-
tional higher powers of propagating momentum in the
perturbative expression for the graviton’s propagator.
This enhanced UV decaying form of the propagator is
what makes the UV divergences under perturbative
control and what makes the theory at the end renor-
malizable. Besides a few (finite number of) controlled
UV divergences the theory is convergent and gives
finite perturbative answers to many questions one can
pose about the quantum dynamics of the gravitational
field, also in models coupled consistently to quantum
matter fields.

Another way is to consider the theory of Einsteinian
gravity and corrections to it coming from higher di-
mensional theories. One should already understood
from the discussion above, that E-H action is a good
quantum action for the QG model only in the spe-
cial 2-dimensional case. There in d = 2 QG is very
special renormalizable and finite theory, but without
dynamical content resembling anything what is known
from four dimensions (like for example the existence
of gravitational waves, graviton spin-2 particles, etc.).
This is again due to infinite power of conformal sym-
metry in d = 2 case. Instead, if one considers higher
dimensions like 6, 8, etc. and then compactifies them
to common 4-dimensional case, one finds that even
if in the higher dimensions one had to deal with the
two-derivative theory based on the Einstein-Hilbert ac-
tion, then in the reduced case in four dimensions, one
again finds effective (dimensionally reduced) action
with four derivatives. These types of arguments were
recently invoked by Maldacena [22] in order to study
higher-derivative (and conformal) gravities from the
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point of view of higher dimensions, when the process of
integration out of quantum modes already took place
and one derives a new dynamics for the gravitational
field based on some compactification arguments.

All this above shows that many arguments from
even various different directions lead to the studies of
higher-derivative gravitational theories in dimensions
of spacetime d > 2. Therefore, it is very natural to
quantize such four-derivative theories (like it was first
done by Stelle) and treat them as a starting point for
discussion of QG models in d = 4 case. At the end, one
can also come back and try to solve for exact solutions
of these higher-derivative gravitational theories on the
classical level, although due to increased level of non-
linearities this is a very difficult task [23].

Yet another argument is based on apparent simi-
larity and symmetry seen in the action of quadratic
gravity and action for a general Yang-Mills theory.
Both these actions are quadratic in the corresponding
field strengths (or curvatures). They are curvatures
respectively in the external spacetime for the gravita-
tional field and in the internal space for gauge degrees
of freedom. The Einstein-Hilbert action is therefore
not similar to the F 2 action of Yang-Mills theory and
the system of Einstein-Maxwell or Einstein-Yang-Mills
theory does not look symmetric since the number of
curvatures in two sectors is not properly balanced.
Of course, this lack of balance is later even ampli-
fied to the problematic level by quantum corrections
and the presence of unbalanced UV divergences (non-
renormalizability!). Still, already on the classical level,
one sees some dichotomy, especially when one tries to
define a common total covariant derivative Dµ (covari-
ant both with respect to Yang-Mills internal group
G and with respect to gravitational field). For such
an object, one can define the curvature Fµν that is
decomposed in its respective sectors into the gauge
field strength Fµν and the Riemann gravitational ten-
sor Rµνρσ. But the most natural thing to do here is
to consider symmetric action constructed with such
a total curvature of the derivative Dµ and then the
generalized F2 is the first consistent option to include
both dynamics of the non-Abelian gauge field and
also of the gravitational field. As we have seen this
choice is also stable quantum-mechanically [24] since
there are no corrections that would destabilize it and
the only quantum corrections present they support
this F2 structure of the theory, even if this was not
there from the beginning. We emphasize that this
was inevitably the higher-derivative structure for the
dynamics of the quantum relativistic gravitational
field studied here.

1.1. Motivations for and introduction to
six-derivative gravitational theories

Now, we would like to summarize here on what is
the general procedure to define the gravitational the-
ory, both on the classical as well as on the quantum
level. First, we decide what our theory is of – which

fields are dynamical there. In our case these are grav-
itational fields entirely characterized by the metric
tensor of gravitational spacetime. Secondly, we spec-
ify the set of symmetries (invariance group) of our
theory. Again, in our setup these are, in general, in-
variances under general coordinate transformations
also known as diffeomorphism symmetries of gravita-
tional theories. In this sense, we also restrict the set
of possible theories from general models considered
in the gauge treatment of gravity, when the transla-
tion group or full Poincaré groups are gauged. Then
finally following Landau we define the theory by spec-
ifying its dynamical action functional. In our case for
a classical level, this is a GR-invariant scalar obtained
by integrating some GR-densitized scalar Lagrangian
over the full 4-dimensional continuum (spacetime).
As emphasized above, for theoretical consistency, we
must use Lagrangians (actions) which contain higher
(partial) derivatives of the metric tensor, when the
Lagrangian is completely expanded to a form where
ordinary derivatives act on the metric tensors (con-
tracted in various combinations). Specifying now, to
the case motivated above, we shall use and study be-
low the theories defined by classical action functionals
which contain precisely six derivatives of the metric
tensor field.

In order to define the theory on the quantum level,
we use the standard functional integral representation
of the partition function (also known as the vacuum
transition amplitude) of the quantum theory. That
is we construct, having the classical action functional
SHD, being the functional of the classical metric field
SHD[gµν ], the following object

Z =
∫

Dgµν exp(iSHD), (2)

where in the functional integral above we must be
more careful than just on the formal level in defining
properly the integration measure Dgµν . For example,
we should sum over all backgrounds and also over all
topologies of the classical background gravitational
field. One can hope that it is also possible to clas-
sify in four dimensions all gravitational configurations
(all gravitational pseudo-Riemannian manifolds) over
which we should integrate above. The functional in-
tegral, if properly defined, is the basis for quantum
theory. One can even promote the point of view that
by giving the functional Z one defines the quantum
theory even without reference to any classical action S.
However, it is difficult a priori to propose generating
functionals Z, which are consistent with all symme-
tries of the theory (especially gauge invariances) and
such that they possess sensible macroscopic (classical)
limits. For practical purposes of evaluating various
correlation functions between quantum fields and their
fluctuations, one modifies this functional Z by adding
a coupling of the quantum field (here this role of the
integration variable is played by gµν) to the classical
external current J . And also for other theoretical rea-
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sons, one can compute this functional in background
field method, where the functional integration is over
fluctuation fields, while the classical action functional
is decomposed into background and parts quadratic,
cubic and of higher order in quantum fluctuation fields.
For this one defines that the full metric is decomposed
as follows, gµν = ḡµν + hµν , where the background
classical metric is denoted by ḡµν and metric pertur-
bations by hµν . By computing variational derivatives
of the partition function Z[J ] with respect to the clas-
sical current J one gets higher n-point functions with
the accuracy of the full quantum level. One can com-
pute them both perturbatively (in loop expansion) or
non-perturbatively, and also on trivial backgrounds
or in background field method. Finally, for spacetimes
which asymptotically reach Riemann-flatness, from
on-shell quantum Green functions dressed by wave
functions of external classical states, one derives quan-
tum matrix elements of scattering processes. Only
in such conditions one can define general scattering
problem in quantum gravitational theory.

In this article, we want to analyze the quantum
gravitational model with six derivatives in the action.
That the theory is with six derivatives can be seen,
because of two related reasons. First, one can derive
the classical equations of motion based on such an
action. Then one will see that the number of partial
derivatives acting on a metric tensor in a general term
of such tensor of equations of motion is at most 6 in
our model. Or similarly, one can compute the tree-
level graviton’s propagator for example around flat
Minkowski background. And then one notices that
some components of this propagator are suppressed
in the UV regime by the power k6 in Fourier space,
when k is the propagating momentum of the quantum
mode. Actually, for this last check one does not even
have to invert and compute the propagator, one can
perform a very much the same analysis on the level
of the kinetic operator between gravitational fluctu-
ations around some background (of course the flat
background is here the easiest one). Later in the main
text of this article, we discuss how to overcome the
problems in defining the propagator in some special
cases, but the situation with the terms of the kinetic
operator is almost always well-defined and one can
read the six-derivative character of the theory easily
from there.

We have seen in the previous section that the four-
derivative gravitational theories in d = 4 spacetime
dimensions are scale-invariant (can be conformally
invariant) on the classical level and that they are also
first minimal renormalizable models of dynamical QG.
This last assertion is proved by the power counting
analysis. We will show below that it is possible to
further extend the theory in such a way that the
control over divergences is strengthened even more
and this is again based on the analysis of the superficial
degrees of divergences of any graph and also on the
energy dimensionality arguments. In this way we

will also explain why we can call generic six-derivative
gravitational theories in d = 4 as perturbatively super-
renormalizable theories.

The power counting analysis in the case of four-
derivative Stelle gravity as in (1) (quadratic gravity of
the schematic type R2 as in [7]) leads to the following
equality

∆ + d∂ = 4, (3)

where ∆ is superficial degree of divergence of any
Feynman graph G, d∂ is the number of derivatives of
the metric on the external lines of the diagram G, and
for future use we define L as the number of loop order.
For tree-level (classical level) we have L = 0, while for
concreteness we shall assume L ⩾ 1. This theory is
simply renormalizable since the needed GR-covariant
counterterms (to absorb perturbative UV divergences)
have the same form as the original action in (1)2. In
general local perturbatively renormalizable HD model
of QG in d = 4, the divergences at any loop order
must take the form as in (1) with a potential addition
of the topological Gauss-Bonnet term.

The change in the formula (3), when the six-
derivative terms are leading in the UV regime, is
as follows

∆ + d∂ = 6 − 2L. (4)

The above formula can be also rewritten as a useful
inequality (bound on the superficial degree ∆):

∆ ⩽ 6 − 2L = 4 − 2(L − 1), (5)

since d∂ ⩾ 0. From this one sees an interesting feature
that while in the case of four-derivative Stelle theory
the bound was independent on the number of loops
L, for the case of six derivatives (and higher too) the
bound is tighter for higher number of loops. This is
the basis for super-renormalizability properties. In
particular, in the case of six-derivative theories there
are no any loop divergences at the level of fourth loop,
since for L = 4 we find that ∆ < 0, so all graphs
are UV-convergent. We also emphasize that a super-
renormalizable model is still renormalizable, but at
the same time it is more special since infinities in
the former do not show up at arbitrary loop order L,
which is instead the case for merely renormalizable
models. From the formula (4) at the L = 3 loop level
the possible UV divergences are only of the form pro-
portional to the cosmological constant Λ parameter,
so completely without any partial derivatives acting
on the metric tensor. Similarly for the case of L = 2,
we have that divergences can be proportional to the Λ

2We remind for completeness that the Gauss-Bonnet scalar
term GB = E4 = R2

µνρσ − 4R2
µν + R2 is a topological term,

that is its variation in four spacetime dimensions leads to total
derivative terms contributing nothing to classical EOM and also
to quantum perturbation theory. It may however contribute
non-perturbatively when the topology changes are expected.
But for the sake of computing UV divergences we might simply
neglect the presence of this term both in the original action
as well as in the resulting one-loop UV-divergent part of the
effective action.
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(with no derivatives) and also to the first power of the
Ricci scalar R of the manifold (with two derivatives
on the metric, when it is expanded). In what follows
we will not concentrate on these types of subleading
in the UV divergences and our main attention in this
paper will be placed on the four-derivative divergences
as present in the action (1). Up to the presence of the
Gauss-Bonnet term they are the same as induced from
quantum matter loops. These types of divergences
are only generated at the one-loop level since for them
we must have d∂ = 4 and ∆ = 0. The last infor-
mation signifies that they are universal logarithmic
divergences. Their names originate from the fact that
they arise when the ultraviolet cutoff ΛUV is used to
cut the one-loop integrations over momenta of modes
running in the loop in the upper limits.

The analysis of power counting implies that the the-
ory has divergences only at the first, second and third
loop order and starting from the fourth loop level
it is completely UV-finite model of QG. Moreover,
based on the above argumentation, the beta functions
that we report below (in front of GR-covariant terms
with four derivatives in the divergent effective action)
receive contributions only at the one-loop level and
higher orders (like two- and three-loop) do not have
any impact on them. This means that the beta func-
tions that we are interested in and that we computed
at the one-loop level are all valid to all loop orders,
hence our results for them are truly exact. They do
not receive any perturbative contributions from higher
loops. For other terms in the divergent action (like Λ
or R) this is not true. The theory is four-loop finite,
while the beta functions of R2, C2 and GB terms
are one-loop exact. All these miracles are only pos-
sible to happen in very special super-renormalizable
model since we have six derivatives in the gravita-
tional propagator around flat spacetime. This number
is bigger than the minimal for a renormalizable and
scale-invariant QG theory in d = 4 spacetime dimen-
sions and this is the origin of the facts above since we
have a higher momentum suppression in the graviton’s
propagator.

According to what we have stated before, we de-
cide to study the quantum theory described by the
following classical Lagrangian,

L = ωCCµνρσ□Cµνρσ + ωRR□R

+ θCC2 + θRR2 + θGBGB + ωκR + ωΛ. (6)

From this Lagrangian we construct the action of our
HD quantum gravitational model, here with six deriva-
tives as the leading number of derivatives in the UV
regime, by the formula

SHD =
∫

d4x
√

|g|L. (7)

Above by Cµνρσ we denote the Weyl tensor (con-
structed from the Riemann Rµνρσ, Ricci tensor Rµν

and Ricci scalar R and with coefficients suitable for

d = 4 case). Moreover, by GB we mean the Euler
term which gives rise to Euler characteristic of the
spacetime after integrating over the whole manifold.
Its integrand is given by the term also known as the
Gauss-Bonnet term and it has the following expansion
in other terms quadratic in the gravitational curva-
tures,

GB = E4 = R2
µνρσ − 4R2

µν + R2. (8)
Similarly, we can write for the “square” of the Weyl
tensor in d = 4

C2 = C2
µνρσ = CµνρσCµνρσ = R2

µνρσ − 2R2
µν + 1

3R2.

(9)
Finally, to denote the box operator we use the symbol
□ with the definition □ = gµν∇µ∇ν , which is a GR-
covariant analogue of the d’Alembertian operator ∂2

known from the flat spacetime.
It is important to emphasize here that the La-

grangian (6) describes the most general six-derivative
theory describing the propagation of gravitational
fluctuations on flat spacetime. For this purpose it
is important to include all terms that are quadratic
in gravitational curvature. As it is obvious from the
construction of the Lagrangian in (6) for six-derivative
model we have to include terms which are quadratic
in the Weyl tensor or Ricci scalar and they contain
precisely one power of the covariant box operator □
(which is constructed using the GR-covariant deriva-
tive ∇µ). These two terms exhaust all other pos-
sibilities since other terms which are quadratic and
contain two covariant derivatives can be reduced to
the two above exploiting various symmetry properties
of the curvature Riemann tensor as well as cyclic-
ity and Bianchi identities. Moreover, the basis with
Weyl tensors and Ricci scalars is the most convenient
when one wants to study the form of the propagator
of graviton around flat spacetime. Other bases are
possible as well but then they distort and entangle
various contributions of various terms to these prop-
agators. We also remark that the addition of the
Gauss-Bonnet term is possible here (but it is a total
derivative in d = 4); one could also add a general-
ized Gauss-Bonnet term, which is an analogue of the
formula in (8), where the GR-covariant box operator
in the first power is inserted in the middle of each
of the tensorial terms there, which are quadratic in
curvatures. Eventually, there is no contribution of
the generalized Gauss-Bonnet term in any dimension
to the flat spacetime graviton propagator, so for this
purpose we do not need to add such term to the
Lagrangian as it was written in (6).

In what follows we employ the pseudo-Euclidean
notations and by

√
|g| we will denote the square root

of the absolute value of the metric determinant (always
real in our conventions). The two most subleading
terms in the Lagrangian (6) are with couplings ωκ

and ωΛ respectively. The first one is related to the
Newton gravitational constant GN , while the last one
ωΛ to the value of the physical cosmological constant
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parameter. The QG model with the Lagrangian (6)
is definitely the simplest one that describes the most
general form of the graviton propagator around flat
spacetime, in four spacetime dimensions and for the
theory with six derivatives.

We would like to already emphasize here, that there
are two remarkable special limiting cases in the the-
ory (6). In order to have a non-degenerate classi-
cal action and the well-defined Hessian operator of
the second variational derivative, one needs to re-
quire that both coefficients of the UV-leading terms,
namely ωC and ωR, should be non-zero. Only in
this case the theory is renormalizable, moreover only
in this case it also has nice additional features like
super-renormalizability and that the fourth and higher
perturbative loop contributions are completely finite.
We want to say that the quantum calculations re-
ported in the next section correspond only to this
kind of well balanced model with both Weyl tensor
and Ricci scalar squared terms and one power of the
GR-covariant box operator inserted in the middle.
(This is in order to have a six-derivative action, but
also with terms that are precisely quadratic in grav-
itational curvatures.) In principle, there exist also
models with non-balanced situations and dichotomy
between different sectors of fluctuations. For example,
in the special case of ωC = 0, θC ≠ 0 and ωR ̸= 0, the
theory has the propagating spin-two mode with four
derivatives and the propagating spin-zero mode with
six derivatives in the perturbative spectrum around
flat spacetime. This has to be contrasted with the
fact that interaction vertices have always six deriva-
tives in both special and also in generic theories (with
ωC ≠ 0 and ωR ̸= 0). For another special version of
the model, with ωC ̸= 0 and ωR = 0, the situation is
quite opposite regarding the spectrum, but the nega-
tive conclusions are the same. According to the power
counting arguments from [6, 25] and also from (3) in
both special cases the theories are unfortunately non-
renormalizable. (We also discuss in greater details the
power counting for these two special limiting models
in section 4.4.) Hence one should be very careful in
performing computations in such cases and in trusting
the results of limits there. These cases will be ana-
lyzed in more details in the next sections as it will be
revealed that they are crucial for understanding the
issue of the structure of perturbative divergences both
in the four-derivative as well as also in six-derivative
QG models in d = 4.

The other consequences of the formula for power
counting as presented in (4) is that the subleading in
the UV terms of the original action in (6) do not at all
contribute to the four-derivative terms leading in the
UV regime of the divergences in (1). That is we have
that the coefficients αC , αR and αGB in (1) depend
only on the ratio of the coefficient in front of the term
with Weyl tensors and box inserted in the middle (i.e.
C□C) to the coefficient in front of the corresponding
term with two Ricci scalars (i.e. R□R), so only on the
ratio ωC/ωR also to be analyzed later at length here.

These coefficients of UV divergences αC , αR and αGB
do not depend on θC , θR, θGB, ωκ nor on ωΛ. This
is due to the energy dimensionality considerations of
other UV-subleading terms in the action in (6). Only
the terms having the same energy dimensionality as
the leading in the UV regime (shaping the UV form
of the perturbative propagator) may contribute to the
leading form of UV divergences, which in the divergent
action (1) are represented by dimensionless numbers
(in d = 4) such as αC , αR and αGB. For example, the
terms with coefficients θC or θR have different energy
dimensions and cannot appear there. This pertinent
observation lets us for our computation to use just
the reduced action, where we write only the terms
that are important for the UV divergences we want
to analyze in this paper. This action takes explicitly
the following form

SHD =
∫

d4x
√

|g| (ωCCµνρσ□Cµνρσ + ωRR□R) . (10)

We want to just remark here that the results in
the theory with six-derivative gravitational action
are discontinuous to the results one obtains for the
similar type of computations in four-derivative Stelle
quadratic QG models, which are usually analyzed in
d = 4 as the first and the most promising models of
higher-derivative QG. This discontinuity is based on
the known fact (both for HD gauge and gravitational
theories) that the cases with two and four more deriva-
tives in the action of respective gauge fields (metric
fields in gravity) than in the minimal renormalizable
model are discontinuous and exceptional, while the
general formula exists starting from action with six
derivatives more in its definition (and then this for-
mula could be analytically extended). All three cases
of: first minimal renormalizable theory, and the mod-
els with two or four derivatives more are special and
cannot be obtained by any limiting procedure from
the general results which hold for higher-derivative
regulated actions, which contain six or more deriva-
tives than in the minimal renormalizable model. For
the case of QG in d = 4 in the minimal model we
have obviously four derivatives. Of course, this dis-
continuity is related to the different type of enhanced
renormalizability properties of the models in question.
As we have already explained above the gravitational
model with six derivatives in d = 4 is the first super-
renormalizable model of QG, where from the fourth
loop on the perturbative UV divergences are com-
pletely absent. The case of Stelle theory gives just
the renormalizable theory, where the divergences are
present at any loop order (they are always the same
divergences, always absorbable in the same set of
counterterms since the theory is renormalizable). One
sees the discontinuity already in the behaviour of UV
divergences as done in the analysis of power counting.
When the number of derivatives is increased in steps
(by two), then the level of loops when one does not see
divergences at all decreases but in some discontinuous
jumps. And for example for the QG theory with ten
or more derivatives the UV divergences are only at
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the one-loop level. (For gravitational theories with
8 derivatives the last level which is divergent is the
second loop.)

There exist also analytic formulas, which combine
the results for UV divergences for the cases of theories
with four or more derivatives more compared to the
minimal renormalizable model with four derivatives
in d = 4. Again one sees from such formulas, that the
correct results for the minimal renormalizable model
and the one with six derivatives are discontinuous.
Then the case with 8-derivative gravitational theory
is the first one for which the analytic formulas hold
true. However, this has apparently nothing to do with
the strengthened super-renormalizability properties
at some loop level as it was emphasized above.

The six-derivative gravitational theory is therefore
3-loop super-renormalizable since the 3-loop level is
the last one, when one needs to absorb infinities and
renormalize anew the theory. These jumps from 3-
loop super-renormalizability to 2-loop and finally to
one-loop super-renormalizability are from their na-
ture discontinuous and hence also the results for
divergences inherit this discontinuity. For theories
with ten or more derivatives we have one-loop super-
renormalizability and the results for even higher num-
ber of derivatives 2n must be continuous in the pa-
rameter of the number of derivatives 2n, which could
be analytically extended to the whole complex plane
from the even integer values 2n ⩾ 10, which it origi-
nally had. In this analytically extended picture, the
cases with eight, six and four derivatives are special
isolated points, which are discontinuous and cannot
be obtained from the general analytic formula valid
for any n ⩾ 5. The origin of this is again in power
counting of divergences, when some integrals over loop
momenta are said to be convergent, when the super-
ficial degree of divergence is smaller than zero, and
when this is non-negative, then one meets non-trivial
UV divergences. These infinities are logarithmic in
the UV cutoff kUV for loop integration momenta for
the degree ∆ vanishing, and power-law type for the
degree ∆ positive. This sharp distinction between
what is convergent and what is divergent (based on
the non-negativity of the degree of divergences ∆ of
any diagram) introduces the discontinuity, which is
the main source of the problems here.

In this contribution, we mainly discuss and analyze
the results which were first obtained in our recent
publication [26]. The details of the methods used to
obtain them were presented to some extent in this
recent article. The method consists basically of using
the Barvinsky-Vilkovisky trace technology [27] applied
to compute functional traces of differential operators
giving the expression for the UV-divergent parts of
the effective action at the one-loop level. The main
results were obtained in background field method and
from UV divergences in [26] we read the beta func-
tions of running dimensionless gravitational couplings.
The results for them in six-derivative gravitational

theory in d = 4 spacetime dimensions were the main
results there. They are also described in section 2
here. Instead, in the present contribution, we decided
to include an extended discussion of the theoretical
checks done on these results in section 3. However,
the main novel contribution is in section 4, where we
present the analysis of the structure of these obtained
results for the beta functions. Our main goal here is to
show an argumentation that provides an explanation
why the structure of the beta function is unique and
why it depends in this particular form on the ratio x
(to be defined later in the main text in (36)). These
comments were not initially included in the main re-
search article [26] and they constitute the main new
development of the present paper.

We remind to the reader that in this paper, in
particular, we will spend some time on attempts to
explain the discontinuity of such results for UV di-
vergences, when one goes from six- to four-derivative
gravitational theories. So, in other words, when one
reduces 3-loop super-renormalizability to just renor-
malizability. Or equivalently, when the situation at
the fourth perturbative loop gets modified from not
having divergences at all, because all loop integrations
give convergent results (with negative superficial de-
gree ∆ < 0), to the situation when at this loop level
still UV divergences are present (since their degree
∆ is zero for logarithmic UV divergences in the cut-
off). This clearly sharp contrast in the sign of the
superficial degree of divergences is one of the reasons,
why the discontinuity between the cases of six- and
four-derivative gravitational theories in d = 4 persists.

1.2. Addition of killer operators
As a matter of fact, we can also add other terms
(cubic in gravitational curvatures R3) to the La-
grangian in (6). These terms again will come with
the coefficients of the highest energy dimensionality,
equal to the dimensionality of the coefficients ωC and
ωR. Hence they could contribute to the leading four-
derivative terms with UV divergences of the theory.
The general form of them is given by the following
list of six GR-covariant terms

LR3 = s1R3 + s2RRµνRµν + s3RµνRµ
ρRνρ

+ s4RRµνρσRµνρσ + s5RµνRρσRµρνσ

+ s6RµνρσRµν
κλRρσκλ . (11)

Actually, these terms can be very essential for making
the gravitational theory with six-derivative actions
completely UV-finite. However, for renormalizability
or super-renormalizability properties these terms are
not necessary, e.g., they do not make impact on the
renormalizability of the theory and therefore should
be regarded as non-minimal. In the analysis below
we did not take their contributions into account and
made already a technically demanding computation in
a simplest minimal model with six-derivative actions.
The set of terms in (11) is complete in d = 4 for all
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what regards terms cubic in gravitational curvatures.
This non-trivial statement is due to various identities
as proven in [28].

These cubic terms are also sometimes called “killers”
of the beta functions since they may have profound
effects on the form of the beta functions of all terms
in the theory. This is roughly very simple to explain.
These killer terms are generally of the type sR3 and
are to be added to the original Lagrangian in (6) of
six-derivative theories, where the UV-leading terms
were of the type ωR□R. It is well known that to
extract UV divergences at the one-loop level one has
to compute the second variational derivative operator
(Hessian Ĥ) from the full action. The contributions
from cubic killers to it will be of the form of at least
sR, when counted in powers of generalized curvature
R. Next, when computing the trace of the functional
logarithm of the Hessian operator for the form of
the one-loop UV-divergent effective action one uses
the expansion of the logarithm in a series according
to

ln(1 + z) = z − 1
2z2 + . . . . (12)

Hence we need to take maybe up to the square of
the contribution sR to the Hessian from the cubic
killer term. The third power would be too much. We
must remember that we are looking for terms of the
general type R2 in the UV-divergent part of the effec-
tive action. Hence the contribution of the cubic killer
in curvatures would produce addition to the covari-
ant terms with UV divergences of the general type
f(s)R2, where the yet unknown functions f(s) can be
polynomials up to the second order in the coefficients
si of these killers. Now, requiring the total beta func-
tions vanish (for complete UV-finiteness) we need in
general to solve the system of the quadratic equations
in the coefficients si. The only obstacle for finding
coefficients of the killers can be that some solutions
of this system reveal to be complex numbers, not real,
but we need to require all si coefficients to be real
for the definiteness of the action (for example in the
Euclidean case of the signature of the metric). There-
fore this issue requires a more detailed mathematical
analysis, but the preliminary results based on [26, 29]
show that in most of the cases the UV-finiteness is
possible and easily can be achieved by adding the
cubic killer operators from (11) with real coefficients
si.

One can compare the situation here with cubic
killers to the more known situation where the quartic
killers are used to obtain UV-finiteness. Unfortu-
nately, such quartic killers cannot be added to the
six-derivative gravitational theory from (6) since they
would have too many partial derivatives and would
destroy the renormalizability of the model. Quar-
tic killers can be included in theories with at least
8 derivatives. Such approach seems to be preferred one
since the contribution of quartic killers (of the type
schematically as R4) is always linear in d = 4 to UV

divergences proportional to R2 schematically. And to
solve linear system of equations with linear coefficients
is always doable and one always finds solutions and
they are always real. This approach was successfully
applied to gravity theories in [29], to gauge theories
in [30], to the theories on de Sitter and anti-de Sitter
backgrounds [31] and also in general non-local theo-
ries [32]. One could show that the UV-finiteness may
be an universal feature of quantum field-theoretical
interactions in nature [33]. Moreover, this feature of
the absence of perturbative UV divergences is related
to the quantum conformality as advocated in [34, 35].

1.3. Universality of the results
Finally, one of the most important features of the
expression for the UV-divergent part of the effective
action in the six-derivative gravitational theories is
its complete independence of any parameter used in
the computation. This parameter can be gauge-fixing
parameter, or it can appear in gauge choice, or in
details of some renormalization scheme, etc.. This
bold fact of complete universality of the results for
the effective action was proven by the theorem by
Kallosh, Tarasov and Tyutin (KTT) [36–38], applied
here to the six-derivative QG theories. The theorem
expresses the difference between two effective actions
of the same theory but computed using different set
of external parameters. Basically, this difference is
proportional to the off-shell tensor of classical equation
of motion of the original theory. And this difference
disappears on-shell. However, in our computation
we want to exploit the case when the effective action
and various Green functions are computed from it
understood as the off-shell functional.

But in super-renormalizable theories there is still
some advantage of using this theorem, namely for this
one notices the difference in number of derivatives
on the metric tensor between the original action and
Lagrangian of the theory as it is in the form (10)
(and resulting from it classical EOM) and between
the same counting of derivatives done in the divergent
part of the effective action. We remind the reader
that in the former case we have six derivatives on
the metric, while in the latter we count up to four
derivatives. This mismatch together with the theorem
of KTT implies that the difference between the two
UV-divergent parts of the effective actions (only for
these parts of the effective actions) computed using
two different schemes or methods must vanish in super-
renormalizable QG theories with six-derivative actions
for whatever change of the external parameters that
are used for the computation of these UV-divergent
functionals. This means that our results for diver-
gences are completely universal and cannot depend
on any parameter. Hence we derive the conclusion
that our found divergences do not depend on the
gauge-fixing parameters, gauge choices nor on other
parametrization ambiguities. We remark that this
situation is much better than for example in E-H
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gravity, where the dependence on a gauge is quite
strong, or even in Stelle four-derivative theory, where
four-derivative UV-divergent terms also show up some
ambiguous dependence on gauge parameters off-shell.
Here we are completely safe from such problems and
such cumbersome ambiguities.

In this way such beta functions are piece of gen-
uine observable quantity that can be defined in super-
renormalizable models of QG. They are universal,
independent of spurious parameters needed to define
the gauge theory with local symmetries, and moreover
they are exact, but still being computed at the one-
loop level in perturbation calculus. They are clearly
very good candidates for the observable in QG models.
Therefore all these nice features gives us even more
push towards analyzing the structure of such physical
quantities and to understand this based on some the-
oretical considerations. This is what we are trying to
attempt in this contribution.

Another important feature is that in theories with
higher derivatives in their defining classical action, on
the full quantum level there is no need for perturba-
tive renormalization of the graviton‘s wave function.
This is also contrary to the case of two-derivative
theory, when one has to take this phenomena into ac-
count, although its expression is not gauge-invariant
and depends on the gauge fixing. These nice prop-
erties of no need for wave function renormalization
can be easily understood in the Batalin-Vilkovisky
formalism for quantization of gauge theories (or in
general theories with differential constraints) [39, 40].
This important feature is also shared by other, for
example, four-derivative QG models. Since the wave
function of the graviton does not receive any quan-
tum correction, then one can derive the form of the
beta functions for couplings just from reading the UV
divergences of the dressed two-point functions with
two external graviton lines. We can simplify our com-
putation drastically since for this kind of one-loop
computation we do not have to bother ourselves with
the three- or higher n-point function to independently
determine the wave function renormalization. Un-
fortunately, the latter is the case, for example, for
standard gauge theory (Yang-Mills model) or for E-H
gravity, where the renormalization of the coupling
constant of interactions has to be read from the com-
bination of the two- and three-point functions of the
quantum theory, while the wave function renormaliza-
tion of gauge fields or graviton field respectively can
be just read from quantum dressed two-point Green
function. For the case of six-derivative theories, just
from the two-point function we can read everything
about the renormalization of the coupling parameters
of gravitons’ interactions. Additionally, we have that
on the first quantum loop level we do not need to
study effective interaction vertices dressed by quan-
tum corrections. Hence, here at the one-loop level
there is no quantum renormalization of the graviton’s
wave function and UV divergences related to interac-

tions are derived solely from propagation of free modes
(here of graviton fields) around the flat spacetime and
corrected (dressed) at the first quantum loop. Effec-
tive vertices of interactions between gravitons do not
matter for this, but that situation may be changed
at higher loop orders. At the one-loop level this is
a great simplification for our algorithm of derivation
of the covariant form of UV divergences since we just
need to extract them from the expression for one-loop
perturbative two-point correlators of the theory, both
in cases of four- and six-derivative QG models.

All these nice features of the six-derivative QG
model makes it further worth studying as an example
of non-trivial RG flows in QG. Here we have exactness
of one-loop expressions for running θC(t), θR(t) and
θGB(t) coupling parameters in (6), together with super-
renormalizability. This is one of the most powerful
and beautiful features of the super-renormalizable QG
theory analyzed here. Therefore, this model gives
us a good and promising theoretical laboratory for
studying RG flows in general quantum gravitational
theories understood in the field-theoretical framework.

We remark that from a technical point of view, the
one-loop calculations in super-renormalizable models
of QG are more difficult when compared to the ones
done in the four-derivative just renormalizable gravi-
tational models [27, 41–43]. The level of complexity
of such calculations depends strongly on the number
of derivatives in the classical action of the model as
well as on the type of one-loop counterterms one is
looking for. The counterterm for the cosmological
constant is actually very easy to obtain and this was
done already in [12]. Next, the derivation of the diver-
gence linear in the scalar curvature R requires really
big efforts and was achieved only recently in our col-
laboration in [44]. In the present work, we comment
on the next step, and we show the results of the calcu-
lations of the simply looking one-loop UV divergences
for the four-derivative sector in the six-derivative min-
imal gravity model. In our result, we have now full
answers to the beta functions for the Weyl-squared
C2, Ricci scalar-squared R2 and the Gauss-Bonnet
GB scalar terms. The calculation is really tedious and
cumbersome and it was done for the simplest possible
six-derivative QG theory without cubic terms in the
classical action, which here would be third powers
of the generalized curvature tensor R3. Even in this
simplest minimal case, the intermediate expressions
are too large for the explicit presentation here, hence
they will be mostly omitted. Similar computations in
four-, six- and general higher-derivative gauge theory
were also performed in [30, 45, 46].

As it was already mentioned above, the derivation
of zero- and two-derivative ultraviolet divergences has
been previously done in Refs. [12] and [44]. Below
we will show the results for the complete set of beta
functions for the theory (10). This we will achieve by
deriving the exact and computed at one-loop beta func-
tion coefficients for the four-derivative gravitational
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couplings, namely θC , θR and θGB, extracted as the
coefficients of the UV-divergent part of the effective
action in (1). Without loss of generality, the calcu-
lation will be performed in the reduced model (10),
so without terms subleading in the number of partial
derivatives acting on the metric tensor after the proper
expansion here. (We will not need to include terms like
R2, C2 or even R in (10).) This is clearly explained
by the arguments from dimensional analysis since the
divergences with four derivatives of the metric, in (1),
are of our biggest interest here. Moreover, numerical
coefficients of those subleading terms cannot in any
way combine with coefficients of propagators (shaped
in the UV regime by the leading terms with six deriva-
tives in the action (10)) to form dimensionless ratios
in front of terms in (1) in d = 4 spacetime dimensions.

2. Brief description of the
technique for computing UV
divergences

An essential part of the calculations is pretty much
the same as usually done in any higher-derivative
QG model, especially in the renormalizable or super-
renormalizable models [26, 44] as considered here. In
what follows, we can skip a great part of the explana-
tions. We will focus on the calculation of the fourth
derivative terms of the divergent part of the effective
action.

First, to perform pure computation we use the back-
ground field method, which is defined by the following
splitting of the metric

gµν −→ ḡµν + hµν (13)

to the background ḡµν and the quantum fluctuation
parts given by the spin-2 symmetric tensor hµν .

The next step is to define the gauge-fixing condition.
Since our theory with six derivatives still possesses
gauge invariance due to diffeomorphism symmetry we
have to fix the gauge to make the graviton propagator
non-degenerate. For this we will make some choice
of the gauge-fixing parameters, here represented by
numerical α, β and γ parameters. First, we choose the
parameter β in the harmonic background gauge-fixing
condition χµ, according to

χµ = ∇λhλµ − β ∇µh, h = hν
ν , (14)

in the most simple “minimal” form, as will be indicated
below. The same concerns the parameters α and γ.
Finally, we select a general form of the weighting
operator, Ĉ = C̃µν , which is defined by the formula
below:

Ĉ = C̃µν = − 1
α

(
gµν□2 + (γ − 1)∇µ□∇ν

)
. (15)

This together with the gauge-fixing condition, that is
χµ, defines the gauge-fixing action [41] in the following
form,

Sgf =
∫

d4x
√

|g| χµ C̃µν χν . (16)

The action of the complex Faddeev-Popov (FP) ghost
fields (respectively C̄µ and Cµ) has in turn the form

Sgh =
∫

d4x
√

|g| C̄µMµ
νCν , (17)

where the bilinear part between the anti-ghost C̄µ and
ghost fields Cµ, the so called FP-matrix M̂ , depends
differentially on χµ gauge-fixing conditions and also
on the contracted form of the generator of gauge
transformations R̂,

M̂ = Mµ
ν = δχµ

δgαβ
Rαβ

ν = δµ
ν□+∇ν∇µ−2β∇µ∇ν .

(18)
In the above equation by the matrix-valued operator
Rαβ

ν we mean the generator of infinitesimal diffeo-
morphism (local gauge) transformations in any metric
theory of gravity.

Since as proven and explained at the end of sec-
tion 1.3, our final results for UV divergences are here
completely universal and they are independent of any
parameter used to regularize, compute and renormal-
ize the effective action of the theory, then we can take
the following philosophy at work here. We choose
some specific gauge choice in order to simplify our
calculation, but then we are sure that the final results
will be still correct, if obtained consistently within this
computation done in a particular gauge choice. It is
true that intermediate steps of the computation may
be different in different gauges, but the final results
must be unique and it does not matter which way
we arrive to them. We think we could choose one
of the simplest path to reach this goal. A posteriori
this method is justified, but the middle steps of the
processing of the Hessian operator will not have any
invariant objective physical meaning. These are just
steps in the calculational procedure in some selected
gauge.

One knows that in such a case, for example, for
a formalism due to Barvinsky-Vilkovisky (BV) [27] of
functional traces of differential operators applied in the
background field method framework, all intermediate
results are manifestly gauge-independent. Then still
such partial contributions (any of them) separately do
not have any sensible physical meaning, although such
results are gauge-independent and look superficially
physical – any physical meaning cannot be properly
associated to them, if all these terms are not taken in
total and only in the final sum. On the contrary, if the
computation is performed using Feynman diagrams,
momentum integrals and around flat spacetime, then
the intermediate results are not gauge-invariant, as it
is well known for partial contributions of some graphs,
and only in the final sum they acquire such features
of gauge-independence.

We also need to distinguish here two different
features. Some partial results may be still gauge-
dependent and their form may not show up gauge
symmetry (for example, using Feynman diagram ap-
proach, a contribution from a subset of divergent
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diagrams may not be absorbed by a gauge-covariant
counterterm: F 2 in gauge theories, or R2 in gravity
in d = 4). This feature should be however regained
when the final results are obtained. This is actually
a good check of the computation. But another prop-
erty is independence of the gauge-fixing parameters,
which are spurious non-physical parameters. At the
same time, a counterterm might be gauge-covariant
(built with F 2 or R2 terms), but its front coefficient
may depend on these gauge parameters α, β, γ, etc..
This should not happen for the final results and they
should be both gauge-covariant (so gauge-independent
or gauge-invariant) and also gauge-fixing parameters
independent. These two necessary properties, to call
the result physical, must be realized completely inde-
pendently and they are a good check of the correctness
of the calculation.

Unfortunately, it seems that using the BV com-
putational methods even in the intermediate results
for traces of separate matrix-valued differential opera-
tors (like Ĥ, M̂ and Ĉ), we see already both gauge-
independence and gauge-fixing parameters indepen-
dence provided that such parameters were not used
in the definition of these operators. Only in some
cases, the total result is only gauge-fixing parameter
independent. This means that within this formalism
of computation this check is not very valuable and
one basically has to be very careful to get the correct
results at the end. Instead, we perform a bunch of
other rigorous checks of our results as it is mentioned,
for example, in section 3.

Finally, let us here give briefly a few details con-
cerning the choice of the gauge-fixing parameters α,
β and γ. The bilinear form of the action is defined
from the second variational derivative (giving rise to
the Hessian operator Ĥ)

Ĥ = Hµν,ρσ = 1√
|g|

δ2 (S + Sgf)
δhµν δhρσ

= Hµν,ρσ
lead + O(∇4),

(19)
where the first term Hµν,ρσ

lead contains six-derivative
terms, which are leading in the UV regime. By O(∇4)
we denote the rest of the bilinear form, with four or
less derivatives and with higher powers of gravitational
curvatures R. The energy dimension of this expression
is compensated by the powers of curvature tensor R
and its covariant derivatives, hence in this case, we can
also denote O(∇4) = O(R). The corresponding full
expression for the Hessian operator Ĥ is very bulky,
and we will not include it here.

The highest derivative part (leading in the UV
regime) of the Ĥ operator, after adding the gauge-
fixing term (16) that we have selected, has the form

Hµν,ρσ
lead =

[
ωC δµν,ρσ +

(β2γ

α
−ωC

3 +2ωR

)
gµνgρσ

]
□3

+
(ωC

3 − 2ωR − βγ

α

)(
gρσ∇µ∇ν + gµν∇ρ∇σ

)
□2

+
( 1

α
gµρ − 2ωCgµρ

)
∇ν∇σ□2

+
(2ωC

3 + 2ωR + γ − 1
α

)
∇µ∇ν∇ρ∇σ□. (20)

In this expression, we do not mark explicitly the sym-
metrization in and between the pairs of indices (µ, ν)
and (ρ, σ) for the sake of brevity.

To make the UV-leading part of the Hessian opera-
tor Hµν,ρσ

lead minimal, one has to choose the following
values for the gauge-fixing parameters [44]:

α = 1
2ωC

, β = ωC − 6ωR

4ωC − 6ωR
, γ = 2ωC − 3ωR

3ωC
. (21)

We previously explained that this choice does not
affect the values and the form of one-loop divergences
in super-renormalizable QG. Thus, we assume it as
the most simple option.

One notices that the expressions for gauge-fixing
parameters in (21) are singular in the limit ωC → 0
and also when ωC = 3

2 ωR. While the first one is
clearly understandable, because then we are losing
one term ωCC□C in the action (10) and the theory
is degenerate and non-generic, the second condition is
not easily understandable in the Weyl basis of writing
terms in the action in (10) (with R2 and C2 terms).
To explain this other spurious degeneracy one rather
goes to the Ricci basis of writing terms (with R2 and
R2

µν = RµνRµν elements and also properly generalized
to the six-derivative models by inserting one power of
the box operator in the middle). There one sees that
the absence of the coefficient in front of the R2

µν leads
to the pathology in the case of ωC = 3

2 ωR and also
formal divergence of the β gauge-fixing parameter. We
remark that in the final results there is no any trace
of this denominator and this divergence, hence the
condition for non-vanishing of the coefficient in front
of the covariant term R2

µν in the Ricci basis does not
have any sensible and crucial meaning – this is only
a spurious intermediate dependence on (4ωC −6ωR)−1.
Contrary, the singular dependence on ωC coefficient
is very crucial and will be analyzed at length here.
Actually, to verify that the denominators with (4ωC −
6ωR)−1 completely cancel out in the final results is
a powerful check of our method of computation.

Now we can collect all the necessary elements to
write down the general formula for the UV-divergent
part of the one-loop contribution to the effective action
of the theory [41],

Γ̄(1) = i

2Tr ln Ĥ − iTr ln M̂ − i

2Tr ln Ĉ. (22)

The calculation of the divergent parts of the first
two expressions in (22) is very standard. One uses
for this the technique of the generalized Schwinger-
DeWitt method [27], which was first introduced by
Barvinsky and Vilkovisky. For this reason we shall
skip most of the standard technical details here. We
use the Barvinsky-Vilkovisky trace technology related
to the covariant heat kernel methods together with
methods of dimensional regularization (DIMREG) to
evaluate the functional traces present in (22) and to
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have under control the general covariance of the final
results. Due to this we cannot check it because all
three contributions in (22) gives results which look
covariant and sensible. We remind the reader that
here we work with the minimal gauge choice and in
general all three terms separately will show the gauge
dependence and also spurious dependence on gauge-
fixing parameters α, β and γ. However, only the
final results, so the weighted sum as in (22) is prop-
erly gauge-independent and gauge-fixing independent
and gives rise to a physical observable of the beta
functional of the theory at the one-loop level.

The computational method that we adopt here con-
sists basically of using the Barvinsky-Vilkovisky trace
technology to compute functional traces of differential
operators giving the expression for the UV-divergent
parts of the effective action at the one-loop level. The
main results are obtained in background field method
and from UV divergences in [26] we read the beta
functions of running gravitational couplings. We also
present here below an illustrative scalar example of
the techniques by which these results were obtained.

2.1. Example of the BV method of
computation for the scalar case

The simplest example to use the technique of compu-
tation presented here can be based on the analysis of
the scalar case given by the action

S =
∫

d4x

(
−1

2ϕ□ϕ − λ

4!ϕ
4
)

. (23)

From this action one reads the second variational
derivative operator (also known as the Hessian) given
by the formula

H = δ2S

δϕ2 = −□ − λ

2 ϕ2. (24)

Next, one needs to compute the following functional
trace Tr ln H to get the UV-divergent part of the one-
loop effective action

Tr ln H = Tr ln
(

−□ − λ

2 ϕ2
)

= Tr ln
(

−□
(

1 + λ

2 ϕ2□−1
))

= Tr ln (−□) + Tr ln
(

1 + λ

2 ϕ2□−1
)

. (25)

In the above expression, one concentrates on the sec-
ond part which contains the λ coupling. One expands
the logarithm, as in (12), in the second trace to the
second order in λ. This yields

Tr ln
(

1 + λ

2 ϕ2□−1
)

= Tr
(

λ

2 ϕ2□−1
)

− 1
2Tr

(
λ

2 ϕ2□−1
)2

+ . . . (26)

and one picks up from it only the expression quadratic
in λ and quartic in the background scalar field ϕ, which
is also formally quadratic in the inverse box operator
□−1, that is the part

Tr ln H ⊃ −1
2

λ2

4 ϕ4Tr□−2 = −λ2

8 ϕ4Tr□−2. (27)

Precisely this expression is relevant for the UV di-
vergence proportional to the quartic interaction term
− λ

4! ϕ
4 in the original scalar field action (23). Noticing

that the functional trace of the □−2 scalar operator
in d = 4 is given by

Tr□−2 = i
ln L2

(4π)2 , (28)

where L is a dimensionless UV-cutoff parameter re-
lated to the ΛUV dimensionful momentum UV-cutoff
and the renormalization scale µ via ΛUV = Lµ, one
finds for the UV-divergent and interesting us part of
the one-loop effective action here

Γ(1)
div = i

2Tr ln H ⊃
∫

d4x
ln L2

(4π)2
λ2

16ϕ4. (29)

Now, one can compare this to the original action
terms in (23) describing quartic interactions of the
scalar fields ϕ: −

∫
d4x λ

24 ϕ4. The counterterm action
(to absorb UV divergences) is opposite to Γdiv and
the form of the terms in the counterterm action is
expressed via perturbative beta functions of the theory.
That is in the counterterm action Γct we expect terms

Γct = −Γdiv = −1
2

ln L2

24

∫
d4xβλϕ4 (30)

with the front coefficient exactly identical to the one
half of the one in front of the quartic interactions in
the original action in (23) (being equal to − 1

4! = − 1
24 ).

From this one reads that (identifying that effectively
ln L2 → 1 for comparison)

− 1
48βλ = − λ2

16(4π)2 (31)

and finally that

βλ = 3λ2

(4π)2 , (32)

which is a standard result for the one-loop beta func-
tion of the quartic coupling λ in 1

4! λϕ4 scalar theory
in d = 4 spacetime dimensions.

One sees that even in the simplest framework, the
details of such a computation are quite cumbersome,
and we decide not to include in this manuscript other
more sophisticated illustrative examples of such deriva-
tion of the explicit results for beta functions of the the-
ory. The reader, who wants to see some samples can
consult more explicit similar calculations as presented
in references [26, 30, 44]. In particular, the appendix
of [30] compares two approaches to the computation of
UV divergences in gauge theory (simpler than gravity
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but with non-Abelian gauge symmetry) – using BV
heat kernel technique and using standard Feynman
diagram computation using graphs and Feynman rules
around flat space and in Fourier momentum space.

2.2. Results in six-derivative gravity
The final results for this computation of all UV di-
vergences of the six-derivative gravitational theory
are

Γ(1)R,C
div = − ln L2

2(4π)2

∫
d4x

√
|g|

{(397
40 + 2x

9

)
C2

+1387
180 GB − 7

36R2
}

(33)

for the case of six-derivative pure QG model in d = 4
spacetime dimensions and

Γ(1)R,C
div = − ln L2

2(4π)2

∫
d4x

√
|g|

{
−133

20 C2

+196
45 GB +

(
−5

2x−2
4−der + 5

2x−1
4−der − 5

36

)
R2

}
(34)

for the case of four-derivative pure Stelle quadratic
model of QG to the one-loop accuracy. This last result
was first reported in [42]. The result in six-derivative
gravity is freshly new [26]. Here we define the co-
variant cut-off regulator L [27], which stays in the
following relations to the dimensional regularization
parameter ϵ [27, 43],

ln L2 ≡ ln Λ2
UV
µ2 = 1

ϵ
= 1

2 − ω
= 2

4 − n
, (35)

where we denoted by n the generalized dimensionality
of spacetime in the DIMREG scheme of regularization
(additionally ΛUV is the dimensionful UV cutoff en-
ergy parameter and µ is the quantum renormalization
scale). Moreover, to write compactly our finite results
for the six-derivative theory we used the definition of
the fundamental ratio of the theory x as

x = ωC

ωR
, (36)

while for Stelle four-derivative theory in (34) we use
analogously but now with the theta couplings instead
of omegas, namely

x4−der = θC

θR
. (37)

It is worth to describe briefly here also the passage
from UV divergences of the theory at the one-loop
level to the perturbative one-loop beta functions of
relevant dimensionless couplings. Using the divergent
contribution to the quantum effective action, derived
previously, we can define the beta functions of the
theory. Let us first fix some definitions.

The renormalized Lagrangian Lren is obtained start-
ing from the classical Lagrangian written in terms of

the renormalized coupling constants and then adding
the counterterms to subtract the divergences,

Lren = L(αb(t)) = L
(
Zαi(t)αi(t)

)
= L(αi(t))+Lct

= L(αi(t)) + (ZC − 1) θC(t) C2 + (ZR − 1) θR(t) R2

+ (ZGB − 1) θGB(t) GB, (38)
where we have that Lct = −Ldiv and αi(t) =
{θC(t), θR(t), θGB(t)}. Above we denoted by αb(t) the
RG running bare values of coupling parameters, by Lct
and Ldiv the counterterm and divergent Lagrangians
respectively, by Zαi

(t) renormalization constants for
all dimensionless couplings and finally by αi(t) these
running couplings. Here and above we neglect writing
terms which are UV-divergent but subleading in the
number of derivatives in the UV regime. From (38),
the full counterterm action reads, already in dimen-
sional regularization,

Γ(1)
ct = −Γ(1)

div = 1
2ϵ

1
(4π)2

∫
d4x

√
|g|

{(397
40 + 2x

9

)
C2

− 7
36R2 + 1387

180 GB
}

≡ 1
2ϵ

1
(4π)2

∫
d4x

√
|g|

{
βCC2 + βRR2 + βGBGB

}
.

(39)
Comparing the last two formulas we can identify the
beta functions and finally get the renormalization
group equations for the six derivative theory,

βC = µ
dθC

dµ
= 1

(4π)2

(
397
40 + 2x

9

)
, (40)

βR = µ
dθR

dµ
= − 1

(4π)2
7
36 , (41)

βGB = µ
dθGB
dµ

= 1
(4π)2

1387
180 , (42)

The three lines above constitute the main results of
this work. Their structure, mainly the x-dependence
is the main topic of discussion in the next sections.
Above we denoted by t the so called logarithmic RG
time parameter related in the following way: t =
log µ

µ0
to the renormalization scale µ, where µ0 is

some reference energy scale.
As we will show below the differences between the

cases of four-derivative theory and six-derivative one
are significant and the dependence on the ratio x is
with quite opposite pattern and in completely different
sectors of ultraviolet divergences of the two respective
theories. In the main part of this contribution we will
try an attempt to explain the mentioned difference,
which is now clearly noticeable, using some general
principles and arguments about renormalizability of
the quantum models. We will also study some limiting
cases of the non-finite (infinite or zero) values of the
x parameter and motivate that in such cases the QG
model is non-renormalizable and this leads to char-
acteristic patterns in the structure of beta functions
mentioned above for six-derivative theories. This is
also why we can call the ratio x as the fundamental
parameter of the gravitational theory.
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3. Some theoretical checks of the
results (33)

Let us say that regardless of the simplicity of the final
formulas with the final result in [26], the intermediate
calculations were quite big and this is why we cannot
present these intermediate steps here. This was not
only because of the size of the algebraic expressions,
where we used Mathematica for help with symbolic
algebra manipulations, but also due to the complexity
of all the steps of the computation starting from the
quadratic expansions of the action of six-derivative
classical theory. The ultimate validity of the calcula-
tions has been checked in several different ways. This
is also briefly described below.

The following checks were performed to ensure the
correctness of the intermediate results of the compu-
tation of UV divergences, which was the main task of
the work presented here.
(1.) First, the validity of the expression for the Hes-

sian operator from the classical action with six
derivatives was verified in the following way. The
covariant divergence of the second variational deriva-
tive operator (Hessian) with respect to gravita-
tional fluctuations hµν , from each GR-covariant
term Sgrav,i in the gravitational action must be
separately zero, namely

∇µ

(
δ2Sgrav,i

δhµνδhρσ

)
= 0 + O

(
∇kRl, k + 2l > 4

)
, (43)

where SHD =
∑

i Sgrav,i. This formula was explic-
itly checked for each term in the action in (10) to
the order quadratic in curvatures and up to total
of four covariant derivatives acting on the general
gravitational curvature R.

(2.) The computation of the functional trace of the log-
arithm of the gauge weighting operator Ĉ, namely
of Tr ln Ĉ was checked using three methods. Since
the Ĉ operator is a non-minimal four-derivative
differential operator and matrix-valued (so with
vector indices), then the computation of its trace
of the logarithm is a bit troublesome. One has to
be more careful here. Therefore, we performed ad-
ditional verifications of our partial results for this
trace. Our three methods consist basically of trans-
forming the problem to computing the same trace
of logarithm but of new operators (with higher
number of derivatives). Next, by selecting some
adjustable parameters present in the construction
of these new operators, these morphed operators
could be put into a minimal form and easily traced
(under the functional logarithm operation) using
standard methods and prescriptions of Barvinsky-
Vilkovisky trace technology [27]. This construction
of new operators was achieved by an operatorial
multiplication by some two-derivative spin-one op-
erator Ŷ containing one free adjustable parameter.
For details one can look up the section III of [26].

In the first variant of the method, we multiplied
Ĉ from the right by Ŷ one time, in the second

method we multiplied by Ŷ from the left also once,
and in the final third method we used the explicitly
symmetric form of multiplication ŶĈŶ . (This last
form of multiplication is presumably very important
for the manifest self-adjointness property of the
resulting 8-derivative differential operator ŶĈŶ .)
For these operatorial multiplications, Ŷ was a two-
derivative operator, whose trace of the logarithm
is known and can be easily verified. (This was also
checked independently below.) We emphasize that
in the first two methods the resulting operators (ŶĈ
and ĈŶ respectively) were six-derivative ones, while
in the last one with double multiplication from both
sides, ŶĈŶ was an eight-derivative matrix-valued
differential operator. At the end, all three described
above methods of computation of Tr ln Ĉ agree for
terms quadratic in curvatures. These terms are only
important for us here since they appear in the form
of UV divergences of the theory (and are composed
from GR-invariants: R2, R2

µν , and R2
µνρσ).

(3.) Similarly, the computation of Tr ln Ŷ for the two-
derivative operator Ŷ was verified using three anal-
ogous methods. We used multiplication from both
sides by the operator Â and also the symmetric form
of multiplication ÂŶÂ, where Ŷ is a two-derivative
operator, whose functional trace of the logarithm we
searched here. Above, Â was another two-derivative
non-minimal spin-one vector gauge (massless) oper-
ator, whose trace of the logarithm is well known [41]
and can be easily found. Again, for the final results
for Tr ln Ŷ all three methods presented here agree
to the order of terms quadratic in curvatures R.

(4.) In total divergent part Γdiv of the quantum ef-
fective action, we checked a complete cancellation
of terms with poles in y = 2ωC − 3ωR variable,
namely all terms with 1

y and 1
y2 in denominators

(originating from the expression for the gauge-fixing
parameter β in (21)) completely cancel out. This
is not a trivial cancellation between the results of
the following traces: Tr ln Ĥ and Tr ln M̂ .

(5.) Finally, using the same code written in Mathe-
matica [47] a similar computation in four-derivative
gravitational theory (Stelle theory in four dimen-
sions) was repeated. We easily were able to re-
produce all results about one-loop UV divergences
there [42]. To our satisfaction, we found a complete
agreement for all the coefficients and the same non-
trivial dependence on the parameter x4−der, which
was already defined above for Stelle gravity. This
was the final check.

4. Structure of beta functions in
six-derivative quantum gravity

4.1. Limiting cases
In this subsection, we discuss various limiting cases
of higher-derivative gravitational theories (both with
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four and six derivatives). We study in detail the sit-
uation when some of the coefficients of action terms
in the Weyl basis tend to zero. We comment whether
in such cases our method of computation is still valid
and whether the final results for UV divergences are
correct in that cases and whether they could be ob-
tained by continuous limit procedures.

First, we discuss the situation with a possible de-
generacy of the kinetic operator of the theory acting
between quantum metric fluctuations hµν on the level
of the quadratized action. If the action of a theory in
the UV regime has the following UV-leading terms

Sgrav =
∫

ddx
√

|g|
(
ωC,N C□N C + ωR,N R□N R

)
, (44)

with ωC,N ≠ 0 and also ωR,N ̸= 0 and after adding
the proper gauge-fixing functional, then the kinetic
operator can be defined, so in these circumstances it
is not degenerate. Then it constitutes the operatorial
kernel of the part of the action which is quadratic in
the fluctuation fields. It can be well-defined not only
for the cases when ωC,N ̸= 0 and ωR,N ̸= 0, but also
when ωR,N = 0. This last assertion one can check
by explicit inspection, but due to the length of the
resulting expression we decided not to include such
a bulky formula here. However, in the case ωC,N = 0,
a special procedure must be used to define the theory
of perturbations and to extract UV divergences of the
model. We remark that in the last case the theory is
non-renormalizable. We also emphasize that the addi-
tion of the gauge-fixing functional here is necessary
since without it the kinetic operator (Hessian) is auto-
matically degenerate as the result of gauge invariance
of the theory (here in gravitational setup represented
by the diffeomorphism gauge symmetry).

In general, as emphasized in [26], in four spacetime
dimensions, the general UV divergences depend only
on the coefficients appearing in the following UV-
leading part of the gravitational HD action,

Sgrav =
∫

d4x
√

|g|
(
ωC,N C□N C + ωR,N R□N R

+ ωC,N−1C□N−1C + ωR,N−1R□N−1R

+ωC,N−2C□N−2C + ωR,N−2R□N−2R
)

, (45)

where the last two lines contain subleading terms in
the UV regime. However, they are the most relevant
for the divergences proportional to the Ricci curvature
scalar and also to the cosmological constant term [44].
Below for notational convenience, we adopt the follow-
ing convention specially suited for six-derivative grav-
itational theories, so in the case when N = 1. We will
call coupling coefficients in front of the leading terms
as respective omega coefficients (like ωC = ωC,1 and
analogously ωR = ωR,1), while the coefficients of the
subleading terms with four derivatives we will denote
as theta coefficients (like θC = ωC,0 and analogously
θR = ωR,0). Eventually, for the most subleading terms
with subindex values of (N − 2) equal formally to −1

here, we have just one term contributing to the cos-
mological constant type of UV divergence. We denote
this coefficient as ω−1 = ωR,−1 and it is in front of
the Ricci scalar term in the original classical action
of the theory (6). Simply this coefficient ω−1 is re-
lated to the value of the 4-dimensional gravitational
Newton’s constant GN .

The expressions for the RG running of the cosmo-
logical constant and the Newton’s constant in [26, 44]
contain various fractions of parameters of the theory
appearing in the action (45). Still, for a generic value
of the integer N , giving roughly the half of the order of
higher derivatives in the model, we have the following
schematic structure of these fractions:

ωR,N−1
ωR,N

,
ωC,N−1
ωC,N

,
ωR,N−2
ωR,N

,
ωC,N−2
ωC,N

. (46)

The structure of the UV divergences and of these
fractions can be easily understood from the energy
dimensionality arguments. We notice that in the Weyl
basis with terms in (45) written with Weyl tensors
Cµνρσ and Ricci scalars R the only fractions, which
appear in such subleading UV divergences are “diag-
onal” and do not mix terms from the spin-2 (Weyl)
sector with terms from the spin-0 (Ricci scalar) sec-
tor. If in any of the above fractions, we take the
limits: ωR,N−1 → 0, ωC,N−1 → 0, ωR,N−2 → 0, or
ωC,N−2 → 0, then the corresponding fractions and
also related UV divergences (and resulting beta func-
tions in question) simply vanish, provided that the
coefficients in their denominators ωR,N and ωC,N are
non-zero.

On the other hand, if ωC,N = 0, then we cannot
rely on this limiting procedure. In this case, on the
level of the quadratized action the operator between
quantum fluctuations is degenerate even after adding
the gauge-fixing terms. This means that in this situa-
tion a special procedure has to be used to extract the
UV divergences of the model. This is possible, but we
will not discuss it here.

It is worth to notice that in turn, if ωR,N = 0,
then the kinetic operator for small fluctuations and
after adding the gauge fixing is still well-defined, as
emphasized also above. For this case a special addi-
tional kind of gauge fixing has to be used, which fixes
the value also of the trace of the metric fluctuations
h = gµνhµν and this last one in the theory with N = 0
resembles the conformal gauge fixing of the trace.

If ωR,N = 0 and additionally ωR,N−1 or ωR,N−2 are
non-zero, then the corresponding beta functions for
the cosmological constant and Newton’s gravitational
constant are indeed infinite and ill-defined as viewed
naively from the expressions in (46). This situation
could be understood as that there is an additional new
divergence not absorbed in the adopted renormaliza-
tion scheme and the renormalizability of such a theory
is likely lost. But if the model is with ωR,N = 0 and
at the same time ωR,N−1 = ωR,N−2 = 0, then the con-
tributions of corresponding fractions in (46) are van-
ishing, because the limits ωR,N−1 → 0 or ωR,N−2 → 0
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must be taken as the first respectively. Only after
this, the final limiting procedure ωR,N → 0 should be
performed. Therefore, in this limiting situation, the
proper sequence of limits on respective fractions is as
follows:

lim
ωR,N →0

(
lim

ωR,N−1→0

ωR,N−1
ωR,N

)
= 0 (47)

and
lim

ωR,N →0

(
lim

ωR,N−2→0

ωR,N−2
ωR,N

)
= 0 . (48)

In this case, there are no contributions to the beta
functions from these fractions, so the R2 sector does
not contribute anything to the mentioned UV diver-
gences, while it is expected that the terms in the C2

sector make some impact on beta functions.
However, the similar procedure cannot be applied

in the sector with Weyl square terms (C2 sector), so
to the model with ωC,N = 0 and at the same time
ωC,N−1 = ωC,N−2 = 0 since these cases have to be
treated specially and separately. In the last case, after
the limit, only the pure sector with Ricci scalar square
terms (R2 sector) survives and the theory is likely non-
renormalizable. Then we expect contributions to UV
divergences only from terms in the R2 sector.

Regarding the divergences proportional to expres-
sions quadratic in curvatures (R2, C2, and the Gauss-
Bonnet term GB), we have found the following generic
structure in four-derivative gravity [42]:

A−2
x2

4−der
+ A−1

x4−der
+ A0, (49)

where in this case of four-derivative gravity the fun-
damental ratio of the theory is defined as

x4−der = ωC,0
ωR,0

= θC

θR
. (50)

The numerical coefficients A−2, A−1 and A−0 are
different for different types of UV divergences (here
they are given by terms with four derivatives, namely
by R2, C2 and GB terms respectively). The explicit
numerical values are given in the formula (34). One
observes negative powers of the ratio x4−der in (49)
and in (34), implying also negative powers of the cou-
pling θC in the final results for these UV divergences.
This result signifies that the theory with θC = 0
should be treated separately and then we do not have
well-defined kinetic operator in a standard scheme of
computation. The naive results with the limit θC → 0
of the above formula in (49) do not exist. Such theories
with θC = 0 entail complete absence of gravitational
terms in the C2 sector. They are again very special
and perturbatively non-renormalizable models. The
above remarks apply both to pure R2 Starobinsky
theory as well as to theories in the R2 sector with
addition of the Einstein-Hilbert R or the cosmological
constant ωΛ terms.

On the other side, the limit θR → 0 in pure C2

gravity seems not to produce any problem with the
degeneracy of the kinetic operator, nor with the final
expression (49). The naive answer would be just A0
for (49) for each of the UV divergences in this case.
But this is an incorrect answer since for pure four-
derivative gravity with θR = 0 in the Weyl basis of
terms, we have an enhancement of the symmetry in
the model, beyond the case where θR was non-zero.
In this situation, the theory enjoys also conformal
symmetry and a more specialized and delicate compu-
tation must be performed to cover this case. This is
the case of four-dimensional conformal (Weyl) gravity.
(We decided for simplicity not to analyze here the cases
when besides the C2 action for four-dimensional con-
formal gravity, there are also some subleading terms
from the almost “pure” R2 sector, that is ω−1 ̸= 0
or when we allow for non-vanishing cosmological con-
stant term ωΛ ̸= 0 – these terms in the action would
cause breaking of classical conformality.)

The computation in this case should reflect the fact
that also the conformal symmetry should be gauge-
fixed. We remark that the conformal symmetry does
not require dynamical FP ghosts, because the con-
formal transformations of gravitational gauge poten-
tials (not the conformal Weyl gauge potentials bµ)
are without derivatives. At the end, when the more
sophisticated method is employed, the eventual result
is different than A0 for each type out of three types
of four-derivative UV-divergent GR-invariant terms
in the quantum effective action of the model. The
strict result A0 is still correct only for theories in
which conformality is violated by inclusion of other
non-conformal terms like the Einstein-Hilbert R term
or the cosmological constant ωΛ term. We conclude
that in the four-derivative theory, the two possible
extreme cases of θR = 0 or θC = 0 are not covered by
the general formula (49). But in each of these cases
the reasons for this omission are different. In both
these cases the separate more adapted methods of
computation of UV divergences have to be used.

In the case of six-derivative theory studied in [26],
we have the following structure of UV divergences
quadratic in gravitational curvatures

B0 + B1x, (51)

with new values for the constants B0 and B1. The
explicit numerical values are given in our formula (33)
with the results. We also remark that the values of the
constant terms B0 are different than the values of A0
in the previous four-derivative gravity case. Moreover,
the numerical coefficients B0 and B1 are different
for different types of UV divergences of the effective
action (R2, C2 and GB terms respectively). When
the leading dynamics in the UV regime is governed by
the theory with six derivatives, then the fundamental
ratio x we define as

x = ωC,1
ωR,1

= ωC

ωR
. (52)
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We emphasize that in such a case, we cannot con-
tinuously take the limit ωC → 0. Although, naively
this would mean the limit x → 0, the result just B0
from (51) would be incorrect. This is because in this
case we cannot trust the method of the computation.
When ωC = 0 the kinetic operator is degenerate (the
same as it was in the four-derivative gravity case)
and needs non-standard treatment, that we will not
discuss here.

Moreover, looking at the last formula (51), the other
limit ωR → 0 is clearly impossible too, because it
gives divergent results. However, in this case (ωR = 0)
and on the contrary to the previous case (ωC = 0),
we could trust the computation at least on the level
of the kinetic operator (Hessian) and its subsequent
computation of the functional trace of the logarithm
of. In this case, the final divergent results in (51)
signify that the theory likely is non-renormalizable
and that there are new UV divergences besides those
ones derived from naive power counting analysis3.
We conclude that in the case of six-derivative gravity,
both cases ωR = 0 or ωC = 0 require special treatment
and the type of formula like in (51) or (33) does not
apply there and the limiting cases are not continuous.
More discussion of these limits is contained also in
the further subsection 4.4.

4.2. Dependence of the final results on
the fundamental ratio x

Here we just want to understand the x-dependence in
the result for the beta functions in six-derivative grav-
itational theory. We first try to analyze the situation
for simpler theory (with four derivatives), prepare the
ground for the theory with six derivatives, and then
eventually draw some comparison between the two.
We look for singular 1

ωR
or 1

ωC
dependence (corre-

sponding to positive or negative powers of the funda-
mental ratio x = ωC

ωR
respectively) in functional traces

of the fundamental operators defining the dynamics
of quantum perturbations important to the one-loop
perturbative level. We note that the two definitions
for the ratio x in (50) and in (52) respectively for
four- and six-derivative gravities are compatible with
each other and the proper use of them (with theta or
omega couplings) is obvious in the specific contexts
they are used in. Below, when we will refer to features
shared by both four- and six-derivative gravitational
theories, we will use common notation with general
ωC , ωR and x coefficients and we will not distinguish
and not change it to the special notation originally
adequate only to Stelle quadratic theory (with θC , θR

and x4−der). We hope that this will not lead to any
confusion.

We emphasize, that when we have one of the two
terms missing – with ωR or ωC front couplings – in
the leading in UV part of the action of the model, then

3We remark that the generic power counting analysis of UV
divergences in six-derivative quantum gravity, as presented in
section 1.1, applies only in cases when ωC ̸= 0 and ωR ̸= 0.

the theory is badly non-renormalizable and degenerate.
For example, one cannot define even at the tree-level
the flat spacetime graviton propagator since the parts
proportional to P (0) or P (2) projectors do not exist in
cases when ωR = 0 or ωC = 0 respectively. However,
there we can still use the Barvinsky-Vilkovisky (BV)
trace technology to compute the new UV divergences.
The fact that they are not possible to be absorbed in
counterterms of the original theory is another story
related to the non-renormalizability of the model that
we will not discuss further here. We think that, for
example, using the BV technique one can fast compute
UV divergences in Einstein-Hilbert (E-H) theory in
d = 4 (which is a non-renormalizable model) and
this method still gives a definite result (besides that
these divergences are gauge-fixing dependent and valid
only for one gauge choice). Moreover, using the BV
traces machinery and the minimal form of the kinetic
operator is essential to get final results for the unique
effective action (as introduced by Barvinsky [27, 48]),
also in perturbatively non-renormalizable models.

In quadratic gravity (four-derivative theory) in
d = 4, setting θC = 0 is highly problematic. The same
regards taking the limit θC → 0, because then the
pure R2 theory can be fully gauge-fixed. And for ex-
ample, this means that on flat spacetime background,
the kinetic operator vanishes, perturbative modes are
not dynamical and there is no graviton propagator.
Using the standard technique of the one-loop effective
action one sees that the traces of the functional loga-
rithms of Ĥ and of Ĉ operators both contain singular
expressions 1

θC
, and there is no final cancellation be-

tween them. In this case of four-derivative gravity, in
final results for UV divergences, we really see inverse
powers of the fundamental ratio of the theory x4−der.

The results in quadratic Stelle gravity, when we set
θR = 0, are not continuous either. Because in this case
the local gauge symmetry of the theory is enhanced.
We have also conformal symmetry there. The model
is identical to the Weyl gravity in d = 4 described
by the action C2. As emphasized in [41], this case of
θR = 0 has to be treated specially. Also, in this model,
the conformal symmetry has to be gauge-fixed and in
this special case the operators Ĥ and Ĉ are different
than their limiting versions under θR → 0 limit from
the generic four-derivative theory case. Hence also
the results for the beta functions are different than
the limits of the corresponding beta functions in the
situation with θR ̸= 0.

If we start with the theory with θC = 0 from the be-
ginning, then there are serious problems with the
kinetic operator. We checked that it cannot be put
by standard fixing of the gauge to the minimal form
with four-derivative leading operator. Moreover, as
the result of this process one of the typical gauge-
fixing parameters remains undetermined. Here one
can try to compute the trace of the logarithm of the
Hessian using the method proposed in [44] consisting
of multiplying by some two-derivative non-minimal
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operator and getting a six-derivative operator, whose
trace can be easily found. But it is hard to believe
that one has any chance to get a non-singular answer
for all the beta functions in pure R2 theory since it is
known that this theory is non-renormalizable (because
it lacks the C2 counterterm in the bare action).

Actually, here (for the θC = 0 case) one could choose
the Ĉ matrix-valued differential operator different
from the standard minimal prescription and choose
different values for the γ gauge-fixing parameter. In
the standard minimal choice for the gauge-fixing pa-
rameters and in this model, the Ĉ matrix contains
an irregular part in θC coupling ( 1

θC
pole), because

of the dependence of γ on θC . This last dependence
originates from the conditions forced on gauge-fixing
parameters in order to put the kinetic operator in the
minimal form, in the standard case θC ≠ 0. However,
knowing that in the case with θC = 0, this procedure
is anyhow unsuccessful, we have the freedom to choose
the value of γ different than the standard one and at
our wish.

In principle, similar considerations can be repeated
verbatim for the case of six-derivative theory (with
N = 1 power exponent on the box operator in the
defining the theory action in (45)). But we remark
here that the theory with ωR = 0 and N = 1 is
not conformally invariant in d = 4 dimensions. And
the above problems with the gauge fixing of the Hes-
sian operator Ĥ and non-minimality of it in the case
ωC = 0 still persist. This is because here for six-
derivative gravitational theories the box operator □
acting between two gravitational curvatures is only
a spectator from the point of view of the UV-leading
part of the Ĥ operator (with the highest number of
derivatives and with the zeroth powers in gravitational
curvatures) or from the point of view of flat space-
time kinetic operator and flat spacetime graviton’s
propagator. The box operator in momentum space
gives only one additional factor of −k2 to the kinetic
operator and additional suppression by −k−2 to the
propagator. The Hessian in the six-derivative theory
with ωR = 0 must possess the same definitional issues
as the one in the four-derivative theory (with θR = 0),
because for the kinetic terms box operator again plays
only the role of the spectator. Hence the difference
on this level between four- and six-derivative theories
is only in some overall multiplicative coefficient (like
flat spacetime d’Alembertian operator ∂2 is −k2 in
Fourier space). So then, if we know that the Hessian
Ĥ is almost well-defined for the conformal gravity case
(up to the need for additional gauge fixing of the con-
formal symmetry), then the same will be true for the
Hessian in the six-derivative theory with the ωR = 0
condition in d = 4 spacetime dimensions, although
then the theory ceases to be conformal anymore. In
conformal gravity in d = 4, when θR = 0, we have
almost well-defined Hessian, because we know that it
gives rise to a good renormalizable theory at least to
the one-loop perturbative level of computations.

Now, also in the case of six-derivative theories, set-
ting ωR = 0 does not create any problem for the
form of neither Ĥ nor Ĉ operators. Only the final
results for the beta functions show 1

ωR
poles as this

was manifest from the results in [26]. In turn, in
six-derivative theories, the limit ωC → 0 seems regu-
lar, but it is questionable that now we can trust the
results of this limit. In the pure R□R theory, we
expect to get some discontinuous results for the beta
functions not obtainable by the limit ωC → 0 since
this model is non-renormalizable. In this model, there
is still an open problem that one cannot make the
kinetic operator of fluctuations a minimal 6-derivative
one. Furthermore, taking the limit ωC → 0 on the ki-
netic operator from the generic case ωC ̸= 0 produces
a Hessian Ĥ that vanishes on flat spacetime. Hence
it seems that in this case the intermediate steps of
the process of computing the divergent part of the
effective action are not well-defined, while the final
result is amenable to taking the limit ωC → 0, but
exactly because of this former reason, we should not
trust these apparently continuously looking limits.

One should analyze deeper the form of the leading in
the number of derivatives (and also in the UV regime)
part of the kinetic operator Ĥ of the theory between
graviton fluctuations. The insertions of box operators,
like any power or functions of the box operator □, are
only the immaterial differences between the cases of
four- and six-derivative theories here. These opera-
tors are only spectators for getting the leading part
of the Hessian, which is with the highest number of
derivatives and also considered on flat spacetime, so
with the condition that R = 0. Using formula (20)
with solutions for gauge-fixing parameters as in (21),
one finds in the generic case ωC ̸= 0 and ωR ̸= 0, that
the kinetic operator (leading part of the Hessian) is
indeed minimal and of the form

Hµν,ρσ
lead = ωC

2 □ (gµρgνσ + gµσgνρ)

− ωC
ωC − 6ωR

4ωC − 6ωR
□gµνgρσ . (53)

In the above formula, one does not see any singularity
when ωC is vanishing (one saw ω−1

C divergences in
the expressions for α and γ parameters in (21)), but
in this case the above treatment was not justified.
When ωC = 0, one can solve the system for gauge-
fixing parameters for β and γ′ = γ

α and assume that
formally 1

α = 0 and 1
γ = 0, but in the ratio γ

α the limit
is finite. One then finds that β = 1 and γ′ = −2ωR

and after substitution to the original Hessian, one
gets that its leading part explicitly vanishes. The
same one gets by plugging the naive limit ωC → 0
in (53). One also sees from the explicit solutions
in (21) and resulting general expression for γ′ (i.e.
γ′ = 4

3 ωC − 2ωR) that by plugging ωC = 0 one finds
again that β = 1 and γ′ = −2ωR as derived exactly
above. The highest derivative level of the gravitational
action is then completely gauge-fixed.
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In the opposite case, when ωR = 0, the leading part
of the Hessian does not vanish, but it is degenerate
and in the form

Hµν,ρσ
lead = ωC

2 □ (gµρgνσ + gµσgνρ) − ωC

4 □gµνgρσ, (54)

because this operator does not possess a well-defined
inverse, precisely in d = 4 dimensions. An addition of
a new conformal-like type of gauge-fixing here τh□3h
with a new (fourth) gauge-fixing parameter τ and
where the trace of metric fluctuations h = hµ

µ is
used, removes the degeneracy provided that τ ̸= 0
is selected. Then the kinetic operator takes the form

Hµν,ρσ
lead = ωC

2 □ (gµρgνσ + gµσgνρ)

+
(

τ − ωC

4

)
□gµνgρσ. (55)

Moreover, for any non-zero value of τ the Hessian
is still a minimal operator. For τ ̸= 0 the inverse
exists and also the propagator can be defined around
flat spacetime. The only question is whether the fi-
nal results are τ -independent since this is a spurious
gauge-fixing parameter. The reason for such indepen-
dence is obvious in the four-derivative case, since τ
is a gauge-fixing parameter for conformal symmetry
(conformal gauge-fixing parameter, so this is then in
such circumstances a symmetry argument). But in the
case of six-derivative model in d = 4, the reasoning
with conformal symmetry is not adequate since this
model is not conformal anymore. Only the explicit
computation may show that τ parameter drops out
from final results as it should for them to be physical
and τ gauge choice independent.

In four-derivative gravitational theory, one can see
the dependence on the x4−der ratio only in the coeffi-
cient of the R2 counterterm. This dependence is with
the general schematic form A−2x−2

4−der + A−1x−1
4−der +

A0x0
4−der like in (49) and in (34). We remark that

for other counterterms (namely for C2 and GB in
this Weyl basis), the coefficients of UV divergences
are numbers completely independent of x4−der. One
could try to explain here this quadratic dependence
in the inverse ratio x−1

4−der in front of the R2 countert-
erm in a spirit similar to the argumentation presented
in [44], where we counted active degrees of freedom
contributing to the corresponding beta functions of
the theory. It is well known by the examples of beta
functions in QED coupled to some charged matter
and in Yang-Mills theory, that the beta function at
the one-loop level expresses weighted counting of de-
grees of freedom and their charges in interactions
with gauge bosons in question (minimal couplings in
three-leg vertices are enough to be considered here
due the gauge symmetry). The similar counting could
be attempted here, but in gravity, especially in HD
gravity, there is a plenty of other gravitational degrees
of freedom, so this is quite a difficult task to enumer-
ate all of them and their strength of interactions in
cubic vertices when they interact with background

gravitational potentials. Therefore, this task of ex-
plaining x-dependence and numbers present in the
expressions for all the beta functions both in four- and
six-derivative theories, now seems to be too ambitious
and we leave it for some further future considerations.

Instead, we comment briefly on the general depen-
dence on the x4−der ratio in four-derivative theory and
compare this with six-derivative theory. In the case
of N = 1 (six-derivative gravitational theory), it was
found as a main result in [26], that the dependence
on x is only in front of the C2 counterterm and this
is a linear dependence B1x1 + B0x0 like in (51) with
non-negative powers of the x ratio. The other coun-
terterms R2 and GB are with constant coefficients
(only B0 terms present) (cf. with (33)). If the other
than the Weyl basis is used to write counterterms,
then the x-dependence is linear in coefficients in front
of each basis term (like in the basis with R2, R2

µν , and
R2

µνρσ terms). These explicit dissimilarities between
N = 0 and N = 1 models certainly require deeper
investigations.

It is interesting also to analyze a special value of
the fundamental ratio x of the six-derivative gravi-
tational theory, which makes the C2 sector of UV
divergences completely finite. This value is exactly
x = − 3573

80 = −44.6625. The R2 sector of UV diver-
gences cannot be made finite this way. We remind for
comparison that in the case of quadratic gravity with
four derivatives in d = 4, the special values for x4−der,
which made contrary the R2 sector UV-finite, were
two and they were x4−der = 3(3 ±

√
7) (their numeri-

cal approximations are as follows: x4−der,− ≈ 1.0627
and x4−der,+ ≈ 16.937) as solutions of some non-
degenerate quadratic algebraic equation. Again, con-
trary to the previous case with six derivatives, here the
divergences in the C2 sector cannot be made vanish.

Now, we discuss the differences between the two
extreme cases ωC = 0 and ωR = 0. In six-derivative
model or when we have even more derivatives, su-
perficially these two couplings and their roles for the
computation of UV divergences may look symmetric.
This is however not true due to the different impact of
these two conditions on the form of the kinetic opera-
tor Ĥ. In the case when ωR = 0, the Hessian operator
still exists, while for ωC = 0 we lose its form. This
observation has profound implications as we explain
below. First, it is a fact that both these conditions
lead to badly non-renormalizable theories, in which
the flat spacetime propagator cannot be simply de-
fined. Moreover, if N > 0 in none of these two reduced
models we have an enhancement of symmetries and
none of them has anything to do with conformal grav-
ity models, which are present only for N = 0 and
ωR = 0 case, despite that in constructions of these
six-derivative models we might use only terms with
Weyl tensor. (However, here we use the term C□C,
where it is known that the GR-covariant box operator
□ is not conformal.)
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Our explanation of the x-dependence is as follows.
First, in the generic model with N > 0, since it hap-
pens that it is the N = 0 scale-invariant gravitational
model which is here the exceptional one. For six-
derivative theory (or any one with N > 0) the two
reduced models with conditions that ωC = 0 or ωR = 0
respectively are not renormalizable and likely even at
the one-loop level higher types of divergences (besides
C2 and R2 from (1)) will be generated. From this we
expect that there must be some problems with UV
divergences obtained from naive power counting ar-
guments here. The problems must show up somehow
in the final numerical values for divergent terms or
in the intermediate steps of the process of computing
these divergences. These problems then signal that we
are working with non-renormalizable theory, which do
not have a good control over perturbative divergences
showing up at the one-loop level.

First, in the case ωC = 0, we see that the problems
are already there with the definition of the kinetic op-
erator (Hessian) between quantum metric fluctuation
fields. This implies that further processing with this
operator is ill-defined, we cannot trust it and even
if it would give us some final results for divergences,
then they are not reliable at all since the theory is
non-renormalizable. But we already found here the
instance of the problem, which makes our final limit-
ing results (in the ωC → 0 limit) not trustable. This
means that from the expression in (51), we do not
expect any additional obstacles, like 1

ωC
poles since

the price for non-renormalizability was already paid
and we have already met dangerous problems, which
signal the incorrectness of the naive limit ωC → 0.
This should already take away our trust in the limit
ωC → 0 of expressions for UV divergences in (33).
Then this line of thought in the case ωC = 0 does
not put any constraints at all on the final form of the
x-dependence in (51) since these results like in (51)
in the limit ωC → 0 will anyway be likely incorrect.

Now, in the other case with N > 0 and ωR = 0, we
do not have the problem with the definition of the
Hessian Ĥ. Formally, we can process it till the end of
taking the functional trace of the logarithm and adding
contributions from Tr ln M̂ and Tr ln Ĉ. But somehow,
we must find the occurrence of the problem, because
the theory is non-renormalizable! So the only place in
which the problem may sit is in the final x-dependence
of the results for UV divergences. These results should
be ill-defined, when the limit ωR → 0 is attempted.
And this implies that they must be with poles in the
ωR coefficient, so they must be instead with positive
powers of the x ratio of the theory. Hence, we conclude
that the x-dependence must be linear or quadratic,
but always with positive powers of the ratio x. This
is now confirmed by explicit form as in (33) for UV
divergences of six-derivative theory. The problems
with renormalizability of the pure theory C□C show
up in the last possible moment in the procedure for
obtaining the result, namely when one wants to take

the limit ωR → 0 or equivalently x → ∞. This is the
generic situation for any super-renormalizable theory
and for any N > 0. There are still some mysterious
things here, like why the dependence is only linear in
x and why only for the C2 type of UV counterterm,
while two other counterterms R2 and GB are numbers
completely independent of x. Right now we cannot
provide satisfactory mathematical explanations for
these facts.

Using this argumentation in the theory models with
N = 1, we get an explanation for the x-dependence in
formula for UV divergences in (51). The logical chain
for the explanation should be as follows. Firstly, in the
pure theory C□C, one concludes that the problems of
non-renormalizability shows only in the final results as
impossibility to take the limit ωR → 0 or equivalently
x → ∞ of formula in (51) for divergences of the model.
Hence the dependence must be on non-negative powers
of the ratio x in formula (51), as it is clearly confirmed
by explicit inspection of this formula. This settles
the issue of the structure of exact beta functions for
N = 1 models (and also for higher N ⩾ 1 cases
too). Now, the same formula is a starting point for
an attempt to take the other limit x → 0 of the
also non-renormalizable model of the type R□R. But
in such a model we have already found a source of
the problem caused by non-renormalizability earlier,
that it is here connected with the impossibility to
properly define non-degenerate Hessian operator in
the model. But this limiting case of x → 0 must
follow the same structure as already established in
formula (51). Simply, theoretically speaking, there
is no need to see more instances of problems due to
non-renormalizability in the R□R model. Hence, the
first explanation based on the C□C model is sufficient
and the results in the model R□R must be consistent
with it. Moreover, from just the analysis of the case
x → ∞, we have concluded what is the structure in
a generic renormalizable case, when we have both
ωR ̸= 0 and ωC ̸= 0 (so x ̸= 0 and x ̸= ∞). This
structure is beautifully confirmed by the formula (51)
or (33) explicitly for the generic case.

As emphasized above, it is in turn the N = 0 case,
which is extraordinary and it changes the pattern of
x4−der-dependencies described above. This all can be
traced back to the fact that for N = 0 we have the
possibility of reducing the generic HD scale-invariant
model to the conformal one, when the full conformal
symmetry is preserved (at least on the classical level
of the theory). This happens, when one takes the iso-
lated case of θR = 0 and θC ̸= 0 for the four-derivative
theory (for positive-definiteness we may also assume
that θC > 0). This case is discontinuous and cannot
be taken as the naive limit x4−der → ∞ of the for-
mula (49) for the R2 type of UV divergences, which
would leave us effectively only with the A0 coefficient.
It is well known that the conformal gravity model is
renormalizable one (at least to the one-loop level),
contrary to the case of the theory C□C, which was
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discussed above. This means that we shall not find any
source of the problem when computing and getting
results for UV divergences of this C2 model. We do
not find problems with the Hessian or the propagator
provided we also gauge-fix the conformal local symme-
try of Weyl conformal gravity. We shall not find the
problem with the final expression of UV divergences,
so there we shall not expect poles with θR coefficient.
But some x4−der-dependence up to the quadratic order
could be present (this is due to the one-loop character
of the computation here; one can understand this eas-
ily from contributing Feynman diagrams). So then, we
conclude that this dependence may be only in positive
powers of the inverse ratio, namely of x−1

4−der = θR/θC .
This is again confirmed in the formula (49) and (34),
where we indeed find the quadratic dependence but
in the inverse ratio x−1

4−der.
Simply, the final results for the generic case

x4−der ̸= 0 and x4−der ̸= ∞ cannot depend on pos-
itive powers of x4−der since then the limit of con-
formal gravity in d = 4 (i.e. x4−der → ∞) would
produce divergent results, but we know that Weyl
gravity is renormalizable with a good control over
one-loop UV divergences. However, this does not
mean that the results for conformal gravity are con-
tinuous and obtainable from the generic ones in (34)
by taking the limit x4−der → ∞ there. We admit the
fact that the coefficients there may show some finite
discontinuities. However, both in the true and naive
x4−der → ∞ limiting forms they must be finite – we
only exclude the case when they would be divergent
in the x4−der → ∞ limit. In this way, the results in
renormalizable 4-dimensional conformal gravity for
UV divergences may be expressed via finite numbers
multiplying just one common overall divergence (like
1/ϵ parameter in dimensional regularization (DIM-
REG) scheme). The theory is renormalizable and
there are no new divergences inside coefficients of es-
tablished form of UV divergences in generic HD Stelle
theory in d = 4 spacetime dimensions, as in (1).

The significant difference between the cases of N =
0 and N ⩾ 1 is that in the former case the theory with
θR = 0 is conformal on the classical tree-level as well
as on the first quantum loop, since we know that Weyl
conformal quantum gravity is one-loop renormalizable.
This is why the pattern of the x-dependence in these
two cases is diametrically different. In both these cases
of N = 0 and N ̸= 0, one can derive the general
structure of beta functions in generic HD theory with
any finite value of the fundamental ratio x (x ̸= 0
and x ̸= ∞) by just analyzing the limit x → ∞ (or
respectively x4−der → ∞) and its divergences which
should or should not appear there respectively for the
cases of N ̸= 0 or N = 0.

The inverse quadratic dependence on the ratio
x4−der in the case of four-derivative Stelle theory can
be easily understood as well. It is up to the quadratic
order and the same dependence we would expect in the
case of six-derivative gravitational theory in the C2

sector of UV divergences. However, there as a surprise
we find only up to linear dependence on the fundamen-
tal ratio x and only in one distinguished sector of C2

divergences. In general, we can have up to quadratic
dependence on x in six-derivative models or on x−1

4−der
in the Stelle gravity case in d = 4 spacetime dimen-
sions. The UV divergences of some renormalizable
HD gravity models in d = 4 spacetime dimensions are
all at most quadratic in the general gravitational cur-
vature (schematically they are R2). Hence they can
be all read from the one-loop perturbative quantum
corrections to the two-point graviton Green function,
so equivalently from the quantum dressed graviton’s
propagator around flat spacetime background. We
remind that here there is no quantum divergent renor-
malization of the graviton wave function. Moreover,
higher orders in graviton fields (appearing in interac-
tion vertices) are completely determined here due to
the gauge invariance (diffeomorphism) present in any
QG model, so we can concentrate below only on these
two-point Green functions.

As it is known from diagrammatics, here the con-
tributing Feynman diagrams may have either one prop-
agator (topology of the bubble attached to the line)
or two propagators (sunset diagrams) at the one-loop
order and for corrections to the two-point function. In
the most difficult case, there are here two perturbative
propagators. Since in our higher-derivative theory we
have two leading terms shaping the UV form of the
graviton’s propagator, namely the terms ωCC□C and
ωRR□R, then the corresponding propagator may be
either with the front coefficient ω−1

C or ω−1
R respec-

tively as the leading term. To change between the
two expansions (in ωC or in ωR) one needs to use
one power of the ratio x. Since we have two such
propagators in the one-loop diagrams considered here,
then dependence is up to the quadratic power in x.
Sometimes we need to change back from ωC to ωR

as the leading coefficient of the tree-level propagator,
and then we need to multiply by inverse powers of
the ratio x. The quadratic dependence is what we
can have here in the most complicated case, which is
actually realized in Stelle generic theory with both
θC ̸= 0 and θR ̸= 0. (The argumentation above can be
repeated very similarly for quadratic gravity in d = 4
forgetting about one power of box operator □ and
changing corresponding omega coefficients to theta
coefficients and x to x4−der.) Apparently, in the case
of six-derivative gravitational theories there is some,
for the moment, unexplained cancellation, and we see
there only the dependence up to the first power on
the ratio x of that theory.

One should acknowledge here the speciality of the
case of d = 4 and one-loop type of computation. For
higher loop orders the powers of the x ratio may ap-
pear higher in the final expressions for UV divergences
of the theory. Similarly, if one goes to higher dimen-
sional QG models, then even in renormalizable models
at the one-loop level, one needs to compute higher
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n-point Green function. This is because in even di-
mension d one needs in renormalizable theory not
only to renormalize terms of the type R□(d−4)/2R
but also others with more curvatures (and correspond-
ingly less powers of covariant derivatives) down to the
term of the type Rd/2, where we do not find covariant
derivatives acting on curvature at all. In the middle,
the general terms can be schematically parametrized
as ∇d−2iRi for i = 2, . . . , d

2 – all these terms have
the energy dimensionality equal to the dimensionality
of spacetime d. For the last term of the type Rd/2

one needs to look at the quantum dressed n = d
2 -

point function at the one-loop order. In conclusion,
in higher dimensions one should consider not only
two-point functions with one-loop diagrams with the
two topologies described above, but up to quantum
dressed d

2 -point functions. And even for one-loop per-
turbative level these additional diagrams may have
more complicated topology meaning more vertices and
more propagators and this means that also powers
of the ratio x or x−1 respectively will be higher and
higher. They are expected to be up to the upper
bound given by the maximal power exponent equal to
d
2 – this can be derived from the expression of quan-
tum dressed d

2 -point function, which is built exactly
with d

2 propagators joining precisely d
2 3-leg the same

perturbative vertices. Then the topology of such a
diagram is this one of the main one-loop ring and d

2
external legs attached to it, with each one separately
and each one emanating from one single 3-leg vertex.
Again the situation at the one-loop and in d = 4 is
quite special and simple since the ratio x appears
here only up to the maximal power exponent given
by d

2 = 2.
As a side result, one also sees that the situation

in four-derivative model with the condition θC = 0
is somehow “doubly” bad. First, the Hessian is not
well-defined to start with and this takes away our trust
in this type of computation. Moreover, if we would
attempt to take the limit θC → 0 (or equivalently
x4−der → 0) in the final result like in (49), then we
get a second problem since such limit gives infinite re-
sults. This means that we somehow doubly confirmed
the problem with the perturbative and multiplicative
renormalizability of such a model. It is not that the
two instances of the problem support each other – they
appear somehow independently and are not related,
nor they cancel out. Above, we have seen that in
the six-derivative (or general N > 0) case, they could
occur completely independently for two completely
different types of non-renormalizable theories (with
the conditions of ωR = 0 or ωC = 0 respectively).
Here, we see that since conformal gravity at one-loop
must be without any problem of this type (no prob-
lem with the Hessian and no problem with getting
infinite results of the limits x4−der → ∞), then the
occurrence of these two problems at the same time
must happen in badly non-renormalizable model with
θC = 0 condition. In other words, since conformal

gravity is a safe model, then the model with θC = 0
must suffer twice since all these two problems must
inevitably appear in one model or the other, if some
extreme special cases like θR = 0 or θC = 0 are being
considered.

Again, we remark that in generic quadratic gravity
model we see up to quadratic dependence on the
inverse ratio x−1

4−der, but a precise location where this
dependence shows up is still not amenable for an easy
explanation. We do not know why this happens in
the R2 sector only, while the C2 and GB sectors are
free from any x4−der-dependence. But at least the
dependence on the inverse ratio x−1

4−der, rather than
on its original form x4−der = θC

θR
, in the exceptional

case of N = 0 can be explained by the miraculous one-
loop perturbative renormalizability of the conformal
gravity model in d = 4.

4.3. Case of conformal gravity
Here we continue the discussion of related issues, but
now in the framework of conformal gravity, so within
the model with the reduced HD action with N = 0
and formally with θR = 0. There are various mo-
tivations for conformal gravity in d = 4 spacetime
dimensions [13, 14]. As it is well known the reason
for the multiplicative renormalizability of such a re-
duced model, when we have from the beginning that
θR = 0 is the presence of conformality – conformal
symmetry both on the tree level and also on the level
of the first loop. Unfortunately, the story with con-
formal gravity in d = 4 is even more complicated
than what we argued above. First, already at the
one-loop level one discovers the presence of conformal
anomaly, which is typically thought as not so harmful
on the first loop level. However, it heralds the soon
breaking of conformal symmetry like for example via
the appearance of the R2 counterterm at the two-
loop level. Such term as a counterterm is not fully
invariant under local conformal transformations – it
is only invariant under so called restricted conformal
transformations that is such transformations whose
parameters satisfy the source-free background GR-
covariant d’Alembert equation (□Ω = 0) on a general
spacetime. Hence the R2 term is still scale-invariant
but it breaks full conformal symmetry of the quantum
conformal gravity. It seems the only way out of this
conformal anomaly problem is to include and couple
to conformal gravity specific matter sector to cancel
in effect the anomaly. This is, for example, done in
N = 4 conformal supergravity coupled to two copies
of N = 4 super-Yang-Mills theory, first proposed by
Fradkin and Tseytlin [49]. In such a coupled supergrav-
ity model, we have vanishing beta functions, implying
complete UV-finiteness and conformality present also
on the quantum level. This is conformal symmetry in
the local version (not a rigid one) with Weyl conformal
transformations in the gravitational setup and on the
quantum field theory level.
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If not in the framework of N = 4 Fradkin and
Tseytlin supergravity, the conformal anomaly of local
conformal symmetry signals breaking of conformal
symmetry, while scale-invariance (global part of it)
still may remain intact. In the long run, besides the
presence of non-conformal R2 counterterm, this break-
ing will put conformal Ward identities in question
and also the constraining power of the quantum con-
formality in question too. It will not constrain any
more the detailed form of gravitational correlation
functions of the quantum theory. The conformal sym-
metry will not be there and it will not protect the
spectrum from the emergence of some spurious ghost
states in it. This last thing will endanger the pertur-
bative unitarity of the theory (and we do not speak
here about the danger of unitarity breaking due to
the HD nature of conformal gravity). Without the
power of quantum conformal symmetry, we may have
unwanted states in the spectrum corresponding to
the states from generic Stelle gravity, and not from
the tree-level spectrum of conformal gravity, so we
can see mismatch in counting number of degrees of
freedom and also in their characters, namely whether
they are spin-1 or spin-0, ghosts or healthy particles,
etc.

Moreover, in pure conformal gravity described by
the action simply C2 without any supergravitational
extension, we notice the somehow nomenclature prob-
lem with the presence of quantum conformality. Even
barring the issue of conformal anomaly, the general
pure gravitational theory has non-vanishing beta func-
tions, so there is no UV-finiteness there. This implies
that there is an RG running and scale-dependence of
couplings and of various correlators on the renormal-
ization energy scale. Hence already at the one-loop
level one could say that scale-invariance is broken,
which implies violation of conformal symmetry too.
However, one can live with this semantic difference
provided that there are no disastrous consequences
of the conformal anomaly. One can adopt the point
of view that the theory at the one-loop level is still
good provided that the UV-divergent action is con-
formally invariant too, that is when one has only
conformally invariant UV counterterms. (Although in
the strict meaning having them implies non-vanishing
beta function, RG running, loss of UV-finiteness and
of scale-invariance.) In our case the conformally in-
variant counterterms are only of the type C2 and GB,
so if the R2 counterterm is not present at the one-loop
level, then we can speak about this preserved quantum
conformality in the second sense. It happens this is
exactly the situation we meet for quantum conformal
gravity in d = 4 at the one-loop level.

In order to see quantum conformality of one-loop
level conformal gravity in d = 4 described by the
action, one first naively may try to take the limit
x → +∞ from the expression for the R2 sector of UV
divergences from formula in (34). One would end up
with the results, just a constant A0, which is generally

not zero. The whole story is again more subtle, since
the limits in this case are again not continuous, al-
though as we advocated above they are luckily also not
divergent, when we want to send θR → 0. In the end,
we have only a finite discrepancy in numbers, which
can be easily explained. As emphasized above in this
case of the special reduced model we have the enhance-
ment of symmetries and this new emergent conformal
symmetry in the local version must be gauge-fixed
too. This means that the kinetic operator needs to be
modified and some new conformal gauge-fixing func-
tional must be added to it for the consistency of the
generalized Faddeev-Popov quantization prescription
of theories with local gauge symmetries. This means
that we will also have a new conformal gauge-fixing
parameter (the fourth one), which can be suitably ad-
justed to provide again the minimality of the Hessian
operator. Although, of course, the whole details of
the covariant quantization procedure for conformal
gravity are more delicate and more subtle, here we
can just take a shortcut and pinpoint the main points
of attention. When computing UV divergences using
generally covariant methods like BV trace technology
and functional traces of logarithms of operators, one
also necessarily needs to add here the contribution
of the third conformal ghosts, which are scalars from
the point of view of Lorentz symmetry but they come
with anti-commuting statistics. They are needed here
because the conformal gravity theory is a natural HD
theory and then third ghosts are necessary for covari-
ant treatment of any gauge symmetry in the local
form. It is true that for conformal local symmetry we
do not need FP ghost fields (because of the reasons
elucidated above), but we need a new third conformal
ghost, which is moreover independent from the third
ghost of diffeomorphism symmetry. Each symmetry
with local realization comes with its own set of third
ghosts, when the theory is with higher derivatives.
It is also well known that classically conformal fields
(like massless gauge fields of electromagnetism and
also of Yang-Mills theory) give contribution to diver-
gences which is conformally invariant counterterm,
so only of the type C2 or GB terms. This can be
understood easily as a kind of conformal version of
the DeWitt-Utiyama argument used before. Hence, if
the scalars of the anti-commuting type that we have
to subtract were conformally coupled, then they will
not contribute anything to the R2 type of the coun-
terterm. But we see from the formula in (34) that
the A0 coefficient there is non-zero, so only this one
survives after the limit x → ∞ is taken. To cancel
the R2 counterterm is crucial for the hypothesized
conformal invariance of the conformal gravity also on
the first loop quantum level. And this must be done
by explicitly non-conformal fields with non-conformal
contributions to divergences. They cannot be massless
gauge fields, but they can be minimally, so not confor-
mally coupled scalar fields. Here for the consistency of
the whole formalism of the FP covariant quantization
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of conformal gravity, this role is played by the one
real conformal third ghost with the kinetic operator
□2.

The contribution of the third conformal ghosts is
what we actually need to complete the whole pro-
cess of the computation of the UV divergences in the
conformal gravity model. We need them for the over-
all consistency since in this covariant framework we
cannot a posteriori check the presence of all gauge
invariances. Here we assume that on the first quan-
tum loop level, the conformal gravity model enjoys
fully diffeomorphism as well as conformal symmetry.
The terms given in the covariant BV framework of
computation all satisfy these requirements, so only we
must be careful to take all these contributions into ac-
count. The contribution of the third conformal ghosts
is like that of two real scalars coupled minimally (but
not conformally to one’s surprise) to the background
gravitational metric, but of the ghost type. Indeed
this means that we have to subtract the contribution
of two scalars, which is of course, UV-divergent but
after extracting the overall divergence there is only
a finite number. This is the number that when sub-
tracted now matches with number obtained after the
naive limit x → ∞ of the generic results from (49).
We explain that we need to subtract two real scalars
each one coming with the standard two-derivative
GR-covariant box operator as the kinetic operator
since in HD conformal gravity the operator between
third conformal ghosts is of the □2 type as for the
four-derivative theory. The limit to conformal gravity
is discontinuous, but only in this sense that one has
to take out also contribution of real scalar fields min-
imally coupled to gravitation. The first part of the
limiting procedure, namely x → ∞ is only a partial
step and to complete the whole limiting procedure
one must also deal properly with conformal symmetry.
This applies not only to the coefficients in front of the
R2 term, where we see the mysterious but explainable
x-dependence, but also to other coefficients in front
of terms like C2 and GB terms. Of course, for the
last two terms the limits x → ∞ do not change any-
thing, but the contribution of third conformal ghosts
makes impact and change the numerical results, which
are luckily still finite in conformal gravity. The co-
efficients in front of the R2 and GB counterterms
are also finite in generic four-derivative gravity (cf.
with (34)), however by these types of arguments with
conformal gravity we cannot at present understand
why the x-dependence happens only in front of the R2

counterterm. Of course, in conformal gravity model,
there is not any x-dependence at all.

At the end, when one accounts for all these nu-
merical contributions, one indeed finds that at the
one-loop level in conformal gravity, the coefficient of
the R2 term is vanishing, so the quantum conformal-
ity is present in the second sense. And we have only
conformally invariant counterterms in pure confor-
mal gravity without any conformal matter, but there

is still interesting RG flow of couplings there. This
also signifies that there is conformally invariant but
non-trivial divergent part of the effective action with
finite numerical constant coefficients, when the overall
divergence is extracted. These finite coefficients arise
in the two-step process. First as the limit x → ∞ of
a generic HD gravity and then by subtraction of UV-
divergent contributions of two real scalars minimally
coupled to gravitational field. Since these last contri-
butions are known to be finite numbers multiplying
the overall UV divergence, then this implies that the
limit x → ∞ of the generic expression in (49) must
also give finite numbers. This explains why in pertur-
batively one-loop renormalizable model of conformal
gravity in d = 4 there are standard UV divergences,
although this is a reduced model with θR = 0 and
N = 0 case. So the x-dependence in (34) must be
as emphasized above that is with inverse powers of
the fundamental ratio x of the theory and in accord
with what was schematically displayed in formula (49).
Hopefully now the dissimilarities between the cases
with N = 0 and N > 0 are more clear.

In short, we think that the only sensible reason, why
we see completely different behaviour when going from
N = 0 to N = 1 class of theories is that the theory
with ωR = 0 and N = 1 ceases to be conformally
invariant in d = 4. In a different vein, the degeneracy
of the kinetic operator Ĥ in the ωC = 0 cases, for
both N = 0 and N = 1, remains always the same.

This proves again and again that the case of con-
formal gravity is very special among all HD theories,
in d = 4 among all theories quadratic in gravitational
curvatures. One can also study the phenomenological
applications of the Weyl conformal gravity models to
the evaporation process of black holes [50, 51] and also
use the technology of RG flows (and also functional
RG flows) in the quantum model of conformal grav-
ity to derive some interesting consequences for the
cosmology (like for example for the presence of dark
components of the universe in [52–54]). Finally, the
conformal symmetry realized fully on the classical level
(and as we have seen also to the first loop level and
perhaps also beyond) is instrumental in solving the
issue with spacetime singularities [34, 55, 56], which
are otherwise ubiquitous problems in any other model
of generally covariant gravitational physics (both on
the classical and quantum level). To resolve all singu-
larities one must be sure that the conformality (Weyl
symmetry) is present also on the full quantum level
(and it is not anomalous there), so the resolution of
singularities from the classical level (by some compen-
sating conformal transformations) is not immediately
destroyed by some dangerous non-conformal quantum
fluctuations and corrections.

4.4. More on limiting cases
Here again we analyze closer the situation with various
limits, when some coefficients in the gravitational
action (45) disappear.
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In a generic six-derivative theory, the trace of the
logarithm of the FP ghosts kinetic operator M̂ and
of the standard minimal Ĉ matrix are regular in the
limit ωR → 0, but not in the limit ωC → 0. For
the Ĉ matrix this is understandable, because the γ
parameter contains factor ω−1

C in the minimal gauge.
However, for the FP ghosts kinetic operator M̂ , this
dependence was unexpected, because in the explicit
definition of the M̂ operator there was never any
singularity in ωC . Moreover, this singularity is even
quadratic in ωC coefficient.

We also emphasize that in the general six-derivative
theory the trace of the logarithm of the Hessian op-
erator Ĥ is irregular both in the limits ωR → 0 and
ωC → 0 separately. It seems that in the total sum of
contributions to the beta functions of the theory the
singularity in ωC cancels completely between Tr ln Ĥ,
Tr ln Ĉ, and Tr ln M̂ , while the poles in ωR remain
and this is what is seen as a dependence of the final
results on the non-negative powers of the fundamental
ratio x. For the definition of the Ĥ operator, if the
limit ωR → 0 is taken, nothing bad is seen. This
may be a partial surprise. Of course, when the limit
ωC → 0 is taken, then this operator does vanish on
flat spacetime, so then its degeneracy is clearly visible.

The situation with limits (θR → 0 or θC → 0) in
four-derivative theory we see as follows. The func-
tional trace Tr ln Ĉ is regular in both limits. It ac-
tually does not depend on any gauge-fixing param-
eters here, despite that in its formal definition we
used the γ parameter, which shows the 1

θC
singularity.

The situation with the FP operator M̂ is the same
as previously, because the operator is identical as in
the six-derivative theory case. The operator Ĥ shows
the problem with its definition only when the limit
θC → 0 is considered. The same is true for its trace
of the functional logarithm, which shows singularity
in θC coupling coefficient up to the quadratic order.
In this case and in the total sum of all contributions,
we see only 1

θC
singularity to the quadratic order.

However, here the limit θR → 0 is not continuous
either, because the theory reaches a critical point in
the theory space with enhanced symmetry for θR = 0
(conformal enhancement of local symmetries) as it was
explained in subsection 4.3.

Let us also comment on what special happens in the
computation of UV divergences for quadratic theory
from the perspective of problems that we have initially
encountered in six-derivative theory for the same com-
putation. First, we established, in the middle steps
of our computation for the results published in [26],
that in the traces Tr ln Ĥ and Tr ln Ĉ in Stelle grav-
ity there are no any dangerous 1

y = 1
2ωC −3ωR

poles
(cf. [42]). The cancellations happen separately within
each trace. Second thing is that we found that the
trace Tr ln Ĉ surprisingly completely does not depend
on the gauge-fixing parameter γ, which was needed
and used in the initial definition of the Ĉ operator
in (15). Finally, one can notice that the addition of

the Gauss-Bonnet term in d = 4 spacetime dimension,
does not change anything for R2, R2

µν , and R2
µνρσ di-

vergences (as it was expected), because its variation
is a topological term in d = 4.

In this last part, we use the schematic notation for
various gravitational theories, when we do not write,
for simplicity, the coupling coefficients in front of var-
ious terms since they are not the most important for
the considerations here. In the case of six-derivative
theories, it is impossible to obtain the results for the
cases with ωC = 0 or ωR = 0 by any limiting proce-
dures of the corresponding results obtained for the
general six-derivative theory with ωR ̸= 0 and ωC ̸= 0.
These reduced theories have different bilinear parts,
with degenerate forms of the kinetic operator and our
calculation methods break down here. Similarly, one
can calculate the beta functions in a theory with R2

only and this was done indirectly many times. One
can also calculate UV divergences in C□C + R2 the-
ory or in an analogous R□R + C2 theory, but this is
actually not easy to do. But then we cannot easily ex-
tract these results from our general calculation done in
C□C +R□R six-derivative theory. The simple reason
is that all these theories have different amount and
characteristics of degrees of freedom and the transition
from one to another at quantum level is complicated
(and to some extent unknown).

Moreover, we remark, that the results for beta func-
tions in models C□C + R2 (or C□C + R2 + C2) or
in R□R + C2 (or R□R + C2 + R2) could be obtained
by though different computations than what we have
done here. We summarize that the six-derivative grav-
itational theory to be renormalizable must contain
both terms of the type C□C and R□R. Then the ki-
netic operator (Hessian) between gravitational fluctu-
ations and the graviton’s propagator are well-defined.
In all other models, there is not a balance between
the number of derivatives in the vertices of the theory
and in all gauge-invariant pieces of the propagator,
so the theory behaves badly regarding perturbative
UV divergences at higher loops. This does not mean
that the computation of UV divergences at one-loop
level is forbidden, just only that usually these are not
all divergences in the theory, they may not be the
UV-leading ones anymore or the theory does not have
decent control over all of them.

For the strictly non-renormalizable theory with
the leading in the UV term C□C we can have addi-
tions of various subleading terms which do not change
the fact of non-renormalizability. We can add terms
(separately or in conjunction) of the following types:
ωΛ (cosmological constant term), R (E-H term), R2

(Starobinsky’s term), C2 (Weyl square term). The
UV-leading part of the Hessian still is defined as it con-
tains six-derivative differential operator understood
on flat spacetime and between tensorial fluctuations,
so derived from the terms quadratic in curvatures.
The Hessian is non-degenerate. (It has to be non-
degenerate here, because the GR-covariant box oper-
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ator is here only a spectator, and the Hessian must
be “almost” non-degenerate for the case of conformal
gravity with the action C2.) The flat spacetime prop-
agator can be defined only if we make addition of
ωΛ, or R or R2 terms – this is because of the prob-
lematic part of it proportional to the projector P (0)

which must for the consistency of the inverting pro-
cedure for the whole propagator be non-zero. This
scalar part (spin-0 part) is sourced from any scalar
term or from the cosmological constant term. If only
the C2 term is added, then the propagator still is
ill-defined. Still these additions do not change the
fact that the theory is non-renormalizable, if there is
not an accompanying six-derivative term of the form
R□R. As for the final results for UV divergences in
these extended models, naively one would think that
there are no additional UV divergences proportional
to terms with four derivatives of the metric (namely to
terms R2, C2 and GB), because of the limit ωR → 0
and the dependence on the x ratio in (33) in the linear
way. We would naively think that divergences with
R2 and GB terms are the same as in (33). The only
problematic one could be this proportional to the C2

term since the limit gives already divergent results
(so “doubly” divergent) – this would mean that the
coefficient of the C2 divergence is further divergent
and renormalization of just C2 does not absorb ev-
erything at the one-loop level. Since the model is
non-renormalizable we cannot trust this computation
and these limits at the end, especially if they give
divergent results. But this probably means that we
cannot sensibly define the C2 counterterm needed for
the UV renormalization in these theories. In a sense
an attempt of adding ωΛ or R, or R2 terms to reg-
ularize the theory C□C + C2, or even the simplest
one, just C□C, is unsuccessful so we perhaps still
cannot trust there in the final results just given by
two B0 coefficients of UV divergences proportional to
terms R2 and GB, while the C2 divergences are never
well-defined in this class of models.

Instead, in the case of the reduced model with
R□R UV-leading action, one may keep some hope
that the results for the C2 counterterms will be finite
at the end, but maybe still discontinuous, despite the
non-renormalizability of the model with R□R action
(plus possible lower derivative additions to regularize
it as it was mentioned above). Maybe in this re-
duced models the results of the projection procedure
of the UV-divergent functional of the effective action
of the theory onto the sector with only C2 terms will
result here in giving sense to pure C2 divergences in
this limiting model. (Here we may try to resort to
some projection procedure for the functional with UV
divergences since in these non-renormalizable models,
one may expect to find more divergences than just of
the form of C2 and R2 as presented initially in (1).
There could exist new UV divergences, which contain
even more than four derivatives on the background
metric tensor, even in d = 4 case.) But the final finite

value may be discontinuous and may not be obtain-
able by the naive limit x → 0 of the expression for the
divergent term in the C2 sector of UV divergences, so
it may not be just B0 there. This remark about pos-
sible discontinuities may apply also to coefficients in
front of divergent terms of the type R2 and GB. They
may still end up with some finite definite values for
this model, but probably they are not the same as the
coefficients B0 of these terms from (51), so we proba-
bly will be able to see here another discontinuities in
taking the naive limit x → 0.

These above results about discontinuities and
negative consequences due to the overall non-
renormalizability of the two considered above reduced
models, are also enforced by the analysis of power
counting of UV divergences. One can try to perform
the “worst case scenario” analysis of one-loop inte-
grals and the results show complete lack of control
over perturbative UV divergences in such reduced
models. This is even worse that in the case of off-
shell E-H gravity considered in d = 4 dimensions,
which is known to be one-loop off-shell perturbatively
non-renormalizable theory. In the latter case the su-
perficial divergence of the divergence ∆ is bounded at
the one-loop level (L = 1) in formula (4) by the value
4. In general, at the arbitrary loop order we have the
formula for power counting reads then

∆ + d∂ = 4 + 2(L − 1), (56)

which if we concentrate on logarithmic UV divergences
only (with ∆ = 0), we get that at the one-loop level
for all Green functions we need counterterms with
up to d∂ = 4 partial derivatives on the metric tensor.
At the two-loop level we instead need to absorb the
divergence term with d∂ = 6 partial derivatives as this
was famously derived by Goroff and Sagnotti [17, 18].
The counterterm that they have found was of the form
of the C3 GR-covariant term and its perturbative
coefficient at the two-loop order does not vanish, and
this implies that the whole UV-divergent term does
not vanish even in the on-shell situation. But still we
know which counterterms to expect at the given loop
order and the absorption of UV divergences works for
all divergent Green functions of the QG model.

The situation in the reduced models of the type
C□C or R□R in the leading UV terms is much worse
even at the one-loop level from naive power counting
there. One sees that different GR-covariant countert-
erms are needed to absorb divergences in different
divergent Green functions of the quantum model at
the one-loop level, so the counting does not stop at the
two-point function level. We think that despite these
tremendous difficulties, one still can compute the di-
vergent parts of the effective action and the actual
computations are very tedious and still possible. This
is provided that one can invert the propagator, so one
has some non-vanishing parts in both gauge-invariant
parts of it with the spin-0 and spin-2 projectors. So,
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it is at present practically impossible to do compu-
tation in the pure models C□C or R□R only. We
know that they give contributions in momentum space
proportional to k6 in the spin-2 and spin-0 parts of
the propagator respectively, while other parts are not
touched. In order to regularize the theory and to
give sense to the perturbative propagator around flat
spacetime, one has to add the regulator terms as this
was mentioned above. Let us assume that they give
contributions to the other sector of the spin projectors
in the graviton’s propagator of the form k−m, where
m is some integer and m < 6, they may likely also
give additional subleading contributions to the main
respective part of the propagator which was there with
six derivatives in the UV regime correspondingly to
the spin-2 sector in C□C theory and to the spin-0 sec-
tor in R□R model. The values of m are respectively:
m = 0 for the cosmological constant addition (it still
regularizes the propagator but very, very weakly),
m = 2 when E-H term is added (it contributes both
to the spin-0 and spin-2 parts), m = 4 when either R2

or C2 terms are added (they contribute exclusively in
their respective sectors).

Since now after the regularization of the graviton’s
propagator, its behaviour is still very unbalanced in
the UV regime between different components, then
one sees the following results of the analysis of UV
divergences at the one-loop order. First, the general
gravitational vertex is still with six derivatives, while
the propagator is k−6 in the best (most suppressed) be-
haviour and k−m is the worst behaviour in the other
components. For the most dangerous situation we
have to assume that the overall behaviour of the prop-
agator is in the worst case, so with the UV scaling of
the form k−m. Then the relation between the number
of derivatives in a general gravitational vertex and in
the propagator is broken and this is a reason for very
bad behaviour with UV divergences here. Such rela-
tion is typically present even in non-renormalizable
models, like in E-H gravity. The lack of this relation
means that now the result for d∂ of any Feynman
graph G depends on the number of external graviton
lines ng emanating from the one-loop diagram. Pre-
viously in the analysis of power counting there was
never any dependence on this ng parameter. This is
a source for problems even bigger when one increases
ng. For definiteness we can assume that ng > 1 since
here we will not be interested in vacuum or tadpole
diagrams and quantum corrections to them. Now,
for a general diagram G with ng external graviton
lines, the worst situation from the point of view of
UV divergences is for the following topology of the
diagram, namely there is one loop of gravitons (so
called “ring of gravitons”) in the middle with ng 3-leg
vertices joined by ng propagators. In the case when
we concentrate on logarithmic divergences D = 0, we
get the following results for the quantity d∂ which
tells us how many derivatives we must have in the

corresponding counterterm to absorb the divergence,

d∂ = 4 + ng(6 − m) (57)

for the graph contributing one-loop quantum correc-
tions to the ng-point Green function. One sees that
this d∂ grows without a bound even at the one-loop
level, when ng grows, so in principle to renormalize the
theory at the one-loop level one would need already
infinitely many GR-covariant terms, if one does not
bound the number of external legs of Green functions
that must be considered here. A few words about
explanation of numbers appearing in the formula (57).
The 4 there is the number of spacetime dimensions
(integration over all momenta components at the one-
loop level), while the (6 − m) factor comes from the
difference between the highest number of derivatives
in the vertex, i.e. 6 compensated by the worst be-
haviour in some propagator components given in the
UV by k−m only.

Moreover, there are precisely ng segments of the
structure propagator joined with 3-leg vertex to create
a big loop. This behaviour signals complete lack of
control over perturbative one-loop divergences even
at the one-loop level. Moreover, they have to be
absorbed in the schematic terms of the type

∇4+4ng−ngm+2iRng−i, (58)

for the index i running over integer values in the range
i = 0, 1, 2, . . . ng − 2, where we only mentioned the
total number of covariant derivatives not specifying
how they act on these general gravitational curvatures.
This is because this is an expression for the quantum
dressed one-loop Green function with ng graviton legs
on the flat spacetime, so terms with more curvatures
than ng will not contribute to absorb these divergence
of flat Green ng-point function. We only mentioned
here the really the worst situation, where the diver-
gence may be finally absorbable not only by the high-
est curvature terms of the type ∇4+4ng−ngmRng but
also for terms with smaller number of curvatures (up
to R2 terms and in the precise form R□ 1

2 ng(6−m)R).
We neglect writing counterterms here which are total
derivatives and which are of the cosmological constant
type. These are then the needed counterterms off-shell
at the one-loop level in such general reduced model.

To make it more concrete, we will analyze the cases
of m = 0, 2 and 4 with special attention here in these
badly non-renormalizable models for some small num-
bers of legs of quantum dressed Green functions. We
have that at m = 0 to absorb UV divergences from
the 2-point function we need generic counterterms of
the form: R□jR with the exponent j running over
values j = 0, 1, 2, 3, 4, 5, 6, while to renormalize a three-
point function one needs previous terms and possibly
new terms of the type ∇jR3 with j = 0, . . . , 16 and for
four-point functions new terms are of the type ∇jR4

with j = 0, . . . , 20, etc. for higher Green functions (for
ng-leg correlators one needs j up to jmax = 4ng + 4).
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When we regularize by adding the E-H term with
m = 2 the situation is slightly better, but then to
absorb UV divergences from the 2-point function we
need generic counterterms of the form: R□jR with
the exponent j running over values j = 0, 1, 2, 3, 4,
while to renormalize a three-point function one needs
previous terms and possibly new terms of the type
∇jR3 with j = 0, . . . , 10 and for four-point functions
new terms are of the type ∇jR4 with j = 0, . . . , 12,
etc. for higher Green functions (for ng-leg correlators
one needs j up to jmax = 2ng +4). Finally, we can add
terms of the type R2 and C2 for the regularization pur-
poses. In such final case to be considered here one has
that to absorb UV divergences from the 2-point func-
tion we need generic counterterms of the form: R□jR
with the exponent j running over values j = 0, 1, 2,
while to renormalize a three-point function one needs
previous terms and possibly new terms of the type
∇jR3 with j = 0, . . . , 4 and for four-point functions
new terms are of the type ∇jR4 with j = 0, . . . , 4,
etc. for higher Green functions (for ng-leg correlators
one needs j up to jmax = 4 here independently on the
number of legs ng). Still in this last case one sees that
one needs infinitely many counterterms to renormalize
the theory at the one-loop level, although the index j
of added covariant derivative is bounded by the values
4, still one needs more terms with more powers of
gravitational curvatures R.

This shows how badly non-renormalizable are these
models already at the one-loop level and that any
control over perturbative UV divergence is likely lost,
when the number of external legs is not bounded
here from above. These reduced models are examples
of theories when the dimensionality and the num-
ber of derivatives one can extract from the vertices
and propagators of the theory differ very much. Pre-
viously in quantum gravity models these two num-
bers were identical which leads to good properties of
control over perturbative divergences (renormalizabil-
ity, super-renormalizability and even UV-finiteness).
With these reduced models we are on the other bad
extreme of vast possibilities of QG models. But see-
ing them explicitly proves to us how precious is the
renormalizability property and why we strongly need
them in HD models of QG, in particular how we need
super-renormalizability in six-derivative QG models.

The arguments above convince us to think that
there is no hope to get convergent results for the front
coefficient coming with the C2 counterterm in the
UV-divergent part of the effective action in the consid-
ered here model with the only presence of the C□C
as the leading one in the UV. This may signify that
here there exists another UV-divergent term (perhaps
of the structure like C□nC), which contains more
derivatives, and this could be a reason why the coeffi-
cient in front of the C2 term is itself a divergent one.
The presence of such new needed counterterms with
more derivatives can be motivated by the analysis of
power counting of UV divergences in this reduced un-

balanced model, which is also presented below. Even
if the higher C□nC type of UV divergence is prop-
erly extracted and taken care of, then we can still be
unable to properly define and see as convergent the di-
vergence proportional to the four-derivative term C2.
Even such a projection of the UV-divergent functional
of the theory onto the sector with only C2 terms will
not help here in giving sense to pure C2 divergences
in this limiting model. However, this remark does not
need necessarily to apply to coefficients in front of
divergent terms of the type R2 and GB. They may
still end up with some finite definite values for this
model, but probably they are not the same as the
coefficients B0 of these terms from (51), so we could
be able to see here another discontinuity in taking the
limit x → +∞.

On the other hand, for the strictly non-
renormalizable theory with the leading in the UV
term R□R we can have additions of similar various
subleading terms which do not change the fact of non-
renormalizability. We can add terms (separately or in
conjunction) of the following types: ωΛ, R, R2, or C2.
The UV-leading part of the Hessian still is not well-
defined as it should contain six-derivative differential
operator understood on flat spacetime and between
tensorial fluctuations, while from the term R□R we
get only operator between traces of metric fluctua-
tions h = ηµνhµν (between spin-0 parts), so derived
from the terms quadratic in curvatures present in the
UV regime. Probably the degeneracy of the Hessian
operator can be easily lifted out, if we add one of the
ωΛ, or R or C2 terms. If only the R2 term is added,
then the Hessian still is degenerate. Similarly, the flat
spacetime propagator can be defined only if we make
addition of ωΛ, or R or C2 terms – this is because of
the problematic part of it proportional to the projector
P (2) which must for the consistency of the inverting
procedure for the whole propagator be non-zero. This
tensorial part (spin-2 part) is sourced exclusively from
any GR-invariant term built out with Weyl tensors
in adopted here Weyl basis of terms or from the E-H
term or from the cosmological constant term. If only
the R2 term is added, then the propagator still is
ill-defined. Still these additions do not change the
fact that the theory is formally non-renormalizable, if
there is not an accompanying six-derivative term of
the form C□C.

As for the final results for UV divergences in these
extended models, naively one would think that there
are no new UV divergences proportional to terms with
four derivatives of the metric (namely to terms R2,
C2 and GB), because of the limit ωC → 0 and the de-
pendence on the x ratio in (33) in the linear way. We
would naively think that divergences with R2 and GB
terms are the same as in (33). The only problematic
one could be this proportional to the C2 term since
the limit gives already constant result, namely the B0
coefficient. Since the model is non-renormalizable we
cannot trust this computation and these limits at the
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end, even if they give here convergent results. But
this probably means that we cannot sensibly define
the C2 counterterm needed for the renormalization
of these theories. When we include additions to the
action, which remove the degeneracy of the flat space-
time graviton’s propagator, then at least the pertur-
bative computation using Feynman diagrams can be
attempted in such a theory. Although of course, in
this case the different parts of the propagator have
different UV scalings, so the situation for one-loop
integrals is a bit unbalanced and there is not a stable
control over perturbative UV divergences, when for
example one goes to the higher loop orders. Proba-
bly new counterterms (with even higher number of
derivatives) will be at need here. Making additions
of some subleading terms from the point of view of
the UV regime, may help in defining the unbalanced
perturbative propagator, but still one expects (due
to energy dimension considerations) that these addi-
tions do not at all influence the quantitative form of
UV divergences with four-derivative terms, so these
ones which are leading in the UV. These additions
are needed here only quantitatively and on the formal
level to let the computation being done for example
using Feynman diagrams with some mathematically
existing expressions for the graviton’s propagator. In
a sense adding ωΛ or R, or C2 terms regularizes the
theory R□R+R2 or even the simplest one, just R□R,
so we can perhaps trust there in the final results just
given by all three B0 coefficients of UV divergences
proportional to terms R2, C2 and GB. This can be
motivated by the observation that here the limits
ωC → 0 or θC → 0 respectively do not enhance any
symmetry of the model in question, so they can be
naively and safely taken. But we agree that this case
requires a special detailed and careful computation to
prove this conjectural behaviours.

In the general case of badly non-renormalizable the-
ories, with both ωC = 0 or ωR = 0, one trusts more the
computation using Feynman diagrams and around flat
spacetime than of the fully GR-covariant BV method
of computation. For the former one only needs to be
able to define properly the propagator – all physical
sectors of it, and for this purpose one can regularize
the theory by adding the term ωκR, which is a dy-
namical one with the smallest number of derivatives
and for which flat spacetime is an on-shell vacuum
background. (In this way, we exclude adding the
cosmological constant term ωΛ, which would require
adding some source and the flat spacetime propagator
could not be considered anymore in vacuum there.)
Then in such regulated non-renormalizable theory one
can get results around flat spacetime and in Fourier
momentum space, and then at the end one can take
the limit ωκ → 0. The results for some UV divergences
in these non-renormalizable models must be viewed as
projected since higher-derivative (like 6-derivative and
even higher) infinities may be present as well. These
last results must coincide with the ones we obtained

in (33), when the proper limits of ωC → 0 or ωR → 0
are taken. We notice that adding the E-H term, which
is always a good regulator, changes the dynamics very
insignificantly for these higher-derivative models and
the results from Feynman diagram computations can
be always derived. Instead for the leading in the UV
regime part of the Hessian operator, which is a crucial
element for the BV method of computation, addition
of just ωκR does not help too much and the operator
is still degenerate since it is required that all its sec-
tors are with six-derivative differential operators: are
non-vanishing and non-degenerate there.

We propose the following procedure for the deriva-
tion of correct limiting cases analyzed here. First
the theory with ωC ̸= 0, ωR ̸= 0 and ωκ ̸= 0 is
analyzed using Feynman diagram approach. The re-
sults for UV divergences must be identical to the ones
found in (33) using the BV technique. They do not
show any singularity at this moment. In Feynman
diagram computation one can take the limit ωC →
or ωR → 0, while the propagator and perturbative
vertices are still well-defined. In these circumstances
we have that still ωκ ̸= 0. We admit that the the-
ory loses now its renormalizability properties, but we
just want to project the UV-divergent action onto the
terms with the structure of three GR-covariant terms
C2, R2 and GB. For this the method of Feynman
graph computation is still suitable since it only re-
quires the well-defined propagator, but it can work
even in badly non-renormalizable theories. This is
like taking the naive limits of ωC → or ωR → 0 in the
results from (33) respectively, regardless which way
they were obtained. One justifies the step of taking
these limits by recalling that we are still working in
the Feynman diagram approach, and not with the BV
technique. Finally, one sends ωκ → 0 hoping that this
does not produce any finite discontinuity in the results
for four-derivative UV divergences. This is justified by
dimensional analysis arguments provided also earlier
in this article and by the fact that except in the case
of conformal gravity theory in d = 4, there is no any
enhancement of local symmetries in the limit ωκ → 0.
Then one gets the sense for the limits considered in
these sections.

This analysis concludes the part with special lim-
iting cases of extended six-derivative theories, where
one of the coefficients ωR or ωC is to be set to zero.
Probably the same considerations of some limits can
be repeated very similarly (with the exception of the
conformal gravity case) for the Stelle quadratic gravity
models, but we will skip this analysis here since it can
be found in the literature.

5. Stability of HD theories
Above we have seen that HD theories of gravitation
are inevitable due to quantum considerations. They
also come with a lot of benefits that we have discussed
at length before like super-renormalizability and the
possibility for UV-finiteness. However, it is also well
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known that they have their own drawbacks and prob-
lems. One of the most crucial one is the issue of
unitarity of the scattering (S-matrix) in perturbative
framework. This is of course in the situation when we
can discuss the scattering problems, so when we can
define asymptotic states in interacting gravitational
background, so when the gravitational spacetime is
asymptotically flat. In more generality, the related
issue is of quantum stability of the theory.

In general, in literature about general HD theories
there exist various proposals for solutions of these
perennial problems. We can mention here a few of
them: PT -symmetric quantum theory, Anselmi-Piva
fakeon prescription, non-local HD theories, benign
ghosts as proposed by Smilga, etc. Below we will
try to describe some of their methods and show that
the problems with unitarity or with the stability of
the quantum theory can be successfully solved. We
also provide arguments thanks to Mannheim [57, 58]
that the gravitational coupled theory must be without
problems of this type, if the original matter theory
was completely consistent.

We first express the view that the stability of the
quantum theory is fundamental, while the classical
theory may emerge from it only in some properly de-
fined limits. Hence we should care more about the
full even non-linear stability on the quantum level and
some instabilities on the classical level may be just
artifacts of using classical theory which cannot be de-
fined by itself without any reference to the original
fundamental quantum theory. An attempt to under-
stand the stability entirely in classical terms may be
doomed to clearly fail since forgetting about the quan-
tum origin may be here detrimental for the limiting
process. If the quantum theory is stable and unitarity
is preserved, then this is the only thing we should
require since the world is in its nature quantum and
physically we know that it is true that ℏ = 1 in proper
units, rather than ℏ → 0, so the classical limit may
be only some kind of illusion. If there are problems
with classical stability analysis like this done origi-
nally by Ostrogradsky, then this may only mean that
the classical theory obtained this way neglects some
important features that were relevant on the quantum
level for the full quantum stability of the system.

First, in Anselmi-Piva prescription one solves com-
pletely the unitarity issue for HD theories by invoking
fakeon prescription to take properly into account the
contribution of particles which in the spectrum are
related to higher derivatives theories and which typ-
ically are considered as dangerous for the unitarity
of the theory. The presence of a particle with nega-
tive residue called a ghost at the classical level makes
the theory not unitary in its original quantization
based on the standard Feynman prescription [7] of
encircling the poles for the loop integrals. A new quan-
tum prescription, as recently introduced by Anselmi
and Piva [59–61] was based on the earlier works by
Cutkosky, Landshoff, Olive, and Polkinghorne [62].

The former authors invented a procedure for the Lee-
Wick theories [63, 64], which allow them to tame the
effects typically associated to the presence of ghosts in
the Stelle’s theory. In this picture, the ghost problem
(also known as unitarity problem) is solved conse-
quently at any perturbative order in the loop expan-
sion [61] done for the loop integrals which need to be
computed in any QFT, if one requires higher order
accuracy.

At the classical level, the ghost particle (or what
Anselmi and Piva define as “fakeon”, because this par-
ticle understood as a quantum state can only appear
as a virtual particle and inside perturbative loops) is
removed from the perturbative spectrum of the the-
ory. This is done by solving the classical equations of
motion for the fakeon field by the mean of a very spe-
cific combination of advanced plus retarded Green’s
functions and by fixing to zero the homogeneous so-
lution of resulting field equations [65, 66]. This is
then equivalent to removing the complex ghosts in
the quantum theory from the spectrum of asymptotic
quantum states by hand. However, this choice and
this removal decision is fully preserved and protected
by quantum corrections, hence it does not invalidate
the unitarity of the S-matrix at higher loop orders.

Such prescription of how to treat virtual particles
arising due to HD nature of the theories is very general
and can be applied to both real and complex ghosts,
and also to normal particles, if one wishes to. (Every
particle can be made fake, so without observable ef-
fects on the unitarity of the theory.) In particular, this
prescription is crucial in order to make perturbatively
unitary the theory proposed by Modesto and Shapiro
in [67, 68] which comes under the name of “Lee-Wick
quantum gravity”. The latter class of theories is based
on the general gravitational higher-derivative actions
as proposed by Asorey, Lopez, and Shapiro [12]. In
this range of theories, we can safely state to have
a class of super-renormalizable or UV-finite and uni-
tary higher-derivative theories of QG. In order to
guarantee tree-level unitarity, the theory in [67, 68]
has been constructed in such a way that it shows
up only complex conjugate poles in the graviton’s
propagator, besides the standard spin-2 pole typically
associated with the normal massless graviton particle
with two polarizations. Afterwards, the new prescrip-
tion by Anselmi and Piva [61] guarantees the unitarity
of this theory at any perturbative order in the loop
expansion.

We also emphasize that the Stelle’s quadratic theory
in gravitational curvatures [7] with the Anselmi-Piva
prescription is the only strictly renormalizable theory
of gravity in d = 4 spacetime dimensions, while the
theories proposed in [67, 68] are from a large (in
principle infinite) class of super-renormalizable or UV-
finite models for quantum gravity.

Next, in the other approach pioneered by Bender
and Mannheim to higher-derivative theories and to
non-symmetric and non-Hermitian quantum mechan-
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ics [69, 70], one exploits the power of non- Hermi-
tian PT -symmetric quantum gravity. Here, the basic
idea is that the gravitational Hamiltonian in such
theories (if it can be well-defined), is not a Hermi-
tian operator on the properly defined Hilbert space
of quantum states, rather it is only PT -symmetric
Hamiltonian. Then some eigenstates of such a Hamil-
tonian may correspond to non-stationary solutions of
the original classical wave equations. They would in-
deed correspond in the standard classical treatment to
the Ostrogradsky instabilities. The famous example
are cosmological run-away solutions or asymptotically
non-flat gravitational potentials for the black hole so-
lutions. The problem of ghosts manifests itself already
on the classical level of equations of motion, where one
studies the linear perturbations and its evolution in
time. For unstable theories, the perturbations growth
is without a bound in time. But in some special solu-
tions, like for example present in models of conformal
gravity, these instabilities are clearly avoided and then
one can speak that ghosts are benign in opposition to
them being malign in destroying the unitarity of the
theory. Such benign ghosts [71, 72] are then innocent
for the issues of perturbative stability.

In the PT -symmetric approach to HD theories at
the beginning, one cannot determine the Hilbert space
by looking at the c-number propagators of quantum
fields. In this case, one has to from the start quan-
tize the theory and construct from the scratch the
Hilbert space, which is different than the original naive
construction based on the extension of the one used
normally for example for two-derivative QFT’s. With
this new Hilbert space and with the non-Hermitian
(but PT -symmetric) Hamiltonian the theory revealed
to be quantum-mechanically stable. This is dictated
by the construction of the new Hilbert space and the
structure of the Hamiltonian operator. In that case
the procedure of taking the classical limit, results
in the definition of the theory in one of the Stokes
wedges and in such a region the Hamiltonian is not
real-definite and the corresponding classical Hamil-
tonian is not a Hermitian operator. Therefore, the
whole discussion of Ostrogradsky analysis is correct as
far as the theory with real functions and real-valued
Hamiltonians is concerned, but it is not correct for
the theory which corresponds to the quantum the-
ory which was earlier proven to be stable quantum-
mechanically. The whole issue is transmitted and now
there is not any problem with unitarity or classical
stability of the theory, but one has to be very careful
in attempts to define the classical limiting theory.

We also repeat here arguments proposed by
Mannheim about stability of the resulting gravitation-
matter coupled theory [57, 58]. First we take some
matter two-derivative model (like for example stan-
dard model of particle physics, where we have various
scalars, fermions and spin-1 gauge bosons). This the-
ory as considered on flat Minkowski background is
well known to be unitary so it gives S-matrix of inter-

actions with these properties. The model can be said
that it is also stable on the quantum level. Now, we
want to couple it to gravity, or in other words put it on
gravitational spacetime with non-trivial background
in such a way that the mutual interactions between
gravitational sector and matter sector are consistent.
This, in particular, implies that the phenomena of
back-reaction of matter species on geometry are not
to be neglected. The crucial assumption here is that
this procedure of coupling to gravity is well behaved
and for example, it will not destroy the unitarity prop-
erties present in the matter sector. We know that
the theory in the matter sector is stable and also
its coupling to geometry should be stable on the full
quantum level. After all, this is just simple coupling
procedure (could be minimal coupling) to provide
mutual consistent interactions with the background
configurations of the gravitational field.

Next, on the quantum level described, for example,
by functional path integral, we can decide to com-
pletely integrate out matter species still staying on
the general gravitational background. As emphasized
in section 1, such procedure in d = 4 spacetime dimen-
sions generate effective quantum gravitational dynam-
ics of background fields with higher derivatives, pre-
cisely in this case there are terms of the type C2 and
R2 (the latter term is absent when the matter theory
is classically conformally invariant). In other words,
the resulting functional of the quantum partition func-
tion of the total coupled model is a functional of only
background gravitational fields. This last reduced or
“effective” functional is given by the functional integral
over quantum fluctuations of gravitational field of the
theory given classically by the action with these HD
above terms. Let us recall now what we have done,
namely we have simply integrated out all quantum
matter fields, which is an identity transformation for
the functional integral representation of the partition
function Z of the quantum coupled theory. Since
this transformation does not change anything, then
also the resulting theory of gravitational background
must necessarily possess the same features as the orig-
inal coupled theory we started with. Since the first
theory was unitary, then also the last one theory of
pure gravity but with higher-derivative terms must be
unitary too. We emphasized that both theories give
the same numerical values of the partition function Z
understood here as the functional of the background
spacetime metric. In the first theory the integration
variables under functional integrals are quantum mat-
ter fields, while in the second case we are dealing with
pure gravity so we need to integrate over quantum
fluctuations of the gravitational fields. In the last case
the model, which gives the integrand of the functional
integral is given by the classical action SHD, so it con-
tains necessarily higher derivatives of the gravitational
metric field.

There also exist possibilities that ghosts or classical
instabilities one sees on the classical level thanks to
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Ostrogradsky analysis disappear. This may happen if
for example, some very specific (or fine-tuned) initial
or boundary conditions are used for solving non-linear
higher-derivative classical equations of motion of the
theory. It is not excluded as proven by Smilga that
some instabilities may go away if one analyzes such
special situations.

Various cures have been proposed in the literature
for dealing with the ghosts-tachyon issue: Lee-Wick
prescription [63, 64], fakeons [61, 65, 66, 73], non-
perturbative numerical methods [71, 72, 74–78], ghost
instabilities [79–81], non- Hermitian PT -symmetric
quantum gravity based on PT -symmetric quantum
mechanics [69, 70], etc (see also [82–87]). One might
even entertain the idea that unitarity in quantum
gravity is not a fundamental concept. So far, there
is no a consensus in the community which solutions is
the correct one. The unfortunate prevalent viewpoint
is that none of the proposed solutions solves conclu-
sively and completely the problem. And it seems that
sadly the solutions proposed in the literature are not
compatible and are unrelated to each other.

Therefore all the arguments given above should con-
vince the reader that the HD (gravitational) theories
are stable on the full quantum level. In particular,
this means that for situations in which we can define
asymptotic states (like for asymptotically flat space-
times) the scattering matrix between fluctuations of
the gravitational field is unitary on the quantum level
and both perturbatively and non-perturbatively.

6. Conclusions
In this contribution, we have discussed the HD grav-
itational theories, in particular six-derivative gravi-
tational theories. First, we motivated them by em-
phasizing their various advantages as for the models
of consistent Quantum Gravities. We showed that
six-derivative theories are even better behaved on
the quantum level than just four-derivative theories,
although the latter ones are very useful regarding
scale- and conformal invariance of gravitational mod-
els. Moreover, the models with four-derivative ac-
tions serve as good starting examples of HD theo-
ries and they are reference points for consideration
of six- and higher order gravitational theories. We
first tried to explain the dependence of the beta func-
tions in six-derivative theories by drawing analogies
exactly to these prototype theories of Stelle gravity.
We also emphasize that only in six-derivative grav-
itational models we have the very nice features of
super-renormalizability and the narrow but still vi-
able option for complete UV-finiteness. This is why
we think super-renormalizable six-derivative theories
have better control over perturbative UV divergences
and give us a good model of QG, where this last issue
with perturbative divergences is finally fully under our
control and theoretical understanding.

In the main part of this paper, we analyzed the struc-
ture of perturbative one-loop beta functions in six-

derivative gravity for couplings in front of terms con-
taining precisely four-derivative in the UV-divergent
part of the effective actions. These terms can be con-
sidered as scale-invariant term since couplings in front
of them are all dimensionless in d = 4 spacetime di-
mensions. Our calculation for these divergences was
done originally in the Euclidean signature using the
so-called Barvinsky-Vilkovisky trace technology. How-
ever, the results are the same also in the Minkowskian
signature independently which prescription one uses
to rotate back to the physical relativistic Lorentz sig-
nature case, whether this is standard Wick rotation, or
the one using Anselmi-Piva prescription using fakeons.
This is because they are the leading divergences in the
UV regime, and hence they do not completely depend
how the rotation procedure is done from Euclidean to
Minkowskian and how for example the contributions
of arcs on the complex plane is taken into account
since the last ones give subleading contributions to
the UV-divergent integrals. Moreover, the calcula-
tions of beta functions that we presented in this paper
has very nice and important features of being renor-
malization scheme-independent since they are done
at the one-loop, but the expressions we get for them
are valid universally. These are exact beta functions
since they do not receive any perturbative correc-
tions at the higher loop orders since the six-derivative
gravitational theory is super-renormalizable in d = 4.
Another part of good properties of the beta functions
obtained here are the complete gauge independence
and also independence on the gauge-fixing parame-
ters one can use in the definition of the gauge-fixing
functional. These last two properties are very impor-
tant since in general gravitational theory we have the
access to perturbative computation only after intro-
ducing some spurious element to the formalism which
are related to gauge freedoms (in this case these are
diffeomorphism symmetries). We modify the original
theory (from the canonical formalism) by adding vari-
ous additional fields and various spurious nonphysical
(gauge) polarizations of mediating gauge bosons (in
our case of gravitons) in order also to preserve rela-
tivistic invariances. These are redundancies that have
to be eliminated when at the end one wants to com-
pute some physical observables. Therefore, it is very
reassuring that our final results are completely insen-
sitive to these gauge-driven modifications of original
theories.

Our beta functions being exact and with a lot of
nice other properties, constitute one significant part
of the accessible observables in the QG model with
six-derivative actions. Their computation is a nice
theoretical exercise, which of course from the sense of
algebraic and analytic methods used in mathematical
physics has its own sake of interest. However, as
we emphasized above these final results for the beta
functions may have also meaning as true physical
observables in the model of six-derivative QG theories.
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We described in greater detail the analysis of the
structure of beta functions in this model. First we
used arguments of energy dimensionality and the de-
pendence of couplings on the dimensionless funda-
mental ratio of the theory x. Next, we tried to draw
a comparison between the structure of 4-derivative
gravitational Stelle theory and six-derivative theory in
d = 4 dimensions. We showed the dependence on the
parameters x is quite opposite in two cases. The case
with four-derivative theory is exceptional because the
model without any R term in the action (and also
without the cosmological constant term) enjoys en-
hanced symmetry and then the quantum conformal
gravity is renormalizable at the one-loop order, so
then it is a special case of a sensible quantum physical
theory (up to conformal anomaly problems discussed
earlier). We also remark that in the cases of x → 0
and x → ∞ the generic six-derivative theories are
badly non-renormalizable. This was the source of the
problem with attempts to obtain sensible answers in
these two limits. Non-renormalizability problem must
show in some place in the middle or at the end of the
computation to warn us that at the end we cannot
trust in the final results for the beta functions in these
cases. In these two cases this problem showed indeed
in two different places and the logical consequences
of this were strongly constraining the possible form
of the rational x-dependence of these results. Thanks
to these considerations we were able finally to un-
derstand whether the positive or inverse powers of
the ratio x must appear in the final results for beta
functions in question. Of course, we admit that this
analysis is a posteriori since we first derived the results
for the divergences and only later tried to understand
the reasons behind these results. But eventually we
were able to find a satisfactory explanation.

And there are a few of additional spin-offs of the pre-
sented argumentation. First, we can make predictions
about the structure of beta functions in 8-derivative
and also of other higher-derivative gravitational theo-
ries with the number of derivatives in the action which
is bigger than 4 and 6 (analyzed in this paper). We
conjecture that the structure should be very similar to
what we have seen already in the generic case with six
derivatives, so only positive powers of the correspond-
ing fundamental ratio x of the theory, and probably
only in the sector with C2 type of UV divergences.
Another good side effect is that we provide first (to
our knowledge) theoretical explanation of the struc-
ture of beta functions as seen in four-derivative case
of Stelle theory in d = 4 spacetime dimensions. It
is not only that the theory with C2 action is excep-
tional in d = 4 dimensions; we also “explained” these
differences based on an extension of the theory to
include higher-derivative terms like with 6-derivative
and quantify to which level the theory with C2 action
is special and how this reflects on the structure of
its one-loop beta functions. We remark that in Stelle
gravity (or even in its subcase model with conformal

symmetry based on the C2 action), there are con-
tributions to beta functions originating from higher
perturbative loops since the super-renormalizability
argument based on power counting analysis does not
apply here. Our partial explanation of the structure
of the one-loop beta functions in Stelle theory in d = 4
uses a general philosophy that to “explain” some nu-
merical results in theoretical physics, one perhaps
has to generalize the original setup and in this new
extended framework looks for simplifying principles,
which by reduction to some special cases show explic-
itly how special are these cases not only qualitatively
but also quantitatively and what this reduction pro-
cedure implies on the numbers one gets as the results
of the reduction. For example, one typically extend
the original framework from d = 4 spacetime dimen-
sion fixed condition to more general situation with
arbitrary d and then draw the general conclusion as
a function of d based on some general simple prin-
ciples. Then finally, the case of d = 4 is recovered
as a particular value one gets when the function is
evaluated for d = 4. And this should explain its spe-
ciality. In our case, we extended the four-derivative
theory by adding terms with six derivatives and in
this way we were able to study a more generic situ-
ation. This was in order to understand and explain
the structure of divergences in the special reduced
case of conformal gravity in d = 4 and of still generic
four-dimensional Stelle theory. We think that this
is a good theoretical explanation which sheds some
light on the so far mysterious issue of the structure
of beta functions. One can also see this as another
advantage of why it is worth to study generalizations
of higher-derivative gravitational actions to include
terms with even more higher number of derivatives,
like 6-derivative, 8-derivative actions, etc.

Finally, here we can comment on the issue of exper-
imental bounds on the values of the ratio x. Since it
appears in six-derivative gravitational theory the con-
straints on its possible values are very weak. Slightly
stronger constraints apply now for the corresponding
value of the ratio in four-derivative Stelle gravitational
theory in d = 4 case. Since the main reason for higher-
derivative modifications of gravity comes because of
consistency of the coupled quantum theory, then one
would expect that the stringent bounds would come
from experimental measurement in the real domain
of true quantum gravity. Of course, right now this is
very, very far, if possible at all, future for experimental
gravitational physics. This is all due to smallness of
gravitational couplings characterized by GN propor-
tional inversely to the Planck mass MP ∼ 1019 GeV.
And in the quantum domain of elementary particle
physics this scale is bigger than any energy scale of in-
teractions between elementary quanta of matter. This
implies that also quantum gravitational interactions
are very weak in strength. Hence the only experimen-
tal/observational bounds we have on the coefficients in
front of higher-derivative terms come from the classi-
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cal/astrophysical domain of gravitational physics and
they are still very weak. To probe the values of the
coefficients in front of six-derivative terms, one would
have to really perform a gravitational experiment to
the increased level of accuracy between elementary
particles in the full quantum domain, which is now
completely unfeasible. Hence, we have to be satisfied
with already existing very weak bounds, but this lets
us to freely consider theoretical generic situation with
arbitrary values of the ratio x since maybe only (very
far) future experiments can force us theoreticians to
consider some more restricted subset or interval for
the values of the x ratio as consistent with observed
situation in the Nature. For the moment it is reason-
able to consider and explore theoretically all possible
range of values for the x ratio and also both possi-
ble signs. (Only the case with x = 0 is excluded as
a non-renormalizable theory that we have discussed
before.)

In the last section of this contribution, we com-
mented on the important issue of stability of higher-
derivative theories. We touched both the classical and
quantum levels, while the former should not be under-
stood as a standalone level on which we can initially
(before supposed quantization) define the classical the-
ory of the relativistic gravitational field. We followed
the philosophy that the quantum theory is more fun-
damental and it is a starting point to consider various
limits, if it is properly quantized (in a sense that the
quantum partition function is consistently defined,
regardless of how we get there to its form, no matter
which formal quantization procedure we have been fol-
lowing). One of such possible limit is the classical limit
where the field expectation values are large compared
to characteristic values as found in the microworld of
elementary particles. And also the occupation number
for bosonic states are large number (of the order of
Avogadro number for example). Then we could speak
about coherent states which could define well classical
limit of the theory. Such procedure has to be followed
in order to define HD classical gravitational theory.
We emphasized that quantum theory is the basis and
classical theory is the derived concept, not vice versa.
On the quantum level we shortly discussed various ap-
proaches present in the literature to solve the problems
with unwanted ghost-like particle states. They were
classified in two groups: theories with PT -symmetric
Hamiltonian and theories with Anselmi-Piva prescrip-
tion instead of the Feynman prescription to take into
account contributions of the poles of the ghost but
without spoiling the unitarity issue. On the quantum
level, we considered mainly the issue with unitarity
of the scattering matrix since this seems the most
problematic one. The violation of unitarity would
signal the problem with conservation of the probabil-
ity of quantum processes. Something that we cannot
allow to happen in quantum-mechanical framework
for the isolated quantum system (non-interacting with
the noisy decohering and dissipative or some thermal

environment). Of course, such an analysis was tailor-
made for the cases of gravitational backgrounds on
which we can define properly the scattering process.

In general, the scattering processes are not every-
thing we can talk about in quantum field theories even
for on-shell quantities. The analysis of some on-shell
dressed Green functions may also show some prob-
lems with quantum stability of the system. Therefore,
we briefly also described the results of the stability
analysis, both on the classical and quantum level and
to the various loop accuracy in QG models. This
analysis is in principle applicable to the case of any
gravitational background, more general than the one
coming with the requirement of asymptotic flatness.
We also mentioned that in some cases of classical field
theory the analysis of classical exact solutions shows
that the very special and tuned solutions are without
classical instabilities and they are well-defined for any
time starting with very special initial or boundary
conditions. For example, here we can mention the
case of so-called benign ghosts of higher-derivative
gravitational theories as proposed by Smilga some
time ago. This should prove to the reader that we
are dealing with the theories which besides a very
interesting structure of perturbative beta functions,
are also amenable to solve the stability and unitarity
issues in these theories, both on the quantum as well
as on the classical level. With some special care we
can exert control and HD gravitational theories are
stable quantum-mechanically and this is what matters
fundamentally.
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Abstract. In this work, we study the non-hermitian PT-symmetry Swanson Hamiltonian in the
framework of the Complex Scaling Method. We show that by applying this method we can work with
eigenfunctions that are square-integrable both in the PT and in the non-PT symmetry phase.
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1. Introduction
The Swanson Model has been introduced in [1] as
an example of a PT-symmetry hamiltonian [2–8].
Since then it has been extensively studied, allowing
for several interesting extensions [9–25]. Among re-
cent works, let us mention an extension of the Swan-
son model with complex parameters [23, 25], this
work introduces bicoherent-state path integration as
a method to quantify non-Hermitian systems. Though
the Swanson model is described by quadratic opera-
tors, the underlying physics is nevertheless very rich.
Depending on the region in the model parameter space,
the Swanson model is similar to the hamiltonian of
a parabolic barrier or the hamiltonian of a harmonic
oscillator [26]. From the mathematical point of view,
it is an example of a hamiltonian with eigenfunctions
that do not belong to L2(R) in some regions of the
space of parameters.

Among the methods that are employed to describe
the physics of resonances with complex energy, the
Complex Scaling Method (CSM) [27–32] is one of
the most powerful. It has been extensively used in
the description of many-body resonant states and
non-resonant continuum states observed in unstable
nuclei [32]. In this work, we propose the use of the
CSM to describe the dynamics of the Swanson model,
particularly in the region of non-PT-symmetry.

The work is organized as follows. In Section 2 we
describe the application of the CSM to the Swanson
Hamiltonian. We establish a similarity transforma-
tion between the transformed hamiltonian and its
adjoint operator. We discuss, according to the space
of parameters of the model, the possibility of hav-
ing square-integrable eigenfunctions. We present the
mean values of some observables. In Section 3, we
analyse with an example, the survival probability as
a function of time for an initial coherent state. Con-
clusions are drawn in Section 4.

2. Formalism
The hamiltonian of Swanson [1] is given by

H = ℏω
(
a†a+ 1

2

)
+ ℏα a2 + ℏβ a†2

, (1)

with ω, α, β ∈ R. The hamiltonian of Eq. (1) can
be written in terms of the coordinate operator, x̂,
and the momentum operator, p̂, by implementing the
following representation

a = 1√
2

(
x̂

b0
+ ib0

ℏ
p̂

)
,

a† = 1√
2

(
x̂

b0
− ib0

ℏ
p̂

)
, (2)

being b0 the characteristic length of the non-
interacting system. The hamiltonian in Eq. (1) reads

H(ω, α, β) = 1
2ℏ(ω + α+ β)

(
x̂

b0

)2

+1
2ℏ(ω − α− β)

(
b0 p̂

ℏ

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
. (3)

The adjoint hamiltonian of H(ω, α, β) is Hc =
H(ω, β, α).

As we showed in [26], some of the eigenfunctions
of Eq. (3) do not belong to the usual Hilbert space,
H = L2(R), so that we have to work in a Rigged
Hilbert Space [33, 34].

An alternative approach to solve the eigenvalue
problem of the hamiltonian of Eq. (1), is the use of
the CSM method [27–32] . The aim of the CSM is
to make a similarity transformation from the original
hamiltonian to a hamiltonian which has eigenfunctions
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that belong to L2(R). In the framework of the CSM,
we shall introduce the transformation operator V̂ (θ) =
e− θ

2ℏ (x̂p̂+p̂x̂) with a real scaling parameter θ:

V̂ (θ)x̂V̂ −1(θ) = e iθ x̂,

V̂ (θ)p̂V̂ −1(θ) = e−iθ p̂. (4)

The hamiltonian of Eq. (3) is transformed as H(θ) =
V̂ (θ)HV̂ −1(θ):

H(θ) = H(θ, ω, α, β)

= 1
2ℏ(ω + α+ β)

(
e iθ x̂

b0

)2

+1
2ℏ(ω − α− β)

(
b0 e

−iθ p̂

ℏ

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
. (5)

It is straightforward to observe that

H†(θ) = H(−θ, ω, β, α). (6)

Notice that H(θ) is not invariant under the usual
PT-symmetry given by x̂ → −x̂, and p̂ → p̂, and
i → −i.

We shall introduce the following similarity transfor-

mation induced by the operator Υ(θ) = e
− α−β

ω−α−β
e2iθx2

2b2
0 .

It reads

Υ(θ) H(θ)Υ(θ)−1 = h(θ), (7)

where h(θ) is given by

h(θ) = 1
2m

(
e−iθp̂

)2 + 1
2k

(
eiθx̂

)2
. (8)

We have defined [26] k = m Ω2 and

m = m(ω, α, β, b0) = ℏ
(ω − α− β)b2

0

Ω = Ω(ω, α, β) =
√
ω2 − 4αβ = |Ω|eiϕ. (9)

Though h(θ) is a non-hermitian operator, h†(θ) =
h(−θ) = V (−2θ)h(θ)V (−2θ)−1. Consequently

Υ(−θ)−1H†(θ)Υ(−θ) = h(θ)∗,

(Υ(−θ)V (−2θ))−1H†(θ)(Υ(−θ)V (−2θ)) = h(θ).
(10)

From Eqs. (7) and (10), it results H†(θ)S = SH(θ),
with S = Υ(−θ)V (−2θ)Υ(θ) [35–37].

The eigenfunctions and eigenvalues of h(θ), ϕ(θ)
and E(θ), are related to that of H and H† as follows.

Given h(θ)ϕ(θ, x) = E(θ)ϕ(θ, x):

H ϕ(θ, x) = Ẽ(θ) ϕ(θ, x),
H† ψ(θ, x) = E(θ) ψ(θ, x),

(11)

with

ϕ̃(θ, x) = Υ(θ)−1ϕ(θ, x), E(θ) = E(θ),
ψ(θ, x) = Υ(−θ)(ϕ(θ, x))∗, E(θ) = E(θ)∗.

(12)

Thus, the eigenfunctions of H(θ) with eigenvalue
Ẽν(θ) = Eν(θ) are given by

ϕ̃ν(θ, x) = e
α−β

ω−α−β
e2iθx2

2b2
0 Nνϕν(θ, x) (13)

with Nν a normalization constant.
It can be shown that the eigenfunctions of H†(θ)

are

ψν(θ, x) = e
− α−β

ω−α−β
e−2iθx2

2b2
0 (Nνϕν(θ, x))∗

, (14)

and the corresponding eigenvalue is given by Eν(θ) =
Ẽν(θ)∗. A similar structure for Eqs. (10)-(14) can be
found in [38, 39]. Moreover, the relation between the
eigenvalues, Eq. (12), is a typical feature for operators
which are self-adjoint in Krein spaces [39–41].

It should be mentioned that the Hamiltonian of
Eq. (5), for α = β = 0 and ω = 1/ cos(2θ), reduces
to the one introduced in [23–25]. Particularly, in [25]
the dynamics under the action of this hamiltonian is
described for values of θ ∈ (−π/4, π/4). For further
results, the reader is kindly referred to [23–25].

In what follows, we aim to determine the range of
values of θ for which ϕ(θ, x) belongs to the Hilbert
space L2(R).

2.1. Eigenfunctions and eigenvectors
For ω − (α+ β) ̸= 0, Eq. (8) can be also written as

−d2ϕ(y)
dy2 +

(
1
4y

2 − ϵ

)
ϕ(y) = 0, (15)

with

ϵ = E

ℏΩ = E

ℏ|Ω|e
iϕ (16)

and

y =
√

2 |σ|ei(θ+γ) x

b0
, (17)

where we have defined

σ =
(
mΩ
ℏ

)1/2
b0 = eiγ |σ|. (18)
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Figure 1. Effective potential of Eq. (19), u(θ,x)
|u(θ,x)| , for

a fixed x in the regions determined by the signs of
the parameters m(ω, α, β, b0) and Ω2(ω, α, β, b0). In
Panel (a), (sg(m), sg(Ω2)) = (+,+), Region I. For
Panel (b),(sg(m), sg(Ω2)) = (+,−), Region II. While,
(sg(m), sg(Ω2)) = (−,+) in Panel (c), Region III. In
Region IV (sg(m), sg(Ω2)) = (−,−), for Panel (d).
The real part of the effective potential, Re

(
u(θ,x)

|u(θ,x)|

)
,

is displayed in solid lines, while the imaginary part
of the effective potential, Im

(
u(θ,x)

|u(θ,x)|

)
, is drawn with

dashed lines.

Eq. (15) is the Schrödinger equation corresponding
to the effective potential

u(θ, x) = U(θ, x)
ℏΩ = e2i(θ+γ) 1

2 |σ|2x
2

b2
0
. (19)

Solutions corresponding to Eq. (15) represent dif-
ferent physical systems according to the signs of
m(ω, α, β, b0) and Ω2(ω, α, β, b0) [26]. In what follows,
we shall refer to Region I when (sg(m), sg(Ω2)) =
(+,+), Region II for the case (sg(m), sg(Ω2)) =
(+,−), Region III for (sg(m), sg(Ω2)) = (−,+), and
Region IV for (sg(m), sg(Ω2)) = (−,−), respectively.

In Figure 1 we present the behaviour of the effective
potential of Eq. (19), u(x)

|u(x)| , as a function of θ, for
x, |σ| and |Ω| fixed, in the different regions of the
parameter model-space. The real part of the effec-
tive potential, Re

(
u(x)

|u(x)|

)
, is displayed in solid lines,

while the imaginary part of the effective potential,
Im

(
u(x)

|u(x)|

)
, is drawn with dashed lines.

2.1.1. Discrete spectrum
For the discrete sector of the spectrum, eigenvalues
and the eigenfunctions are given by

En = ℏ Ω [n] = ℏ |Ω|eiϕ [n],

ϕ̃m(θ, x) = e
α−β

ω−α−β e2iθ x2
2b2

0 ϕm(θ, x), (20)

ψm(θ, x) = e
− α−β

ω−α−β e−2iθ x2
2b2

0 (ϕm(θ, x))∗, (21)

where ϕn(θ, x) can be written as

(a)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(b)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(c)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(d)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

Figure 2. Real part of the effective potential of
Eq. (19), u(θ,x)

|u(θ,x)| . The shadowed sectors correspond
to the values of θ for which the solutions of Eq. (15)
are square-integrable. In Panels (a), (b), c) and (d)
we present the results for Regions I, II, III and IV,
respectively.

ϕn(θ, x) = Nne
−e2i(θ+γ) x2

2b2
0

|σ|2

Hn

(
ei(θ+γ) x

b0
|σ|

)
.

Nn
2 = ei(θ+γ)

√
πn!2n

|σ|
b0
, (22)

being Hn(z) the Hermite Polynomial of order n, and
[n] = n+ 1/2.

Eigenfunctions ϕn(θ, x) are square-integrable for θ-
intervals where Re(u(θ, x)) takes positive values. In
Figure 2, we plot Re(u(θ, x)/|u(θ, x)|) for every region,
the gray regions correspond to the intervals for which
the eigenfunctions are square integrable.

In Table (1), we summarize the sign of the parame-
ter m and Ω2, which characterize the different regions
of the model, and for each region we present the val-
ues of phases γ and ϕ, and the interval where the
eigenfunctions are square-integrable.

In Regions (I) and (III), we can define two well-
defined θ−domains: I1 = [−π,−3π/4)∪(−π/4, π/4)∪
(3π/4, π] and I2 = (−3π/4,−π/4) ∪ (π/4, 3π/4).
While, in Regions (II) and (IV), the θ-domains are:
I3 = (−π,−π/2) ∪ (0, π/2) and I4 = (−π/2, 0) ∪
(π/2, π). The intervals repeat themselves periodically,
with period π.

In the domains summarized in Table 1, eigenfunc-
tions {ψν(θ, x), ϕ̃ν(θ, x)} form a biorthogonal com-
plete set.

∫ ∞

−∞
(ψm(θ, x))∗ϕ̃n(θ, x) dx =
∫ ∞

−∞
ϕm(θ, x)ϕn(θ, x) dx = δmn. (23)

It should be noticed that in all regions, the
θ−domains of positive spectrum are different from
the domains with negative spectrum. They represent
different physical boundary conditions.
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sg(m) sg(Ω2) γ ϕ I θc

I + + 0 0 I1

±π/4π/2 π I2

III - + π/2 0 I2

0 π I1

II + - π/4 π/2 I4 0
±π/2
π

−π/4 −π/2 I3

IV - - −π/4 π/2 I3

π/4 −π/2 I4

Table 1. Values of the characteristic parameters
for the different model-space regions. In columns
2 and 3 we give the sign of m and Ω2, respec-
tively. Phases γ and ϕ, for the different regions,
are given in columns 4 and 5, respectively. In col-
umn 6 we present the θ-interval for which the dif-
ferent eigenfunctions are square-integrable. In the
Table I1 = [−π,−3π/4) ∪ (−π/4, π/4) ∪ (3π/4, π],
I2 = (−3π/4,−π/4) ∪ (π/4, 3π/4), I3 = (−π,−π/2) ∪
(0, π/2) and I4 = (−π/2, 0) ∪ (π/2, π). In the last col-
umn, we give the values of θc for which the eigenfunc-
tions of the continuous spectrum are square-integrable.
The intervals repeat themselves periodically, with pe-
riod π.

2.1.2. Continuous spectrum
The eigenfunctions associated to the continuous spec-
trum [26, 42–45] are given, in terms of the eigenfunc-
tions of h(θ) of Eq. (8), ϕE±(θ, x), by

ϕ̃E±(θ, x) = e
α−β

ω−α−β e2iθ x2
2b2

0 ϕE±(θ, x), (24)

ψ
E

±(θ, x) = e
− α−β

ω−α−β e−2iθ x2
2b2

0 (ϕE±(θ, x))∗, (25)

with

ϕE
±(θ, x) = C Γ(ν + 1)D−ν−1

(
∓

√
−2ei(θ+γ)|σ| x

b0

)
.

(26)

being D−ν−1(y) the parabolic cylinder functions and
ν = ϵ− 1

2 . The normalization constant takes the value
C = eiπ/8iν/2(

|σ|
b0

ei(θ+γ)
)1/2

π23/4
.

The biorthogonality and the completeness relation
can be written as

∫ ∞

−∞
(ψE±(θ, x))∗ϕ̃E

′
± (θ, x)dx = δ(E − E′),

∑

s=±

∫ ∞

−∞
(ψEs (θ, x))∗ϕ̃Es (θ, x)dE = δ(x− x′). (27)

The possible values that the parameter θ can take
to fulfill the requirements of biorthogonality and com-
pleteness of Eq. (27), θc, are presented in the last
column of Table 1.

In the framework of the CSM, the continuous spec-
trum lies along the line 2θ. In Regions II and IV, the
2θc = ± π so that E ∈ (−∞,+∞) Meanwhile, in Re-
gion I and III, 2θc = ± π

2 , so that E takes imaginary
values. Consequently, the parameter ν associated to
the order of the eigenfunctions of Eq. (26) takes the
value ν = −i|ϵ| − 1

2 .
If we look at the effective potential u(θ, x), the

values of θc correspond to the values of θ for which
Re(u(θ, x)) = 0.

2.1.3. Particular cases
Case (a): Ω = 0.

When Ω = 0 and ω − (α + β) ̸= 0, the problem
reduces to that of a free particle of energy E = ε e−2iθ.
Eq. (8) reduces to

− ℏ2

2m e2iθ
d2f(x)

dx2 = E f(x), (28)

the wave function can be written as f(x) = Aeikx +
Ae−ikx, with k =

√
2ε

ℏ(ω−α−β)b2
0
.

Case (b): ω − (α+ β) = 0, α ̸= β.
To study this case we have to look at Eq. (5).

If ω − (α+ β) = 0, it reads

H(θ) = ℏ(α+ β)
(

e iθ x̂

b0

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
, (29)

f(x) = e
−e2iθ x̂2

4b2
0

α+β
α−β

x− 1
2 + εe−2iθ

ℏ(α−β) . (30)

In Table 2 we present the values of E for which the
wavefunction f(x) is square-integrable.

(α+ β)/(α− β) (α− β) cos(2θ) ε

+ + I1 ε| cos(2θ)|
ℏ|α−β| < 1

2
- - I2

+ - I1 ε| cos(2θ)|
ℏ|α−β| > 1

2
- + I2

Table 2. Regions for which the wave function of
Eq. (30) is square-integrable.

2.2. Mean values of observables
To compute the mean values, we use operators P̂ and
X̂ defined as [19, 46, 47]

P̂ = Υ−1V (θ + γ)p̂V (θ + γ)−1Υ

= e−i(θ+γ)p̂+ iℏei(θ+γ) α− β

(ω − α− β)b2
0
x̂,

X̂ = Υ−1V (θ + γ)x̂V (θ + γ)−1Υ
= ei(θ+γ)x̂, (31)

160



vol. 62 no. 1/2022 Swanson Hamiltonian revisited through the CSM

that satisfy

[X̂, P̂ ] = iℏ. (32)

For the discrete spectrum of H, it can be proved
that

⟨m|P̂ |n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ P̂ ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e−i(θ+γ)p̂ ϕn(θ, x)dx

= iℏ√
2b0r

(√
n+ 1δm,n+1 − √

nδm,n−1
)
,

⟨m|P̂ 2|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ P̂ 2 ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e−2i(θ+γ)p̂2 ϕn(θ, x)dx

= iℏ√
2b0r

(√
n+ 1δm,n+1 − √

nδm,n−1
)

= − ℏ2

2b2
0r

(√
(n+ 2)(n+ 1)δm,n+2

−(2n+ 1)δm,n
+

√
n(n− 1)δm,n−2

)
, (33)

and

⟨m|X̂|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ X̂ ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕ±
m(θ, x) ei(θ+γ)x̂ ϕ±

n (θ, x)dx

= b0r√
2

(√
n+ 1δm,n+1 +

√
nδm,n−1

)
,

⟨m|X̂2|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ X̂2 ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e2i(θ+γ)x̂2 ϕn(θ, x)dx

= b2
0r
2

(√
(n+ 2)(n+ 1)δm,n+2

+(2n+ 1)δm,n
+

√
n(n− 1)δm,n−2

)
, (34)

with b0r = b0/|σ|.

2.3. Time dependent mean values
From the Schrödinger equation

iℏ ∂
∂t

Φ̃n(θ, x, t) = H(θ)Φ̃n(θ, x, t), (35)

it results

Φ̃n(θ, x, t) = e−iẼn
t
ℏ ϕ̃n(θ, x). (36)

In the same way

iℏ ∂
∂t

Ψn(θ, x, t) = H(θ)†ψn(θ, x, t), (37)

it results

Ψn(θ, x, t) = e−iEn
t
ℏψn(θ, x). (38)

2.3.1. Reigions I and III: Real spectrum
In Regions I and III, the discrete eigenvalues of H(θ)
take the values E±

n = ±ℏ|Ω|[n], with eigenfunctions
ϕ̃±
n (θ, x). In Region I, the eigenfunctions of the posi-

tive (negative) are square integrable in interval I1 (I2),
see Table 1. Meanwhile, in Region III, tthe eigenfunc-
tions of the positive (negative) are square integrable
in interval I2 (I1). Consequently the time evolution
of the states is given by

Φ̃±
n (θ, x, t) = e−i Ẽnt

ℏ ϕ̃n(θ, x),
= e∓i(n+ 1

2 )|Ω|tϕ̃±
n (θ, x).

Ψ±
n (θ, x, t) = e−i Ent

ℏ ψn(θ, x),
= e∓i(n+ 1

2 )|Ω|tψ
±
n (θ, x), (39)

and then

⟨m|Ô|n⟩ =

e∓i(n−m)|Ω|t
∫ ∞

−∞
(ψ±

m(θ, x))∗Ôϕ̃±
n (θ, x)dx.

(40)

2.3.2. Region II and IV: Complex spectrum
In Regions II and IV, the discrete eigenvalues of H(θ)
take the values E±

n = ±iℏ|Ω|[n], with eigenfunctions
ϕ̃±
n (θ, x). In Region II, the eigenfunctions of the posi-

tive (negative) are square integrable in interval I4 (I3).
Meanwhile, in Region III, the eigenfunctions of the
positive (negative) are square integrable in interval I3
(I4). So that the time evolution of the eigenfunctions
are given by

Φ̃±
n (θ, x, t) = e−i Ent

ℏ ϕ̃±
n (θ, x),

= e±(n+ 1
2 )|Ω|tϕ̃n(θ, x). (41)

and

Ψ±
n (θ, x, t) = e−i E∗

nt

ℏ ψn(θ, x),
= e∓(n+ 1

2 )|Ω|tψ
±
n (θ, x). (42)

As a result

⟨m|Ô|n⟩ =

e±(n−m)|Ω|t
∫ ∞

−∞
(ψ±

m(θ, x))∗Ôϕ̃±
n (θ, x)dx.

(43)
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3. Results and discussion
In order to evaluate the benefits of the present ap-
proach, let us consider the time evolution of a given
initial state when the parameters of the model corre-
spond to Region II.

In [26] we have analysed the Swanson model by
solving its eigenvalue problem in the Rigged Hilbert
Space. We have found that in Region II the hamilto-
nian was similar to the one of a particle in a parabolic
barrier. In the framework of the CSM, we model the
effective interaction by a complex potential. This fact
resembles the spirit of the Optical Potential in Nuclear
Physics [48, 49], as the potential seen by an incident
nucleon on a nucleus is modeled by a complex effective
potential accounting for the loss of flux due to the
interaction of an incident particle with the nucleons
of the nucleus.

We shall consider the solutions with eigenvalues
En = −iℏ|Ω|(n + 1/2), which evolve in time as
e−|Ω|(n+1/2)t. They correspond to the boundary prob-
lem for 0 < t < ∞. In this case γ = −π/4 and
θ ∈ I3.

For simplicity, let us assume that the initial state
is a coherent state of the form

ϕI(z, θ, x) = e−|z|2/2
∞∑

k=0

zk√
k!
ϕk(θ, x), (44)

where ϕ̃k(θ, x) is the k-eigenfunction of H(θ). The
survival probability of the state can be computed as

p(t) =
∣∣∣∣
∫ ∞

−∞
(ψI(z, θ, x))∗e−iH(θ)t/ℏϕI(z, θ, x)dx

∣∣∣∣
2

=
∣∣∣∣∣e

−|z|2−|Ω|t/2
∞∑

k=0

(|z|2e−|Ω|t)k

k!

∣∣∣∣∣

2

= e−|Ω|t+2|z|2(e−|Ω|t−1). (45)

Notice that, in this particular case, p(t) is independent
of the parameter θ.

4. Conclusions
In this work we analyse the advantages of the CSM
for describing the dynamics of a non-hermitian sys-
tem when the eigenfunctions of the problem do not
belong to L2(R). We have shown that we can cast
the original problem into a complex potential, which
includes absorption and dissipation effects according
to the sign of its imaginary component. We have
shown that for a range of values of θ in the different
regions of the model, the resulting eigenfunctions are
square-integrable. This feature facilitates the study
of the dynamics of the system from the computa-
tional point of view. The price we have to pay is the
lack of PT-symmetry invariance of the transformed
hamiltonian.

Work is in progress concerning the application of the
CSM to a more involved problem as the one presented
in [50].
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Abstract. We study the analytic solutions of the generalized Heun equation,
(
α0 + α1 r + α2 r2 +

α3 r3) y′′ +
(
β0 + β1 r + β2 r2) y′ +

(
ε0 + ε1 r

)
y = 0, where |α3| + |β2| ≠ 0, and {αi}3

i=0, {βi}2
i=0,

{εi}1
i=0 are real parameters. The existence conditions for the polynomial solutions are given. A simple

procedure based on a recurrence relation is introduced to evaluate these polynomial solutions explicitly.
For α0 = 0, α1 ̸= 0, we prove that the polynomial solutions of the corresponding differential equation
are sources of finite sequences of orthogonal polynomials. Several mathematical properties, such as the
recurrence relation, Christoffel-Darboux formulas and the norms of these polynomials, are discussed.
We shall also show that they exhibit a factorization property that permits the construction of other
infinite sequences of orthogonal polynomials.

Keywords: Heun equation, confluent forms of Heun’s equation, polynomial solutions, sequences of
orthogonal polynomials.

1. Introduction

It seems as a simple question to ask: Under what conditions does the differential equation

π3(r) y′′ + π2(r) y′ + π1(r) y = (λn + µnπ0(r)) y,

where λn and µn are constants and πj(r), j = 0, 1, 2, 3 are polynomials of unknown degree to be found, has
n-degree monic polynomial solutions yn =

∑n
k=0 ck rk, c0 ̸= 0, ck = 1?

A simple approach to deduce the possible degrees of πj , j = 0, 1, 2, 3, is to examine the degrees for the
(possible) polynomial solutions yn:

For n = 0, y0(r) = 1, we must have π1(r) = λ0 + µ0π0(r) and the degree of the polynomial π1(r) must have
the same degree as that of π0(r), so we may combine the same degree polynomial coefficients of y and write the
equation as

π3(r)y′′ + π2(r)y′ + π1(r)y = 0.

Next, for a polynomial solution of degree one, say y1(r) = r + α, the differential equation reduces to

π2(r) + π1(r)(r + α) = 0

and the degree of π2 should be the degree of π1(r) plus one.

Similarly, for a second-order polynomial solution, say y(r) = r2 + α r + β, it follows by substitution that

π3(r) + π2(r)(2r + α) + π1(r)(r2 + αr + β) = 0

which indicates that the degree of π3(r) should be the degree of π2 plus one, which, in turn, is a polynomial of
π1 degree plus one.

This simple argument shows that for the polynomial solutions of the linear second-order differential equation
with polynomial coefficients, the degree of the polynomial coefficients πj(r), j = 3, 2, 1 must be of degree n, n − 1
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and n − 2, respectively. So, without the loss of generality, we may direct out attention to the following: Under
what conditions on the equation parameters αk, βk, and εk, for k = 0, 1, . . . , n, does the differential equation

(
n∑

k=0
αk rk

)
y′′(r) +

(
n−1∑

k=0
βk rk

)
y′(r) +

(
n−2∑

k=0
εk rk

)
y(r) = 0, n ≥ 2 (1)

has polynomial solutions y =
∑m

k=0 Cjrj?

A logical approach is to examine the differential equation using the series solution




y =
∞∑

j=0
Cj rj ,

y′ =
∞∑

j=0
j Cj rj−1,

y′′ =
∞∑

j=0
j (j − 1)Cj rj−2

in (1) and enforce the coefficients Cj = 0 for all j ≥ m + 1, m = 0, 1, 2, · · · to find the condition so that Cm ≠ 0.
This approach leads to a conclusion that for equation (1) to have m degree polynomial solution, it is necessary
that

εn−2 = −m (m − 1) αn − m βn−1, n = 2, 3, · · · . (2)
Did this answer the question? Indeed, no. Consider, for example, this simple equation

r3y′′ + 2 r2y′ + (−2 r + 5)y = 0.

Clearly, the necessary condition (2) is satisfied for m = 1 and one expects the existence of a first degree
polynomial solution, say y = r + b, for an arbitrary value of b ∈ R, however, 2 r2 + (−2r + 5)(r + b) ̸= 0 for any
real value of b.

Therefore, for n ≥ 3, the condition (2) is necessary but not sufficient for the existence of polynomial solutions
of the differential equation (1).

Note, for n = 2, equation (1) is the classical hypergeometric-type differential equation [1–4]

(α2 r2 + α1 r + α0) y′′ + (β1 r + β0) y′ + ε0 y = 0 (3)

with the necessary and sufficient condition [2] for the polynomial solutions

ε0 = −m (m − 1) α2 − m β1, m = 0, 1, 2, · · · .

For n = 3, the differential equation (1) assumes the form

p3(r) y′′ + p2(r) y′ + p1(r) y = 0,




p3(r) =
3∑

j=0
αjrj ,

p2(r) =
2∑

j=0
βj rj ,

p1(r) =
1∑

j=0
εjrj , αj , βj , εj ∈ R ,

(4)

which includes as a special case or with elementary substitutions, the classical Heun differential equation [5, 6]

y′′ +
(

γ

r
+ δ

r − 1 + ε

r − a

)
y′ + α β r − q

r(r − 1)(r − a) y = 0, (5)

subject to the regularity (at infinity) condition

α + β + 1 = γ + δ + ε,

and its four confluent forms (Confluent, Doubly-Confluent, Biconfluent and Triconfluent Heun Equations).
These equations are indispensable from the point of view of a mathematical analysis [5–11] and for its valuable
applications in many areas of theoretical physics [5, 6, 12–20].

In the present work
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• From equation (4), we will extract the possible differential equations that can be solved using two-term
recurrence formulas.

• From equation (4), we will extract all the differential equations whose series solutions can be evaluated with
a three-term recurrence formula.

• For a0 ̸= 0, we shall devise a procedure based on the Asymptotic Iteration Method [21] to find the series and
polynomial solutions of the differential equation (4).

• In the neighbordhoud of a singular point r = 0, i.e., with a0 = 0, we will prove that the series solution can
be written as

y(r) =
∞∑

k=0
(−1)k Pk;s(ε0)

αk
1

(
β0
α1

+ s
)

k
(1 + s)k

rk+s,

where s is a root of the indicial equation. Also, we show that {Pk;s(ε0)}∞
k=0 is an infinite sequence of

orthogonal polynomials with several interesting properties.
• By imposing the termination conditions, we study the mathematical properties of the finite sequences

of the orthogonal polynomials {Pk;s(ε0)}n
k=0 and explore the factorization property associated with these

polynomials.

2. Elementary observations

The classical approach to study the analytical solutions of equation (4) relies on the nature of the singular points
of the leading polynomial coefficients

L ≡ α0 + α1 r + α2 r2 + α3 r3

in addition to the point r = ∞ in the extended plane. For real coefficients and α0 ̸= 0, the odd-degree polynomial
L is factored into either a product of a linear polynomial and an irreducible quadratic polynomial or a product
of three linear factors.

In the first case, the polynomial L can be written as

L = α3(r − ξ)(r2 + br + c)

where r2 + br + c is an irreducible polynomial. In this case, ξ is regular, real, singular point and ∞ is irregular
for otherwise, the differential equation can be solved in terms of elementary functions according to the classical
theory of ordinary differential equations. In this case, the differential equation can be written as

d2y

dr2 +
(

µ1
r − ξ

+ µ2
r2 + br + c

)
dy

dr
+ ε1 r + ε0

α3(r − ξ)(r2 + b r + c)y = 0. (6)

The second case, the polynomial L can be written as

L = α3(r − ξ1)(r − ξ2)(r − ξ3)

where ξj , j = 1, 2, 3 and ∞ are all regular singular points, i.e., the differential equation of Fushsian type,

d2y

dr2 +




3∑

j=1

µj

r − ξj


 dy

dr
+ ε1 r + ε0

α3(r − ξ1)(r − ξ2)(r − ξ3)y = 0. (7)

where µj are constants depending on the differential equation parameters. One can then study the series
solutions of equations (6) and (7) using the classical Frobenius method.

Another approach, recently adopted, to study (4), depends on the possible combination of the parameters
αj , j = 0, 1, 2, 3 such that the polynomial L does not vanish identically. There are fifteen possible combinations
in total. These fifteen combinations can be classified into two main classes: the first class is characterized by
α0 ≠ 0, which has eight equations in total, the second class characterized by α0 = 0 includes the remaining seven
equations. Each of these two classes will be studied in the next sections. First, we consider some elementary
observations regarding the differential equation (4).
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We assume no common factor among the polynomial coefficients pj(r), j = 1, 2, 3, we start our study
of equation (4) by asking the following simple question: Under what conditions the series solutions of the
differential equation (4) can be evaluated using a two-term recurrence relation [22]? For, in this case, the two
linearly independent series solutions can be found explicitly.

Theorem 2.1. The necessary and sufficient conditions for the linear differential equation

p2(r) u′′(r) + p1(r) u′(r) + p0(r) u(r) = 0, (8)

to have a two-term recurrence relationship that relates the successive coefficients in its series solution is that in
the neighbourhood of the singular regular point r0 (where p2(r0) = 0), the equation (8) can be written as:

[q2,0 + q2,h (r − r0)h]︸ ︷︷ ︸
q2(r)

(r − r0)2−m u′′(r) + [q1,0 + q1,h (r − r0)h]︸ ︷︷ ︸
q1(r)

r1−m u′(r)

+ [q0,0 + q0,h (r − r0)h]︸ ︷︷ ︸
q0(r)

(r − r0)−m u(r) = 0, (9)

where, for m ∈ Z , h ∈ Z+, j = 0, 1, 2,

qj(r) ≡
∞∑

k=0
qj,k(r − r0)k = pj(r) (r − r0)m−j , (10)

when at least one of qj,0, j = 0, 1, 2 and qj,h, j = 0, 1, 2, is different from zero. In this case, the two-term
recurrence formula is given by

ck

ck−h
= − (k + λ − h)[q2,h (k + λ − h − 1) + q1,h ] + q0,h

(k + λ)[q2,0 (k + λ − 1) + q1,0] + q0,0
, (11)

where c0 ̸= 0, and λ = λ1, λ2 are the roots of the indicial equation

q2,0 λ (λ − 1) + q1,0 λ + q0,0 = 0. (12)

The closed form of the series solution generated by (11) can be written in terms of the generalized hypergeometric
function as

u(r; λ) =zλ
∞∑

k=0
chkrhk = rλ

3F2

(
1, 2λ−1

2h + q1,h

2 h q2,h
−

√
(q1,h−q2,h)2−4q0,hq2,h

2 h q2,h
,

2λ−1
2h + q1,h

2 h q2,h
+

√
(q1,h−q2,h)2−4q0,hq2,h

2 h q2,h
; 1 + 2λ−1

2 h + q1,0
2 h q2,0

−
√

(q1,0−q2,h)2−4q0,0q2,0
2 h q2,0

,

1 + 2λ−1
2h + q1,0

2 h q2,0
+

√
(q1,0−q2,h)2−4q0,0q2,0

2 h q2,0
; − q2,h

q2,0
rh
)

. (13)

Applying this theorem, equation (4) generates the following solvable equations:

• Differential equation:

r2 (α2 + α3 r) u′′(r) + r (β1 + β2 r) u′(r) + (ε0 + ε1 r) u(r) = 0, ε0 ̸= 0, (14)

Recurrence relation: For k = 1, 2, · · · , and c0 = 1,

ck

ck−1
= − (k + λ − 1)[α3 (k + λ − 2) + β2] + ε1

(k + λ)[α2 (k + λ − 1) + β1 ] + ε0
, (15)

where λ = λ+, λ− are the roots of the indical equation

α2 λ (λ − 1) + β1 λ + ε0 = 0,

namely

λ± = α2 − β1 ±
√

(α2 − β1)2 − 4α2ε0
2α2

.
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The two linearly independent solutions generated by (15), in terms of the Gauss hypergeometric functions,
are:

u± =r
α2−β1±

√
(α2−β1)2−4α2ε0

2α2 2F1

(
β2

2α3
− β1

2α2
±

√
(α2−β1)2−4α2ε0

2α2
−

√
(α3−β2)2−4α3ε1

2α3
,

β2
2α3

− β1
2α2

±
√

(α2−β1)2−4α2ε0
2α2

+
√

(α3−β2)2−4α3c1
2α3

; α2±
√

(α2−β1)2−4α2ε0
α2

; − α3
α2

r

)
. (16)

• Differential equation:

(α1 r + α3 r3) u′′(r) + (β0 + β2 r2) u′(r) + ε1 r u(r) = 0, (β0 ̸= 0), (17)

Recurrence relation:

ck

ck−2
= − (k + λ − 2)[α3 (k + λ − 3) + β2] + ε1

(k + λ)[α1(k + λ − 1) + β0] , (c0, c1 ̸= 0, k = 2, 3, · · · ), (18)

where λ = λ+, λ− are the roots of the indicial equation

α1 λ(λ − 1) + β0 λ = 0,

i.e λ+ = 0, λ− = 1 − β0/α1.
The two linearly independent series solutions generated by (18) are:

u+(r) = 2F1

(
β2

4α3
− 1

4 −
√

(α3 − β2)2 − 4α3ε1
4α3

,

β2
4α3

− 1
4 +

√
(α3 − β2)2 − 4α3ε1

4α3
; 1

2 + β0
2α1

; −α3
α1

r2
)

, (19)

and

u−(r) =r1− β0
α1 × 2F1

(
1
4 + β2

4α3
− β0

2α1
−
√

(α3 − β2)2 − 4α3ε1
4α3

,

1
4 + β2

4α3
− β0

2α1
+
√

(α3 − β2)2 − 4α3ε1
4α3

; 3
2 − β0

2α1
; −α3

α1
r2
)

. (20)

• Differential equation

(α0 + α3 r3) u′′(r) + β2 r2 u′(r) + ε1r u(r) = 0, α0 ̸= 0, (21)

Recurrence relation:

ck

ck−3
= − (k + λ − 3)[α3(k + λ − 4) + β2] + ε1

α0 (k + λ)(k + λ − 1) , (c0 ̸= 0), (22)

where λ = λ1, λ2 are the roots of the indicial equation α0 λ (λ − 1) = 0, namely, λ1 = 0, λ2 = 1.
The two linearly independent series solutions are:

u1(r) = 2F1

(
−α3 − β2 +

√
(α3 − β2)2 − 4α3ε1

6α3
,

−α3 + β2 +
√

(α3 − β2)2 − 4α3ε1
6α3

; 2
3 ; −α3

α0
r3
)

, (23)

and

u2(r) = r 2F1

(
α3 + β2 −

√
(α3 − β2)2 − 4α3ε1

6α3
,

α3 + β2 +
√

(α3 − β2)2 − 4α3ε1
6α3

; 4
3 ; −α3

α0
r3
)

. (24)

Out of the three generic equations (14), (17) and (21), five exactly solvable differential equations (Cases 1, 4, 5,
8, and 10) of the type (4) follows and other five (Cases 2, 3, 6, 7, 9) that can be derived directly from them by
taking the limits of the equation parameters. For direct use, the ten equations are listed in Table 1.
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DEs and their linearly independent solutions

1 α2 r2u′′ + (β1r + β2r2) u′ + (ε0 + ε1r) u = 0

u = r
1
2 − β1

2α2
+ 1

2α2

√
(α2−β1)2−4α2ε0

1F1

(
1
2 − β1

2α2
+ ε1

β2
+

√
(α2−β1)2−4α2ε0

2α2
; 1 +

√
(α2−β1)2−4α2ε0

α2
; − β2

α2
r

)
,

u =
r− 1

2 + β1
2α2

− 1
2α2

√
(α2−β1)2−4α2ε0

1F1

(
1
2 − β1

2α2
+ ε1

β2
−

√
(α2−β1)2−4α2ε0

2α2
; 1 −

√
(α2−β1)2−4α2ε0

α2
; − β2

α2
r

)
.

2 α2 r2u′′ + β1r u′ + (ε0 + ε1r) u = 0

u = r
1
2 − β1

2α2
+ 1

2α2

√
(α2−β1)2−4α2ε0

0F1

(
−; 1 +

√
(α2−β1)2−4α2ε0

α2
; − ε1

α2
r

)
,

u = r− 1
2 + β1

2α2
− 1

2α2

√
(α2−β1)2−4α2ε0

0F1

(
−; 1 −

√
(α2−β1)2−4α2ε0

α2
; − β2

α2
r

)
.

3 α2 r2u′′ + β2r2u′ + (ε0 + ε1r) u = 0

u = r
1
2 −

√
α2−4ε0
2√

α2 1F1

(
1
2 + ε1

β2
−

√
α2−4ε0
2√

α2
; 1 −

√
α2−4ε0√

α2
; − β2

α2
r
)

,

u = r
1
2 +

√
α2−4ε0
2√

α2 1F1

(
1
2 + ε1

β2
+

√
α2−4ε0
2√

α2
; 1 +

√
α2−4ε0√

α2
; − β2

α2
r
)

.

4 (α2 r2 + α3 r3)u′′ + β1 r u′ + (ε0 + ε1r) u = 0

u = r
1
2 − β1

2α2
+ 1

2α2

√
(α2−β1)2−4α2ε0

2F1

(
1
2

√
α3−4ε1

α3
− β1

2α2
+

√
(α2−β1)2−4α2ε0

2α2
,

− 1
2

√
α3−4ε1

α3
− β1

2α2
+

√
(α2−β1)2−4α2ε0

2α2
; 1 +

√
(α2−β1)2−4α2ε0

α2
; − α3

α2
r

)
,

u = r
1
2 − β1

2α2
− 1

2α2

√
(α2−β1)2−4α2ε0

2F1

(
1
2

√
α3−4ε1

α3
− β1

2α2
−

√
(α2−β1)2−4α2ε0

2α2
,

− 1
2

√
α3−4ε1

α3
− β1

2α2
−

√
(α2−β1)2−4α2ε0

2α2
; 1 −

√
(α2−β1)2−4α2ε0

α2
; − α3

α2
r

)
.

5 (α2 r2 + α3 r3)u′′ + β2r2 u′ + (ε0 + ε1r) u = 0

u = r
1
2 − 1

2√
α2

√
α2−4ε0

2F1

(
β2

2α3
− 1

2

√
α2−4ε0

α2
+

√
(α3−β2)2−4α3ε1

2α3
,

β2
2α3

− 1
2

√
α2−4ε0

α2
−

√
(α3−β2)2−4α3ε1

2α3
; 1 −

√
α2−4ε0√

α2
; − α3

α2
r

)
,

u = r
1
2 + 1

2√
α2

√
α2−4ε0

2F1

(
β2

2α3
+ 1

2

√
α2−4ε0

α2
−

√
(α3−β2)2−4α3ε1

2α3
,

β2
2α3

+ 1
2

√
α2−4ε0

α2
+

√
(α3−β2)2−4α3ε1

2α3
; 1 +

√
α2−4ε0√

α2
; − α3

α2
r

)
.

6 (α2 r2 + α3 r3)u′′ + (ε0 + ε1 r) u = 0
u = r

1
2 − 1

2√
α2

√
α2−4ε0

2F1

(
− 1

2

√
α2−4ε0

α2
−

√
α3−4ε1
2√

α3
, − 1

2

√
α2−4ε0

α2
−

√
α3−4ε1
2√

α3
; 1 −

√
α2−4ε0√

α2
; − α3

α2
r
)

,

u = r
1
2 + 1

2√
α2

√
α2−4ε0

2F1

(
1
2

√
α2−4ε0

α2
−

√
α3−4ε1
2√

α3
, 1

2

√
α2−4ε0

α2
+

√
α3−4ε1
2√

α3
; 1 +

√
α2−4ε0√

α2
; − α3

α2
r
)

.

7 α2 r2 u′′ + (ε0 + ε1 r) u = 0

u = r
1
2 + 1

2

√
1− 4ε0

α2 0F1

(
; 1 +

√
1 + 4ε0

α2
; − ε1

α2
r
)

, u = r
1
2 − 1

2

√
1− 4ε0

α2 0F1

(
; 1 −

√
1 − 4ε0

α2
; − ε1

α2
r
)

8 α1 r u′′ + (β0 + β2r2) u′ + ε1 r u = 0,

u = 1F1

(
ε1

2β2
; 1

2 + β0
2α1

; − β2
2α1

r2
)

, u = r1− β0
α1 1F1

(
1
2 − β0

2α1
+ ε1

2β2
; 3

2 − β0
2α1

; − β2
2α1

r2
)

.

9 α1 r u′′ + β0 u′ + ε1 r u = 0,

u = 0F1

(
−; 1

2 + β0
2α1

; − ε1
4α1

z2
)

, u = r1− β0
α1 0F1

(
−; 3

2 − β0
2α1

; − ε1
4α1

r2
)

.

10 α0 u′′ + β2 r2u′ + ε1 r u = 0,

u = 1F1

(
ε1

3β2
; 2

3 ; − β2
3α0

r3
)

, u = r 1F1

(
1
3 + ε1

3β2
; 4

3 ; − β2
3α0

r3
)

.

Table 1. Ten solvable equations of the type (4) that follows from the generic equations (14), (17), and (21).
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3. The solutions in the neighbourhood of an ordinary point

3.1. Series solutions

In the case of α0 ̸= 0, r = 0, there is an ordinary point for the differential equations (4). The classical
theory of differential equation ensure that the (4) has two linearly independent power series solutions in the
neighbourhood of r = 0 and valid to the nearest real singular point of the leading polynomial coefficient
L ≡ α0 + α1 r + α2 r2 + α3 r3 = 0. Indeed, the polynomial L = 0 has the discriminate [23]:

∆ = 18 α3 α2 α1 α0 − 4 α3
2 α0 + α2

2 α2
1 − 4 α3 α3

1 − 27 α2
3 α2

0. (25)

The nature of the L roots as given by (25) along with the corresponding eight differential equations are
summarized in Table 2.

For these differential equations, the following theorem, that can be easily proved using Frobenius method,
holds.

Theorem 3.1. (Formal series solutions) In the neighbourhood of the ordinary point r = 0, the coefficients of
the series solution y(r) =

∑∞
k=0 Ck rk to the differential equation (4) satisfy the four-term recurrence relation

((k − 1) ((k − 2) α3 + β2) + ε1) Ck−1 + (k((k − 1) α2 + β1) + ε0) Ck

+ (k + 1)(kα1 + β0) Ck+1 + (k + 2) (k + 1) α0 Ck+2 = 0, (26)

where k = 0, 1, 2, · · · , with C−1 = 0 and arbitrary nonzero constants C0 and C1. The radius of convergence of
these series solutions is extended from r = 0 to the nearest singular point of the leading polynomial coefficient
L = 0.

The first few terms of the series solution are given explicitly by

C2 = − ε0
2α0

C0 − β0
2α0

C1,

C3 = (α1+β0) ε0−α0 ε1
6α2

0
C0 + β0(α1+β0)−α0(β1+ε0)

6 α2
0

C1,

· · · .

For α0 ̸= 0, using (26), we can extract the following differential equations with series solution from (4) using
a three-term recurrence relation:

• Differential equation:
(
α0 + α1 r + α3 r3)u′′(r) +

(
β0 + β2 r2)u′(r) + ε1 r u(r) = 0. (27)

Recurrence formula:

Ck+2 = − (k + 1)(k α1 + β0)
(k + 1) (k + 2) α0

Ck+1 − (k − 1)((k − 2) α3 + β2) + ε1
(k + 1) (k + 2) α0

Ck−1. (28)

• Differential equation:
(
α0 + α2r2 + α3r3) u′′(r) + (β1 r + β2 r2)u′(r) + ε1 r u(r) = 0. (29)

Recurrence formula:

Ck+2 = −k(k − 1)α2 + k β1
(k + 1) (k + 2) α0

Ck − (k − 1)(k − 2)α3 + (k − 1)β2 + ε1
(k + 1)(k + 2) α0

Ck−1. (30)

• Differential equation:
(
α0 + α2 r2) u′′(r) + (β1 r + β2 r2) u′(r) + ε1 r u(r) = 0. (31)

Recurrence formula:

Ck+2 = −k (k − 1)α2 + k β1
(k + 1) (k + 2) α0

Ck − (k − 1)β2 + ε1
(k + 1) (k + 2) α0

Ck−1. (32)
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DE α3 α2 α1 α0 Discriminant Roots of L Domain definition

I

∆3 > 0 ξ1 ̸= ξ2 ̸= ξ3 |r| < mini=1,2,3 ξi

α3 α2 α1 α0 ∆3 = 0 ξ1 = ξ2 = ξ3 = ξ |r| < ξ

∆3 < 0 ξ ∈ R |r| < ξ

Differential equation: (α0 + α1 r + α2 r2 + α3 r3) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = 18 α3 α2 α1 α0 − 4 α2

3 α0 + α2
2α1

2 − 4 α3 α1
3 − 27 α3

2 α0
2

II

∆3 > 0 ξ1 ̸= ξ2 |r| < mini=1,2 ξi

0 α2 α1 α0 ∆3 = 0 ξ1 = ξ2 = ξ |r| < ξ

∆3 < 0 None |r| < ∞

Differential Equation: (α0 + α1 r + α2 r2) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = α2

2(−4 α2 α0 + α1
2)

III
0 0 α1 α0

α1α0 > 0 r = −α0/α1 −∞ < r < −α0/α1

α1α0 < 0 r = −α0/α1 −α0/α1 < r < ∞

Differential Equation: (α0 + α1 r) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = 0

IV
0 0 0 α0 None None −∞ < r < ∞

Differential Equation: α0 y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = 0

V

∆3 > 0 ξ1 ̸= ξ2 ̸= ξ3 |r| < mini=1,2,3 ξi

α3 0 α1 α0 ∆3 = 0 ξ1 = ξ2 = ξ3 = ξ |r| < ξ

∆3 < 0 ξ ∈ R |r| < ξ

Differential Equation: (α0 + α1 r + α3 r3) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = −4 α3 α1

3 − 27 α3
2 α0

2

VI

∆3 > 0 ξ1 ̸= ξ2 ̸= ξ3 |r| < mini=1,2,3 ξi

α3 α2 0 α0 ∆3 = 0 ξ1 = ξ2 = ξ3 = ξ |r| < ξ

∆3 < 0 ξ ∈ R |r| < ξ

Differential Equation: (α0 + α2 r2 + α3 r3) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = −4 α2

3 α0 − 27 α3
2 α0

2

VII
α3 0 0 α0 α0 α3 < 0 or α0 α3 > 0 ξ = 3

√
−α0/α3 |r| < ξ

Differential Equation: (α0 + α3 r3) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = −27 α3

2 α0
2

VIII
0 α2 0 α0

α2α0 < 0 r = ±
√

− α0
α2

−
√

− α0
α2

< r <
√

− α0
α2

α2α0 > 0 None −∞ < r < ∞

Differential Equation: (α0 + α2 r2) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Discriminant: ∆3 = −4 α2

3 α0

Table 2. Tabulating the eight different types of differential equations, which apply to Theorem 3.1.
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• Differential equation:
(
α0 + α3 r3)u′′(r) + (β1 r + β2 r2) u′(r) + r ε1 u(r) = 0. (33)

Recurrence formula:

Ck+2 = − k β1
(k + 1) (k + 2) α0

Ck − (k − 1)(k − 2)α3 + (k − 1)β2 + ε1
(k + 1) (k + 2) α0

Ck−1. (34)

• Differential equation:
α0 u′′(r) + (β1 r + β2 r2) u′(r) + ε1 r u(r) = 0. (35)

Recurrence formula:

Ck+2 = − k β1
(k + 1) (k + 2) α0

Ck − (k − 1) β2 + ε1
(k + 1) (k + 2) α0

Ck−1. (36)

• Differential equation:
(
α0 + α2 r2 + α3 r3) u′′(r) + β1 r u′(r) + ε1 r u(r) = 0. (37)

Recurrence formula:

Ck+2 = −k (k − 1)α2 + k β1
(k + 1) (k + 2) α0

Ck − (k − 2)(k − 1)α3 + ε1
(k + 1) (k + 2) α0

Ck−1. (38)

• Differential equation: (
α0 + α3 r3)u′′(r) + β1 r u′(r) + ε1 r u(r) = 0. (39)

Recurrence formula:

Ck+2 = − k β1
(k + 1)(k + 2) α0

Ck − (k − 2) (k − 1) α3 + ε1
(k + 1)(k + 2) α0

Ck−1. (40)

• Differential equation: (
α0 + α2 r2)u′′(r) + β1 r u′(r) + ε1 r u(r) = 0. (41)

Recurrence formula:

Ck+2 = −k(k − 1)α2 + k β1
(k + 1)(k + 2)α0

Ck − ε1
(k + 1)(k + 2) α0

Ck−1. (42)

• Differential equation:
(
α0 + α2 r2) u′′(r) + (β1 + β2 r2)u′(r) + ε1 r u(r) = 0. (43)

Recurrence formula:

Ck+2 = −k(k − 1)α2 + β1 k)
(k + 1) (k + 2) α0

Ck − (k − 1)β2 + ε1
(k + 1) (k + 2) α0

Ck−1. (44)

• Differential equation:
u′′(r) + β1 r u′(r) + ε1 r u(r) = 0, (45)

Recurrence formula:

Ck+2 = − k β1
(k + 1) (k + 2) Ck − ε1

(k + 1) (k + 2) Ck−1. (46)

3.2. Polynomial solutions

The series solution y(r) =
∑∞

k=0 Ck rk terminates to an nth-degree polynomial if Cn ̸= 0 and Cj = 0 for all
j ≥ n + 1. It is not difficult to show by direct substitution that for polynomial solutions of Pn(r) =

∑n
k=0 Ck rk,

it is necessary that
ε1 = −n (n − 1) α3 − n β2, n = 0, 1, 2, · · · . (47)
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Furthermore, the polynomial solution coefficients {Ck}n
k=0 satisfy a four-term recurrence relation, see (26),

(
(k − 1)

(
(k − 2)α3 + β2

)
+ ε1;n

)
Ck−1 +

(
k
(
(k − 1)α2 + β1

)
+ ε0;n

)
Ck

+ (k + 1)(kα1 + β0) Ck+1 + (k + 1)(k + 2)α0 Ck+2 = 0 , k = 0, 1, . . . , n + 1 , (48)

that generates a system of (n + 2) linear equations in {Ck}n
k=0:

n−equations︷ ︸︸ ︷︸ ︷︷ ︸
(n+2)−equations

The first n equations are




k = 0, → ε0C0 + β0C1 + 2 α0 C2 = 0
k = 1, → ε1C0 + (β1 + ε0)C1 + 2(α1 + β0)C2 + 6 α0 C3 = 0
k = 2, → (β2 + ε1)C1 + (2 α2 + 2 β1 + ε0)C2 + 3(2 α1 + β0)C3 + 12 α0 C4 = 0
k = 3, → (2α3 + 2 β2 + ε1)C2 + (6 α2 + 3 β1 + ε0)C3 + 4(3 α1 + β0)C4 + 20 α0 C5 = 0

...
k = n − 1, →

(
(n − 2)

(
(n − 3) α3 + β2

)
+ ε1;n

)
Cn−2 +

(
(n − 1)

(
(n − 2) α2 + β1

)
+ ε0;n

)
Cn−1

+n
(
(n − 1) α1 + β0

)
Cn = 0.

(49)

These equations permit the evaluation, using say Cramer’s rule, of the coefficients {Ck}n
k=1 of the polynomial

solution in terms of the non-zero constant C0.

The (n + 1)th equation
(
(n − 1) (n − 2) α3 + (n − 1) β2 + ε1

)
Cn−1 +

(
n(n − 1) α2 + n β1 + ε0

)
Cn = 0 , (50)

gives our sufficient condition that relates ε0 ≡ ε0;n to the remaining parameters of the differential equation.

Finally, the (n + 2)th equation

ε1;n = −n (n − 1) α3 − n β2 , n = 0, 1, · · · , (51)

re-establishes the necessary condition (ε1 ≡ ε1;n) for the existence of the n-degree polynomial solution, see (47).

For a non-zero solution, the n + 1 linear equations generated by the recurrence relation (48) require the
vanishing of the (n + 1) × (n + 1)-determinant (with four main diagonals and all other entries being zeros)

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 T1 η1

γ1 S1 T2 η2

γ2 S2 T3 η3
. . . . . . . . . . . .

γn−2 Sn−2 Tn−1 ηn−1

γn−1 Sn−1 Tn

γn Sn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where
Sk = ε0;n + k

(
(k − 1)α2 + β1

)
,

Tk = k
(
(k − 1)α1 + β0

)
,

γk = ε1;n + (k − 1)
(
(k − 2)α3 + β2

)
,

ηk = k(k + 1)α0 ,

and for fixed n ,

ε1;n = −n (n − 1) α3 − n β2 . (52)
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A simple relation to evaluate this determinant in terms of lower-degree determinants is given by

∆k+1 = Sk ∆k − γk Tk ∆k−1 + γk γk−1 ηk−1 ∆k−2 , (∆−2 = ∆−1 = 0, ∆0 = 1, k = 0, 1, . . . , n). (53)

Although there is a classical theorem [24] that guarantees the simple distinct real roots of the three diagonal
matrix, to the best of our knowledge, there is no such theorem available for the matrix-type (52). However, we
shall assume, in the following example, that the matrix entries allow for the distinct real roots of the resulting
polynomial of ε0;n.

Illustrative example:

• For the zero-degree polynomial solution P0 (r) = 1, i.e., n = 0, the coefficients Cj = 0 for all j ≥ 1 and the
recurrence relation (28) for k = 0, 1 gives, respectively, the necessary and sufficient conditions

ε1;0 = 0 , ε0;0 = 0. (54)

• For a first-degree polynomial solution, n = 1, the coefficients Cj = 0 for all j ≥ 2 where k = 0, 1, 2 give the
following three equations 




ε0;1 C0 + β0 C1 = 0,

ε1;1 C0 + (β1 + ε0;1) C1 = 0,

(β2 + ε1;1) C1 = 0.

(55)

So, for C0 = 1, it is necessary that ε1;1 = −β2 and therefore, C1 = −ε0;1/β0 where ε0;1 are now the roots of
the quadratic equation

β0 β2 + β1ε0;1 + ε2
0;1 = 0.

Let εℓ
0;1, ℓ = 1, 2, denote, if any, the two distinct real roots ε0

0;1 ̸= ε1
0;1 of this quadratic equation. Then, for

the two (distinct) differential equations
(
α0 + α1 r + α2 r2 + α3 r3)P′′

1;ℓ (r) +
(
β0 + β1 r + β2 r2)P′

1;ℓ (r)
+
(
εℓ

0;1 − β2 r
)

P1;ℓ (r) = 0 , ℓ = 1, 2 , (56)

the first-order polynomial solutions are




P1;ℓ (r) = 1 − εℓ
0;1
β0

r,

β0 β2 + β1 εℓ
0;1 + (εℓ

0;1)2 = 0, ℓ = 1, 2 .

(57)

• For a second-degree polynomial solution, n = 2, the coefficients Cj = 0 for all j ≥ 3 where k = 0, 1, 2, 3 give
the four linear equations





ε0;2 C0 + β0 C1 + 2 α0 C2 = 0,

ε1;2 C0 + (β1 + ε0;2) C1 + 2(α1 + β0) C2 = 0,

(β2 + ε1;2) C1 + (2 α2 + 2 β1 + ε0;2) C2 = 0,

(2α3 + 2 β2 + ε1;2)C2 = 0.

(58)

The very last equation of (58), correspondent to k = 3, gives the necessary condition

ε1;2 = −2 α3 − 2 β2 , (59)

and for k = 0, 1, the coefficients of the polynomial solution y(r) = 1 + C1 r + C2 r2 read




C1 =

∣∣∣∣∣
−ε0;2 2α0

2 α3 + 2 β2 2α1 + 2β0,

∣∣∣∣∣
∣∣∣∣∣

β0 2α0

β1 + ε0;2 2α1 + 2β0

∣∣∣∣∣

,

C2 =

∣∣∣∣∣
β0 −ε0;2

β1 + ε0;2 2 α3 + 2 β2

∣∣∣∣∣
∣∣∣∣∣

β0 2α0

β1 + ε0;2 2α1 + 2β0

∣∣∣∣∣

.

(60)
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The equation corresponding to k = 2 and n = 2 establishes the sufficient condition
∣∣∣∣∣∣∣∣

εℓ
0;2 β0 2α0

−2 α3 − 2 β2 β1 + εℓ
0;2 2α1 + 2β0

0 β2 − 2 α3 − 2 β2 2 α2 + 2 β1 + εℓ
0;2

∣∣∣∣∣∣∣∣
= 0, (61)

where ℓ = 1, 2, 3 refers to the three distinct simple roots εℓ
0;2, ℓ = 1, 2, 3, if any, of the polynomial generated

by the determinant (61). Hence, for each index ℓ = 1, 2, 3, the differential equation
(
α0 + α1 r + α2 r2 + α3 r3)P′′

2;ℓ (r) +
(
β0 + β1 r + β2 r2)P′

2;ℓ (r)
+
(
εℓ

0;2 − (2α3 + 2β2) r
)

P2;ℓ (r) = 0 , (62)

has the polynomial solution (for ℓ = 1, 2, 3 .)

P2;ℓ (r) = 1 +

∣∣∣∣∣∣
−εℓ

0;2 2α0

2 α3 + 2 β2 2α1 + 2β0

∣∣∣∣∣∣
∣∣∣∣∣∣

β0 2α0

β1 + εℓ
0;2 2α1 + 2β0

∣∣∣∣∣∣

r +

∣∣∣∣∣∣
β0 −εℓ

0;2

β1 + εℓ
0;2 2 α3 + 2 β2

∣∣∣∣∣∣
∣∣∣∣∣∣

β0 2α0

β1 + εℓ
0;2 2α1 + 2β0

∣∣∣∣∣∣

r2, (63)

The above constructive approach can be continued to generate higher-order polynomial solutions of an arbitrary
degree.

Theorem 3.2. Suppose the polynomial in εℓ
0;n generated by the determinant (52) has n + 1 distinct real roots

arranged in ascending order ε0
0;n < ε1

0;n < ε2
0;n < · · · < εn

0;n, then, the eigenvalue problem

(
α0 + α1 r + α2 r2 + α3 r3) d2Pn;ℓ

dr2 +
(
β0 + β1 r + β2 r2) dPn;ℓ

dr

− n
(

(n − 1) α3 + β2
)

r Pn;ℓ = −εℓ
0;n Pn;ℓ, (64)

has a polynomial solution of the degree n, for ℓ = 1, 2, . . . , n + 1.

This theorem is illustrated by Figure 1, for n = 0, 1, 2, 3,

n = 0

ε1
0;0

P0;1(r)

n = 1

ε1
0;1

P1;1(r)

ε2
0;1

P1;2(r)

n = 2

ε1
0;2

P2;1(r)

ε2
0;2

P2;2(r)

ε3
0;2

P2;3(r)

n = 3

ε1
0;3

P3;1(r)

ε2
0;3

P3;2(r)

ε3
0;3

P3;3(r)

ε4
0;3

P3;4(r)

· · ·

· · ·

· · ·

Figure 1. A graphical representation of Theorem 3.2

Open problem: It is an open question to establish the condition(s) on the parameters so that the polynomial
generated by the determinant (32) has simple and real distinct roots.

4. The solutions in the neighbourhood of a singular point

4.1. Series Solution and infinite sequence of orthogonal polynomials {Pk(ε0)}∞
k=0

As mentioned earlier, if α0 = 0, there are seven subclasses characterized by the equation

r
(
α1 + α2 r + α3r2) y′′ +

(
β0 + β1 r + β2 r2) y′ +

(
ε0 + ε1 r

)
y = 0 . (65)
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The classification of these seven equations along with their singularities and the associated domains are
summarized in Table 3. From this Table, it is noted that if α1 ̸= 0, there are four subclasses where the point
r = 0 is a regular singular point, while if α1 = 0, the condition β0 = 0 is necessary to ensure that r = 0 is
a regular singular point for two additional subclasses and the last equation is a class where r = 0 is irregular
singular point unless we reduce to Euler’s type (α1 = α2 = β1 = β0 = ε0 = 0).

In the neighbourhood of the regular singular point r = 0, the formal series solution y(r) = rs
∑∞

k=0 Ckrk is
then valid within the interval (0, ζ) where ζ is the nearest singular point obtained via the roots of the quadratic
equation α1 + α2 r + α3r2 = 0. Here, s are the roots of the indicial equation α1 s(s − 1) + β0 s = 0, i.e. s1 = 0
and s = 1 − β0/α1.

Using Frobenius method, it is straightforward to show that the coefficients {Ck}∞
k=0 satisfy the three-term

recurrence relation

(k + s + 1)
(
α1(k + s) + β0

)
Ck+1 +

(
(k + s)[α2 (k + s − 1) + β1] + ε0

)
Ck

+
(
(k + s − 1)[α3(k + s − 2) + β2] + ε1

)
Ck−1 = 0 , (66)

where k = 1, 2, . . . . For




C−1 = 0,

C0 = 1,

C1 = −s(α2 (s − 1) + β1) + ε0
(α1 s + β0)(s + 1) = − P1;s(ε0)

α1

(
s + β0

α1

)
(s + 1)

,

this equation can be written as

Ck+2 = λ0(k) Ck+1 + s0(k) Ck,

where




λ0(k) = − (α2 (k + s) + β1) (k + s + 1) + ε0
(α1(k + s + 1) + β0) (k + s + 2) ,

s0(k) = − (α3(k + s − 1) + β2) (k + s) + ε1
(α1(k + s + 1) + β0) (k + s + 2) ,

From this equation, we note that

Ck+3 = λ1(k) Ck+1 + s1(k) Ck,





λ1(k) = λ0(k + 1) λ0(k) + s0(k + 1)
s1(k) = λ0(k + 1) s0(k),

Ck+4 = λ2(k) Ck+1 + s2(k) Ck,





λ2(k) = λ1(k + 1)λ0(k) + s1(k + 1)
s2(k) = λ1(k + 1)s0(k),

Ck+5 = λ3(k) Ck+1 + s3(k) Ck,





λ3(k) = λ2(k + 1)λ0(k) + s2(k + 1)
s3(k) = λ2(k + 1)s0(k),

and in general

Ck+m = λm−2(k) Ck+1 + sm−2(k) Ck,





λm(k) = λm−1(k + 1)λ0(k) + sm−1(k + 1)
sm(k) = λm−1(k + 1)s0(k),

and therefore

C2 = (s + 1)(α2 s + β1) + ε0

(α1(s + 1) + β0)(s + 2)

(
s(α2 (s − 1) + β1) + ε0

(α1 s + β0)(s + 1)

)
− s(α3(s − 1) + β2) + ε1

(α1(s + 1) + β0)(s + 2) = P2;s(ε0)
α2

1
(
s + β0

α1

)
2

(s + 1)2
. (67)
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DE α3 α2 α1 Condition Roots of LPC Domain definition

I α3 α2 α1 a2
2 − 4a1a3 > 0 r = 0, ξ+ ̸= ξ− r ∈ (0, min ξ±) if ξ± > 0

r ∈ (max ξ±, 0) if ξ± < 0
r ∈ (0, ξ+) if
ξ− < 0 < ξ+, |ξ−| > ξ+

r ∈ (ξ−, 0) if
ξ− < 0 < ξ+, |ξ−| < ξ+

a2
2 − 4a1a3 = 0 r = 0, ξ+ = ξ− = ξ r ∈ (0, ξ)

Differential Equation: r (ξ1 − r)(ξ2 − r) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Roots: r = 0; r = ξ± ≡ (−α2 ±

√
α2

2 − 4α1α3)/(2α3)
Singularity: r = 0, ξ±, ∞: Regular

Differential Equation: r (ξ − r)2 y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Roots: r = 0; r = ξ ≡ −α2/(2α3)

Singularity: r = 0, ξ: Regular; r = ∞: Irregular

II 0 α2 α1 r = 0, r = −α1/α2 r ∈ (0, −α1/α2) if α1/α2 < 0
r ∈ (−α1/α2, 0) if α1/α2 > 0

Differential Equation: r(α1 + α2 r) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Singularity: r = 0, −α1/α2: Regular; r = ∞: Irregular

III α3 0 α1 a1a3 < 0 r = 0, ±
√

−α1/α3 r ∈ (0,
√

−α1/α3)
α1α3 > 0 r = 0, r ∈ (0, ∞)

Differential Equation: r (α3r2 + α1) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, α3α1 < 0
Singularity: r = 0, ±

√
−α1/α3, ∞: Regular

Differential Equation: r (α3r2 + α1) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, α3α1 > 0
Singularity: r = 0: Regular; r = ∞: Irregular

IV α3 α2 0 β0 = 0 r = 0, −α2/α3 r ∈ (0, −α2/α3) if α2/α3 < 0
r ∈ (−α2/α3, 0) if α2/α3 > 0

Differential Equation: r2(α3r + α2) y′′ + r(β1 + β2 r) y′ + (ε0 + ε1 r) y = 0
Singularity: r = 0, −α2/α3: Regular; r = ∞: Irregular

V 0 0 α1 r = 0 r ∈ (0, ∞)

Differential Equation: α1 r y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Singularity: r = 0: Regular; r = ∞: Irregular

VI 0 α2 0 β0 = 0 r = 0 r ∈ (0, ∞)

Differential Equation: α2 r2 y′′ + r(β1 + β2 r) y′ + (ε0 + ε1 r) y = 0
Singularity: r = 0 : Regular; r = ∞: Irregular

VII α3 0 0 r = 0 r ∈ (0, ∞)

Differential Equation: α3 r3 y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0
Singulaity: r = 0, ∞: Irregular

Table 3. Tabulating the seven different types of differential equations, which apply to Theorem 4.1.
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initiated with

P2,s(ε) = ((s + 1)(α2 s + β1) + ε0)P1;s(ε0) − (α1 s + β0)(s + 1)(s(α3(s − 1) + β2) + ε1)

Continuing with this process, it is straightforward to conclude that the series solution can be written as

y(r) = rs
∞∑

k=0
Ck rk =

∞∑

k=0
(−1)k Pk;s(ε0)

αk
1

(
β0
α1

+ s
)

k
(1 + s)k

rk+s, (68)

where the k-degree polynomials of the parameter ε0, namely {Pk;s(ε0)}∞
k=0, satisfy the following three-term

recurrence relation:

Pk+1;s(ε0) =
(
(k + s)

[
(k + s − 1)α2 + β1

]
+ ε0

)
Pk;s(ε0) − (k + s)

(
(k + s − 1)α1 + β0

)(
(k + s − 1)

×
[
(k + s − 2)α3 + β2

]
+ ε1

)
Pk−1;s(ε0), (69)

initiated with P−1;s(ε0) = 0 and P0;s(ε0) = 1.

For the classes I-IV in Table 3, including, of course, the classical Heun equation, r = 0 is a regular singular
point with one of the exponents of singularities being s = 0, in which case, the coefficients {Ck}∞

k=0 of the series
solution y(r) =

∑∞
k=0 Ckrk satisfy the three-term recurrence relation

(
(k + 1)(k α1 + β0)

)
Ck+1 +

(
k
(
(k − 1)α2 + β1

)
+ ε0

)
Ck +

(
(k − 1)

(
(k − 2)α3 + β2

)
+ ε1

)
Ck−1 = 0, (70)

and we have the following general result concerning the series solutions of the equation (65):

Theorem 4.1. In the neighbourhood of the regular singular point r = 0, the series solution y(r) =
∑∞

k=0 Ckrk

of the differential equation (65), with α1 ̸= 0, is explicitly given by

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk , (71)

where the infinite sequence {Pk(ε0)}∞
k=0 is evaluated using the three-term recurrence relation

Pk+1(ε0) =
(
k(k − 1)α2 + kβ1 + ε0

)
Pk(ε0) − k

(
(k − 1)α1 + β0

)

×
(
(k − 1)(k − 2)α3 + (k − 1)β2 + ε1

)
Pk−1(ε0), (72)

where P−1(ε0) = 0, and P0(ε0) = 1.

Here, (α)n refers to the Pochhammer symbol (α)n = α(α + 1) · · · (α − n + 1) = Γ(α + n)/Γ(α) which is
defined in terms of Gamma functions and satisfies the identity (−n)k = 0 for any positive integers k ≥ n + 1.
Equation (72) in Theorem follows directly by substituting the coefficients of (71) in the recurrence relation (65)
and eliminates the common terms.

Corollary 4.2. In the neighbourhood of the regular singular point r = 0, the series solution y(r) =
∑∞

k=0 Ckrk

of the differential equation

r (α1 + α3r2) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, (73)

is given, explicitly, by

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk, (74)

where

Pk+1(ε0) = (k β1 + ε0)Pk(ε0) − k ((k − 1)α1 + β0) × ((k − 1)(k − 2)α3 + (k − 1)β2 + ε1)Pk−1(ε0), (75)

initiated with P−1(ε0) = 0, P0(ε0) = 1.
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Corollary 4.3. In the neighbourhood of the regular singular point r = 0, the series solution y(r) =
∑∞

k=0 Ckrk

of the differential equation

r (α1 + α2 r) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, (76)

is given, explicitly, by

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk, (77)

where

Pk+1(ε0) = (k(k − 1)α2 + kβ1 + ε0)Pk(ε0) − k((k − 1)α1 + β0)((k − 1)β2 + ε1)Pk−1(ε0), (78)

initiated with P−1(ε0) = 0, P0(ε0) = 1.

Corollary 4.4. In the neighbourhood of the regular singular point r = 0, the series solution y(x) =
∑∞

k=0 Ckrk

of the differential equation

α1 r y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, (79)

is given, explicitly, by

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk, (80)

where

Pk+1(ε0) = (kβ1 + ε0)Pk(ε0) − k ((k − 1) α1 + β0)((k − 1)β2 + ε1)Pk−1(ε0), (81)

initiated with P−1(ε0) = 0, P0(ε0) = 0.

Corollary 4.5. In the neighbourhood of the regular singular point x = 0, the series solution y(x) =
∑∞

k=0 Ckxk

of the differential equation

α1r y′′ + (β0 + β2 r2) y′ + (ε0 + ε1 r) y = 0, (82)

is given, explicitly, by

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk, (83)

where

Pk+1(ε0) = ε0Pk(ε0) − k((k − 1)α1 + β0)((k − 1)β2 + ε1)Pk−1(ε0), (84)

initiated with P−1(ε0) = 0, P1(ε0) = 1.

Remark 4.6. If, in addition to α0 = 0, we also have α1 = 0, then r = 0 is a regular singular point only if
β0 = 0, in which case the differential equation reduces to an equation that resembles Euler’s equation, namely

r2 (α2 + α3r
)

y′′ + r
(
β1 + β2 r

)
y′ +

(
ε0 + ε1 r

)
y = 0. (85)

The exponents of the singularity r = 0 are

s± =
(
α2 − β1 ±

√
(α2 − β1)2 − 4α2ε0

)
/(2α2).

From the relation (66), the coefficients of the formal series solution y(r) = rs
∑∞

k=0 Ck rk satisfy the two-term
recurrence relation (k = 1, 2, . . . , C0 = 1),

Ck = − (k−1+s±)(k−2+s±)α3+(k−1+s±)β2+ε1
(k+s±)(k−1+s±)α2+(k+s±)β1+ε0

Ck−1, =
k∏

j=1
(−1)j (j−1+s±)(j−2+s±)α3+(j−1+s±)β2+ε1

(j+s±)(j−1+s±)α2+(j+s±)β1+ε0
, (86)

that allows to obtain a closed form of the series solution of (71) in terms of the generalized hypergeometric
function as

y(r) =rs± 3F2

(
1, s± − 1

2 + β2
2α3

−
√

(α3−β2)2−4α3ε1
2α3

, s± + 1
2 + β2

2α3
−

√
(α3−β2)2−4α3ε1

2α3
;

s± + 1
2 + β1

2α2
−

√
(α2−β1)2−4α2ε0

2α2
, s± + 1

2 + β1
2α2

+
√

(α2−β1)2−4α2ε0
2α2

; −α3

α2
r
)

. (87)
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4.2. Polynomial Solution and finite sequence of orthogonal polynomials

Theorem 4.7. The necessary condition for the second-order linear differential equation (65) to have an nth-
degree polynomial solution yn(r) =

∑n
k=0 Ck rk , n = 0, 1, 2, . . ., in the neighbourhood of the regular singular

point r = 0 with one of the indicial equation exponents s = 0, is

ε1;n = −n (n − 1) α3 − n β2 , n = 0, 1, 2, . . . , (88)

along with the sufficient condition, relating the remaining coefficients, given by the vanishing of the tridiagonal
(n + 1) × (n + 1)-determinant ∆n+1 ≡ 0 given by

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 T1

γ1 S1 T2

γ2 S2 T3
. . . . . . . . .

γn−2 Sn−2 Tn−1

γn−1 Sn−1 Tn

γn Sn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (89)

where, for fixed n : ε1;n = −n (n − 1) α3 − n β2,




Sk = ε0;n + k
(
(k − 1)α2 + β1

)
,

Tk = −k
(
(k − 1)α1 + β0

)
,

γk = −ε1;n − (k − 1)
(
(k − 2)α3 + β2

)
,

and all other entries are zeros. In this case, the polynomial solutions are given explicitly by

yn(r) =
n∑

k=0
(−1)k Pn

k (ε0;n)

k! αk
1

(
β0
α1

)

k

rk , (90)

where the finite orthogonal sequences {Pn
k (ε0;n)}n

k=0 are evaluated using the three-term recurrence relation

Pn
k+1(ε0;n) =

(
Sk + ε0;n

)
Pn

k (ε0;n) − γkTkPn
k−1(ε0;n) ,

or, more explicitly,

Pn
k+1(ε0;n) =

(
k(k − 1)α2 + kβ1 + ε0;n

)
Pn

k (ε0;n) + k(n − k + 1)
(
(k − 1)α1 + β0

)

×
(
β2 + α3(k + n − 2)

)
Pn

k−1(ε0;n) , (91)

where Pn
−1(ε0;n) = 0, and Pn

0 (ε0;n) = 1 for the non-negative integer n.

Expanding ∆k+1 with respect to the last column, it is clear that the determinant (89) satisfies a three-term
recurrence relation

{
∆k+1 = (Sk + ε0;n) ∆k − γk Tk ∆k−1,

∆0 = 1, ∆−1 = 0, k = 0, 1, . . . , n ,
(92)

that allow to compute the determinant ∆k recursively in terms of lower-order determinants. We now show, by
induction on k, that

∆k+1 = Pk+1(ε0;n). (93)

For k = 0, we find by (89) that ∆1 = (S0 + ε0;n) where the right hand side equals to P n
1 (ε0;n) using (91). Next,

suppose that ∆j = Pj(ε0;n), for j = 0, 1, 2, · · · , k, then from (91)

Pn
k+1(ε0;n) =

(
Sk + ε0;n

)
Pn

k (ε0;n) − γk Tk Pn
k−1(ε0;n) =

(
Sk + ε0;n

)
∆k − γk Tk ∆k−1 = ∆k+1

and the induction step is reached. These results can be represented by the graphical representation (Figure 2).

Some of the mathematical properties of the finite sequence of polynomials {Pn
k (ε0;n)}n

k=0 will be explored in
later sections.
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∆k+1 = det

S0 T1 0
... 0

γ1 S1 T2
... 0

0 γ2 S2
... 0

· · · · · · · · · . . . ...

0 0 0 · · · Sn







Pn
1 Pn

2 Pn
3 Pn

n

Figure 2. A demonstration of how the polynomials {Pn
k (ε0;n)}n

k=0 may be obtained from the (k + 1)-determinant
∆k+1 for k = 0, 1, 2, . . . , n .

Remark 4.8. For α3 + α2 + α1 = 0, the canonical form of Heun’s equation can be deduced from (65) by means
of the following substitutions:

y′′(r) +




β0+β1+β3
α3−α1

r − 1 +
β0
α1

r
+

α2
3β0+α1α3β1+α2

1β2
α1α3(α1−α3)

(r − α1
α3

)


 y′(r) +

ε1
α3

r + ε0
α3

r (r − 1)
(

r − α1
α3

) y(r) = 0. (94)

or, simply in the standard form as

y′′(r) +
(

γ

r
+ δ

r − 1 + ε

r − b

)
y′(r) + α β r − q

r(r − 1)(r − b)y(r) = 0, (95)

where
γ δ ε α β q b

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
β0
α1

β2 + β1 + β0
α3 − α1

β2α2
1 + β1α1α3 + β0α2

3
α3α1(α1 − α3)

β2 + (n − 1)α3
α3

−n − ε0
α3

α1
α3

⇑ ⇑ ⇑ ⇑ ⇑ ⇑
γ δ ε β α q b

where, in either case, it follows
γ + δ + ε = α + β + 1

that ensures the regularity of the singular point ∞. With these parameters, the Sturm-Liouville form of the
differential equation (65) is

− d

dr

(
rγ (r − 1)δ (r − b)ε dy

dr

)
+ α β rγ (r − 1)δ−1(r − b)ε−1y = q rγ−1(r − 1)δ−1(r − b)ε−1 y (96)

where, for b ≥ 1, γ ≥ 0, δ ≥ 1, r ∈ (0, 1) .

Corollary 4.9. The second-order linear differential equation

r2(α3 r + α2)y′′(r) + r (β2 r + β1) y′ + (−(n(n − 1) α3 + n β2) r + ε0) y = 0, (97)

where r ∈ (−α2/α3, 0) if α2α3 > 0 or r ∈ (0, α2/α3) if α2α3 < 0, has a polynomial solution of degree n subject
to





n∏
k=0

(ε0 + k((k − 1)α2 + β1) = 0

=⇒
ε0 = −n (n − 1) α2 − n β1, n = 0, 1, 2, · · · .

(98)
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In particular, the differential equation

r2(α3r + α2) y′′(r) + r(β2 r + β1) y′(r) −
(

(n (n − 1) α3 + n β2) r + n (n − 1) α2 + n β1

)
y(r) = 0, (99)

has the polynomial solutions
yn(r) = rn, n = 0, 1, 2, . . . . (100)

Proof. Follows immediately from Theorem 4.7 with α1 = β0 = 0.

5. Mathematical properties of the orthogonal polynomials {Pk(ε0)}∞
k=0

As pointed out by Theorem 4.1, in the neighbourhood of the singular point r = 0 with an indicial exponent root
zero, the series solution of the differential equation with four singular points, see (65),

r
(
α1 + α2 r + α3r2) y′′ +

(
β0 + β1 r + β2 r2) y′ +

(
ε0 + ε1 r

)
y = 0 .

can be written as

y(r) =
∞∑

k=0
(−1)k Pk(ε0)

k! αk
1

(
β0
α1

)

k

rk , (101)

where the infinite sequence of polynomials {Pk(ε0)}∞
k=0 in the real variable ε0 satisfies the three-term recurrence

relation

Pk+1(ε0) = (ε0 − Ak)Pk(ε0) − BkPk−1(ε0), (102)

initiated with
P−1(ε0) = 0, P0(ε0) = 1, k = 1, 2, 3, · · · .

where

Ak = −k(k − 1)α2 − kβ1,

Bk = k
(
(k − 1)α1 + β0

)(
(k − 1)((k − 2)α3 + β2) + ε1

)
.

For Ak, Bk ∈ R and if Bk > 0, then according to Favard Theorem [25], see also [26, Theorem 2.14], there exists
a positive Borel measure µ such that {Pk}∞

k=0 is orthogonal with respect to the inner product

⟨Pk, Pk′⟩ =
∫

R
Pk(ε0)Pp′(ε0)dµ (103)

such that ∫

R
Pk(ε0)Pk′(ε0)dµ = pkpk′δkk′ ,

∫

R
dµ = 1, (104)

where δkk′ is the Kronecker symbol. In particular,
∫

R
εk

0Pk′(ε0)dµ = 0 for all 0 < k < k′. (105)

The norm pk can be found using the recurrence relations (102) by multiplying with εk−1
0 and taking the integral

over ε0 with respect to µ that yields

∫

R
εk

0Pk(ε0)dµ = Bk

∫

R
εk−1

0 Pk−1(ε0)dµ = BkBk−1

∫

R
εk−2

0 Pk−2(ε0)dµ = · · · =




k∏

j=2
Bj



∫

R
dµ (106)
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and
∫

R
Pk(ε0)Pk′(ε0) dµ = k! (α1 α3)k

β0ε1

(
β0
α1

)

k

×
(

−α3 + β2 −
√

(α3 − β2)2 − 4α3ε1
2α3

)

k

×
(

−α3 + β2 +
√

(α3 − β2)2 − 4α3ε1
2α3

)

k

δkk′ . (107)

Using the recurrence relation (102), it also follows that

∫

R
ε0[Pk(ε0)]2dµ = −k((k − 1)α2 + β1)k! (α1 α3)k

β0ε1

(
β0
α1

)

k

(
−α3 + β2 −

√
(α3 − β2)2 − 4α3ε1
2α3

)

k

×
(

−α3 + β2 +
√

(α3 − β2)2 − 4α3ε1
2α3

)

k

. (108)

Further, for k = 0, 1, 2, · · · ,
∫

R
ε0Pk+1(ε0)Pk(ε0)dµ = (k + 1)! (α1 α3)k+1

β0ε1

×
(

β0
α1

)

k+1

(
−α3 + β2 −

√
(α3 − β2)2 − 4α3ε1
2α3

)

k+1

(
−α3 + β2 +

√
(α3 − β2)2 − 4α3ε1
2α3

)

k+1

. (109)

Other integrals can be evaluated similarly, for example
∫
R[ε0Pk(ε0)]2dµ can be evaluated by multiplying (102)

by ε0Pk(ε0) and integrate with respect to the measure µ using (107), (108), and (109) and we continue similarly
for ∫

R
εm

0 [Pk(ε0)]2dµ, m = 0, 1, 2, · · · .

The recurrence relations (102) for x = ε0 and y = ε′
0 read

Pk+1(x) =
(
x − Ak

)
Pn

k (x) − BkPn
k−1(x) ,

Pk+1(y) =
(
y − Ak

)
Pn

k (y) − BkPn
k−1(y),

respectively. By multiplying the first by Pk(y) and the second by Pk(x) and subtracting, the resulting equation
becomes

(x − y)Pk(y)Pk(x) = Qk+1(x, y) − Bk Qk(x, y) (110)

where Qk+1(x, y) = Pk+1(x)Pk(y) − Pk(x)Pk+1(y). Thus, recursively over k, we have

(x − y)Pk(x)Pk(y) = Qk+1(x, y) − Bk Qk(x, y)
(x − y)Pk−1(x)Pk−1(y) = Qk(x, y) − Bk−1 Qk−1(x, y)

...
(x − y)Pn

0 (x)Pn
0 (y) = Q1(x, y) ,

from which it is straightforward to obtain

(x − y)
[
Pk(x)Pk(y) + BkPk−1(x)Pk−1(y) + BkBk−1Pk−2(x)Pk−2(y)

+ BkBk−1Bk−2Pk−3(x)Pk−3(y) + · · · + λk+1λkλk−1λk−2 . . . λ2P0(x)P0(y)
]

= Qk+1(ε0, y) .

Dividing both sides by (x − y)BkBk−1Bk−2 . . . B2 and summing over k results in

k∑

j=0

Pj(x)Pj(y)
BjBj−1Bj−2 . . . B2

= (BkBk−1Bk−2 . . . B2)−1 × Pk+1(x)Pk(y) − Pn
k (x)Pk+1(y)

x − y
.
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(101) then follows using

BkBk−1Bk−2 . . . B2 =
k∏

i=2
Bi

= k! (α1 α3)k

β0ε1

(
β0
α1

)

k

×
(

−α3 + β2 −
√

(α3 − β2)2 − 4α3ε1
2α3

)

k

×
(

−α3 + β2 +
√

(α3 − β2)2 − 4α3ε1
2α3

)

k

and finally, we have, for k ≥ 0, Christoffel-Darboux identities:

k∑

j=0

Pj(x)Pj(y)
j! (α1 α3)j

(
β0
α1

)
j

(ξ+)j (ξ−)j

= Pk+1(x)Pk(y) − Pk(x)Pk+1(y)
k! (α1 α3)k

(
β0
α1

)
k

(ξ+)k (ξ−)k (x − y)
, (111)

where

ξ± = −α3 + β2 ±
√

(α3 − β2)2 − 4α3ε1
2α3

and by evaluating the limit of both sides as y → x, its confluent form

k∑

j=0

[Pj(x)]2
j! (α1 α3)j (ξ+)j (ξ−)j

=
P ′

k+1(x)Pk(x) − P ′
k(x)Pk+1(x)

k! (α1 α3)k
(

β0
α1

)
k

(ξ+)k (ξ−)k

(112)

follows. Here, the prime refers to the derivative with respect to the variable x. As a direct consequence of the
Christoffel-Darboux formula (112), all the zeros of the n-degree polynomial Pn(ε) are simple. To prove that
they are also real, we note that the recurrence relation (102) can be written in a matrix form as

x




P0(x)
P1(x)
P2(x)

...
Pk−1(x)




=




A0 1 0 · · · 0 0
B1 A1 1 · · · 0 0
0 B2 A2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · Bk−1 Ak−1







P0(x)
P1(x)
P2(x)

...
Pk−1(x)




+ Pk(x)




0
0
0
...
1




(113)

Thus, if xi is a zero of Pk(x), it is an eigenvalue of the given tridiagonal matrix. Since, by the hypothesis
of (102), Bk > 0 for all k ≥ 1, the results of Arscott [24] confirm that (i) the zeros of Pk−1(x) and Pk(x) interlace
– that is, between two consecutive zeros of either polynomial lies precisely one zero of the other (ii) at the zeros
of Pk(x) the values of Pk−1(x) are alternately positive and negative, (iii) all the zeros of Pk(x) – i.e. all the
eigenvalues of tridiagonal matrix are real and different.

6. Mathematical properties of the finite orthogonal polynomials
{Pn

k (ε0)}n
k=0

In this section, we shall study some of the mathematical properties of the orthogonal polynomials {Pn
k (ε0;n)}n

k=0.
First, the zeros of the polynomial generated by the aforementioned determinant are all simple. This fact can be
confirmed by establishing the Christoffel-Darboux formula. Denote x = ε0;k and y = ε0;k′ , where k ̸= k′ and
k, k′ = 0, 1, 2, · · · , n − 1: For x ̸= y

k∑

j=0

Pn
j (x)Pn

j (y)

j!(α1α3)j(−n)j

(
β0
α1

)
j

(
β2
α3

+ n − 1
)

j

=
Pn

k+1(x)Pn
k (y) − Pn

k (x)Pn
k+1(y)

k!(α1α3)k(−n)k

(
β0
α1

)
k

(
β2
α3

+ n − 1
)

k
(x − y)

, (114)

while, for the limit y → x,

k∑

j=0

(
Pn

j (x)
)2

j!(α1α3)j(−n)j

(
β0
α1

)
j

(
β2
α3

+ n − 1
)

j

=
[Pn

k+1(x)]′Pn
k (x) − [Pn

k (x)]′Pn
k+1(x)

k!(α1α3)k(−n)k

(
β0
α1

)
k

(
β2
α3

+ n − 1
)

k

. (115)
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Here, the prime refers to the derivative with respect to the variable x. If x = xk is a zero of the polynomial
Pn

k (x) with multiplicity > 1, then Pn
k (xk) = 0 and (115) yields the contradiction

0 <

k−1∑

j=0

(
Pn

j (xi)
)2

j!(α1α3)j(−n)j

(
β0
α1

)
j

(
β2
α3

+ n − 1
)

j

= 0, (116)

and the zeros of the polynomial P n
k (x), k = 1, 2, · · · n are distinct.

6.1. Norms of the orthogonal polynomials

Denote ε0;n = x, the general theory of orthogonal polynomials [27] guarantees that the finite sequence of
polynomials {Pk(x)}n

k=0 form a set of orthogonal polynomials for each n. This implies the existence of a certain
weight function, W(x), which can be normalized as

∫
dW = 1 , (117)

for which
∫

Pk(x)Pk′(x)dW = pk pk′ δkk′ , 0 ≤ k, k′ ≤ n , (118)

where pk denotes the norms of polynomials Pk(x). These norms can be found from the recurrence relations (36)
by multiplying with xk−1W(x) and taking the integral over x yields the recurrence formula

∫
xk Pn

k (x) W(x) dx = −k(n − k + 1)
(
(k − 1)α1 + β0

)
×
(
β2 + α3(k + n − 2)

) ∫
xk−1Pn

k−1(x)W(x)dx , (119)

and thus
∫

Pn
k (x) xk W(x) dx = k! (α1α3)k (−n)k

(
β0
α1

)

k

(
β2
α3

+ n − 1
)

k

. (120)

From which it follows
∫

[Pn
k (x)]2W(x)dx = p2

k = k! (α1α3)k (−n)k

(
β0
α1

)

k

(
β2
α3

+ n − 1
)

k

(121)

for all 0 ≤ k ≤ n.

Because of the Pochhammer identity (−n)k = 0 for k > n, it follows from (71) that the norms of all
polynomials Pn

k (x) with k ≥ n + 1 vanish. Thus

pk = 0 , k ≥ n + 1 . (122)

We may also note, using the recurrence relation, that
∫

x[Pk(x)]2W(x)dx = −k((k − 1)α2 + β1) k! (α1α3)k (−n)k

(
β0
α1

)

k

(
β2
α3

+ n − 1
)

k

. (123)

6.2. The zeros of the polynomials {Pn
k (ε0;n)}n

k=0

One of the important properties of the polynomials Pn
n+1(ε0;n) concerns their zeros. An argument provided

by Arscott [24] proves that if the product (γk · Tk) > 0 for all k = 1, 2, . . . , n, then the polynomials that
satisfy the tri-diagonal determinant (67) are real and simple. Let us denote that the roots of the polynomials
Pn

n+1(ε0;n) = 0 by εℓ
0;n, ℓ = 0, 1, . . . , n such that

Pn
n+1(εℓ

0;n) = 0 , (124)

where
ε0

0;n < ε1
0;n < · · · < εn

0;n .
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In particular, since Pn
n+1(ε0;n) is of degree n + 1 and all the roots are simple and different, it follows that

Pn
n+1(ε0;n) =

n∏

ℓ=0
(ε0;n − εℓ

0;n) . (125)

The ‘discrete’ weight function W can be computed numerically [28] using (118), (119) and (125) for the
given n. Denote Pℓ(ε0) = Pn

ℓ (ε0), and let the roots of Pn
n+1(ε0;n) = 0 be εj

0;n arranged in ascending order
for j = 0, 1, 2, · · · , n. The weights Wj , j = 0, 1, · · · , n, for the orthogonal polynomials {Pn

ℓ (ε0;n)}n
k=0 can be

computed by solving the linear system
n∑

j=0
Wj Pn

ℓ (εj
0;n) = 0 (126)

for ℓ = 0, 1, · · · , n.

6.3. Factorization property

Another interesting property of the polynomials {Pn
k (x)}n

k=0, aside from being an orthogonal sequence, is that
when the parameter n takes positive integer values, the polynomials exhibit a factorization property. Clearly,
the factorization occurs because the third term in the recursion relation (36) vanishes when k = n + 1, so that all
subsequent polynomials have a common factor Pn

n+1(ζ) called a critical polynomial. Indeed, all the polynomials
Pn

k+n+1(x), beyond the critical polynomial Pn
n+1(x) are factored into the product

Pn
k+n+1(x) = Qn

k (x) Pn
n+1(x), k = 0, 1, . . . , (127)

where the sequence {Qn
k (x)} are polynomials of degree k = 0, 1, . . . . Interestingly, the quotient polynomials

{Qn
k (x)}∞

k=0 form an infinite sequence of orthogonal polynomials. To prove this claim, we substitute (128)
into (36) and re-index the polynomials to eliminate the common factor Pn

n+1(ζ) from both sides. The recurrence
relation (36) then reduces to a three-term recurrence relation for the polynomials {Qn

k (ζ)}k≥0 that reads

Qn
k (x) =

(
(k + n)(k + n − 1)α2 + (k + n)β1 + x

)
Qn

k−1(x) − (k + n)(k − 1)
(
(k + n − 1)α1 + β0

)

×
(
β2 + α3(k + 2n − 2)

)
Qn

k−2(x) , (128)

where Qn
−1(ζ) = 0, and Qn

0 (ζ) = 1. Hence, the quotient polynomials Qn
k (ζ) also form a new sequence of

orthogonal polynomials for each value of n. For example, if n = 2, the critical polynomial is

P2
3 (x) = x3 + (2α2 + 3β1)x2 + 2

(
(3α3 + 2β2)β0 + β1(α2 + β1) + α1(2α3 + β2)

)
x

+ 4β0(α2 + β1)(α3 + β2) . (129)

and
P2

4 (x) =
(
x + 6α2 + 3β1

)
P2

3 (x) ,

P2
5 (x) =

(
x2 + (18α2 + 7β1)x − 4

(
(3α1 + β0)(4α3 + β2) − 3(2α2 + β1)(3α2 + β1)

))
P2

3 (x) ,

P2
6 (x) =

(
x3 + (38α2 + 12β1)x2 +

(
432α2

2 + 290α2β1 + 47β2
1 − 2(124α1α3 + 33α3β0 + 26α1β2 + 7β0β2)

)
x

− 10
(
β1(84α1α3 + 23α3β0 − 6β2

1 + 18α1β2 + 5β0β2) + 2α2
(
31α3β0 − 27β2

1 + 7β0β2 + 12α1(9α3 + 2β2)
)

− 144α3
2 − 156α2

2β1
))

P2
3 (x) ,

...

from which we have
Q0(x) = 1 ,

Q1(x) = x + 6α2 + 3β1 ,

Q2(x) = x2 + (18α2 + 7β1)x − 4
(
(3α1 + β0)(4α3 + β2) − 3(2α2 + β1)(3α2 + β1)

)
,

Q3(x) = x3 + (38α2 + 12β1)x2 +
(
432α2

2 + 290α2β1 + 47β2
1 − 2(124α1α3 + 33α3β0 + 26α1β2 + 7β0β2)

)
x

− 10
(
β1(84α1α3 + 23α3β0 − 6β2

1 + 18α1β2 + 5β0β2) + 2α2
(
31α3β0 − 27β2

1 + 7β0β2 + 12α1(9α3 + 2β2)
)

− 144α3
2 − 156α2

2β1
)

,

...
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and so on. The Christoffel-Darboux formula for this infinite sequence of orthogonal polynomials reads
k∑

j=0

Qn
j (x)Qn

j (y)
j! (α1α3)j(n + 2)j

(
β0
α1

+ n + 1
)

j

(
β2
α3

+ 2n
)

j

=
Qn

k+1(x)Qn
k (y) − Qn

k (x)Qn
k+1(y)

k! (α1α3)k(n + 2)k

(
β0
α1

+ n + 1
)

k

(
β2
α3

+ 2n
)

k
(x − y)

, (130)

and as y → x

k∑

j=0

(
Qn

j (x)
)2

j! (α1α3)j(n + 2)j

(
β0
α1

+ n + 1
)

j

(
β2
α3

+ 2n
)

j

=
[Qn

k+1(x)]′Qn
k (x) − [Qn

k (x)]′Qn
k+1(x)

k! (α1α3)k(n + 2)k

(
β0
α1

+ n + 1
)

k

(
β2
α3

+ 2n
)

k

. (131)

Theorem 6.1. The norms of all polynomials Qn
k (ξ) are given by

GQ
k = k! (α1α3)k(n + 2)k

(
β0
α1

+ n + 1
)

k

(
β2
α3

+ 2n

)

k

. (132)

Proof. The proof follows by multiplying the recurrence relation (128) by xk−2ρ(x), with the normalized weight
function

∫
ρ(x)dx = 1, and integrating over x. This procedure yields a two-term recurrence relation

GQ
k = k (k + n + 1) ((k + n)α1 + β0) (β2 + α3(k + 2n − 1))) GQ

k−1 ,

where GQ
k =

∫
|Qn

k (x)|2ρ(z)dz =
∫

xkQn
k (x)ρ(x)dx with a solution given by (132). We see that, in general, the

norm of the polynomials Qn
k (x) does not vanish.
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MODIFIED KORTEWEG-DE VRIES EQUATION AS A SYSTEM
WITH BENIGN GHOSTS
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Abstract. We consider the modified Korteweg-de Vries equation, uxxx + 6u2ux + ut = 0, and
explore its dynamics in spatial direction. Higher x derivatives bring about the ghosts. We argue that
these ghosts are benign, i.e., the classical dynamics of this system does not involve a blow-up. This
probably means that the associated quantum problem is also well defined.

Keywords: Benign ghosts, KdV equation, integrability.

1. Introduction
A system with ghosts is, by definition, a system where
the quantum Hamiltonian has no ground state so
its spectrum involves the states with arbitrarily low
and arbitrarily high energies. In particular, all non-
degenerate theories with higher derivatives in the La-
grangian (but not only them!) involve ghosts. The
ghosts show up there already at the classical level:
the Ostrogradsky Hamiltonians of higher derivative
systems [1] include the linear in momenta terms and
are thus not positive definite [2]. This brings about
the ghosts in the quantum problem [3, 4].

In many cases, ghost-ridden systems are sick – the
Schrödinger problem is not well posed and unitarity
is violated. Probably, the simplest example of such
a system is a system with the Hamiltonian describing
the 3-dimensional motion of a particle in an attractive
1
r2 potential:

H = p⃗2

2m − κ

r2 . (1)

For certain initial conditions, the particle falls to the
center in a finite time, as is shown in Figure 1.

The quantum dynamics of this system depends on
the value of κ. If mκ < 1/8, the ground state exists
and unitarity is preserved. If mκ > 1/8, the spectrum
is not bounded from below and, what is worse, the
quantum problem cannot be well posed until the sin-
gularity at the origin is smoothed out [5–7]. One can
say that for mκ < 1/8, the quantum fluctuations cope
successfully with the attractive force of the potential
and prevent the system from collapsing.

The latter example suggests that quantum fluctua-
tions can only make a ghost-ridden system better, not
worse. We, therefore, conjecture that, if the classical
dynamics of the system is benign, i.e., the system does
not run into singularity in finite time,1 its quantum

1We still call a system benign if it runs into a singularity
at t = ∞. Such systems have well-defined quantum dynamics.
This refers, for example, to the problem of motion in a uniform
electric field (see e.g. [8], $24) and also to the inversed oscillator

-0.5 0.5 1.0
x

-0.4

-0.2

0.2

0.4

0.6

0.8

y

Figure 1. Falling on the center for the Hamiltonian
(1) with m = 1 and κ = .05. The energy is slightly
negative. The particles with positive energies escape
to infinity.

dynamics will also be benign, irrespectively of whether
the spectrum has, or does not have, a bottom.

This all refers to ordinary mechanical or field theory
systems, where energy is conserved and the notion of
Hamiltonian exists. The ghosts in gravity (especially,
in higher-derivative gravity) are special issue that we
are not discussing here.

Besides malignant ghost-ridden systems, of which
the system (1) with mκ > 1/8 represents an exam-
ple, there are also many systems with ghosts, which
are benign – unitarity is preserved and the quantum
Hamiltonian is self-adjoint with a well-defined real
spectrum. To begin with, such is the famous Pais-
Uhlenbeck oscillator [10] – a higher derivative system

with the Hamiltonian H = (p2 − x2)/2. In the latter problem,
the classical trajectories x(t) grow exponentially with time,
but the quantum problem is still benign (see e.g. [9], Ch. 3,
corollary 13). The spectrum in this case is continuous, as it is
for the uniform field problem.
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with the Lagrangian

L = 1
2

[
ẍ2 − (ω2

1 + ω2
2)ẋ2 + ω2

1ω
2
2x

2]
. (2)

This system is free, its canonical Hamiltonian can be
reduced to the difference of the two oscillator Hamil-
tonians by a canonical transformation [11]. The first
example of a nontrivial benign ghost system involving
nonlinear interactions was built up in [12]. For other
such examples, see Refs. [13–17].

In recent [18], we outlined two wide classes of benign
ghost systems: (i) the systems obtained by a varia-
tion of ordinary systems and involving, compared to
them, a double set of dynamic variables and (ii) the
systems describing geodesic motion over Lorenzian
manifolds. In addition, we noticed that the evolution
of the modified Korteweg-de Vries (MKdV) system
(9) in the spatial direction also exhibits a benign ghost
dynamics. This report is mostly based on section 4
of [18] that deals with MKdV dynamics.

2. Spatial dynamics of KdV and
MKdV equations

First, consider the ordinary KdV equation,

uxxx + 6uux + ut = 0 , (3)

where ux = ∂u/∂x, ut = ∂u/∂t etc. It has an infinite
number of integrals of motion and is exactly soluble.2
The KdV equation is derived from the field Lagrangian

L[ψ(t, x)] = 1
2ψ

2
xx − ψ3

x − 1
2ψtψx (4)

if one denotes u(t, x) ≡ ψx after having varied over
ψ(t, x). This Lagrangian involves higher spatial deriva-
tives, but not higher time derivatives and does not
involve ghosts in the ordinary sense. We can, however,
simply rename

t → X, x → T , (5)

in which case the equation acquires the form

uTTT + 6uuT + uX = 0 (6)

and higher time derivatives appear. According to our
conjecture, to study the question of whether the quan-
tum Hamiltonian corresponding to the thus rotated
Lagrangian (4) is Hermitian and unitarity is preserved,
it is sufficient to study its classical dynamics: if it does
not involve a blow-up and all classical trajectories ex-
ist at all times T , one can be sure that the quantum
system is also benign.

Note that the question whether or not blowing up
trajectories are present is far from being trivial. The
ordinary Cauchy problem for the equation (4) consists

2Exact solvability always makes the behaviour of a system
more handy. In particular, many mechanical models includ-
ing benign ghosts, which were mentioned above, are exactly
solvable.

in setting the initial value of u(t0, x) at a given time
moment, say, t0 = 0. And we are now interested [stay-
ing with Eq. (4) and not changing the name of the vari-
ables according to (5)] in the Cauchy problem in x di-
rection. The presence of third spatial derivatives in (4)
makes it necessary to define, at the line x = x0, three
different functions: u(t, x0), ux(t, x0) and uxx(t, x0).
The presence of three arbitrary functions makes the
space of solutions to the spatial Cauchy problem much
larger than for the ordinary Cauchy problem. The
solutions to the latter represent a subset of measure
zero in the set of the solutions in the former, and
the fact that the solutions to the ordinary Cauchy
problem are all benign does not mean that it is also
the case for the rotated x-directed problem.

And, indeed, for the ordinary KdV equation (4),
the problem is not benign. It is best seen if we choose
a t-independent Ansatz u(t, x) → u(x) and plug it
into (3). The equation is reduced to

∂x(uxx + 3u2) = 0 =⇒ uxx + 3u2 = C . (7)

This equation describes the motion in the cubic po-
tential V (u) = u3 − Cu. It has blow-up solutions. If
C = 0, they read

u(x) = − 2
(x− x0)2 . (8)

However, the situation is completely different for the
modified KdV equation,3

uxxx + 6u2ux + ut = 0 . (9)

This equation admits an infinite number of integrals
of motion, as the ordinary KdV equation does. The
first three local conservation laws are

∂tu = −∂x(uxx + 2u3) , (10)

∂tu
2 = −2∂x

[
3
2u

4 + uuxx − 1
2u

2
x

]
, (11)

∂t

(
1
2u

4 − 1
2u

2
x

)
=

∂x

[
ux(2u2ux + 1

2uxxx) − 1
2u

2
xx − 2u3uxx − 2u6

]
(12)

For the time-independent Ansatz, we obtain, instead
of (7),

∂x(uxx + 2u3) = 0 =⇒ uxx + 2u3 = C . (13)

This describes the motion in a quartic potential
V (u) = u4/2 − Cu. This motion is bounded, the
solutions being elliptic functions.

3In Ref. [18], we wrote this equation as

uxxx + 12κu2ux + ut = 0

and kept κ in all subsequent formulas. But here, we have chosen,
for simplicity, to fix κ = 1/2.
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This observation presents an argument that the
rotated Cauchy problem for the equation (9) with
arbitrary initial conditions on the line x = const
might be benign.

Note that this behaviour is specific for the equation
(9) with the positive sign of the middle term (the so-
called focusing case). Plugging the time-independent
Ansatz in the defocusing MKdV equation,4

uxxx − 6u2ux + ut = 0 , (14)

the problem would be reduced to the motion in the
potential V (u) = −u4/2−Cu characterized by a blow-
up. This conforms to the well-known fact that any
solution u(t, x) of the ordinary KdV equation is related
to a solution v(t, x) of the defocusing MKdV equation
by the Miura transformation,

u = −(v2 + vx) . (15)

A different (though related) analytic argument in-
dicating the absence of real blow-up solutions for the
focusing MKdV equation comes from the analysis of
its scaling properties. It is easily seen that Eq. (9)
is invariant under the rescalings u = λuū, x = λxx̄,
t = λtt̄ if

λt = λ3
x, λu = λ−1

x . (16)

The quantities xu and x/t1/3 are invariant under these
rescalings. Using also the space and time translational
invariance of the MKdV equation, we can look for
scaling solutions of the type

u(t, x) = 1
[3(t− t0)]1/3w(z) , (17)

where

z = x− x0
[3(t− t0)]1/3 . (18)

Inserting the ansatz (17) in Eq. (9), one easily verifies
that the function w(z) satisfies the equation

0 = w′′′ + (6w2 − z)w′ − w = d

dz

[
w′′ + 2w3 − zw

]
(19)

Denoting the constant value of the bracket in the last
right-hand side as C, we conclude that w(z) satisfies
a second-order equation,

w′′ = −2w3 + zw + C . (20)

For the equation (14), the same analysis would give
the equation

w′′ = 2w3 + zw + C . (21)

These are Painlevé II equations [19]. In general,
Painlevé equations have pole singularities. And in-
deed, a local analysis of Eq. (21) (keeping the leading-
order terms w′′ ≈ 2w3) shows that (21) admits sim-
ple poles, w(z) ≈ ±1/(z − z0). The existence of

4The coefficient 6 is a convention. It can be changed by
rescaling t and x. But the sign stays invariant under rescaling.
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Figure 2. u(t, x = 2.26) for the defocusing MKdV.

a real simple pole at z = z0 would then correspond to
a singular (blow-up) behavior of u(t, x) of the form
u(t, x) ∝

[
x− x0 − z0[3(t− t0)]1/3]−1. But for the

equation (20) [and hence for (9)], the singularities are
absent.

The third argument in favor of the conjecture that
the x evolution of sufficiently smooth Cauchy data on
the line x = const for the MKdV equation (9) does
not bring about singularities in u(t, x) comes from
numerical simulations. To simplify the numerical
analysis, we considered the problem on the band 0 ≤
t ≤ 2π, where we imposed [as is allowed by Eq. (9)]
periodic boundary conditions:

u(t+ 2π, x) = u(t, x) . (22)

We have chosen the Cauchy data

u(t, 0) = sin t, ux(t, 0) = uxx(t, 0) = 0 . (23)

We first checked that the use of such Cauchy data
for the defocusing MKdV equation (14) was leading
to a blow-up rather fast (at x = 2.2630 . . .). This
is illustrated in Figure 2, where the function u(t, x) is
plotted just before the blow-up, at x = 2.26.

By contrast, our numerical simulations of the x
evolution of the focusing MKdV equation showed
that u(t, x) stayed bounded for all the values of x
that we explored. We met, however, another problem
associated with the instability of Eq. (9) under high-
frequency (HF) perturbations.

Suppressing the nonlinear term in the KdV or
MKdV equations, we obtain

uxxx + ut = 0 . (24)

This equation describes the fluctuations around the
solution u(t, x) = 0. Its analysis gives us an idea about
the behaviour of fluctuations around other solutions.
Decomposing u(t, x) as a Fourier integral, in plane
waves ei(ωt+kx), we obtain the dispersion law

ω = k3 . (25)
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If one poses the conventional Cauchy problem with
some Fourier-transformable initial data

u(0, x) = v(x) ≡
∫

dk

2π v(k)eikx , (26)

the time evolution of the initial data v(x) yields the
solution

u(t, x) =
∫

dk

2π v(k)ei(k3t+kx) . (27)

The important point here is that u(t, x) is obtained
from v(k) by a purely oscillatory complex kernel
ei(k3t+kx) of unit modulus. It has been shown that
this oscillatory kernel has smoothing properties (see,
e.g., [20]). This allows one to take the initial data
in low-s Sobolev spaces Hs (describing pretty rough
initial data).

However, if one considers the x-evolution Cauchy
problem, one starts from three independent functions
of t along the x = 0 axis: u(t, 0) = u0(t), ux(t, 0) =
u1(t) and uxx(t, 0) = u2(t), as in (23). Assuming
that the three Cauchy data ua(t), a = 0, 1, 2, are
Fourier-transformable, we can represent them as

ua(t) =
∫
dω

2π ua(ω)eiωt . (28)

The three Cauchy data determine a unique solution
which, when decomposed in plane waves, satisfies
the same dispersion law (25) as before. However, the
dispersion law (25) must now be solved for k in terms
of ω. As it is a cubic equation in k, it has three
different roots:

ka(ω) = ω
1
3 e2πia/3 a = 0, 1, 2 . (29)

This yields a solution for u(t, x) of the form

u(t, x) =
∑

a=0,1,2

∫
dω

2π va(ω)ei(ωt+kax) , (30)

where the three coefficients va(ω) are uniquely de-
termined by the three initial conditions at x = 0.
The point of this exercise was to exhibit the fact
that, when considering the x evolution with arbitrary
Cauchy data u0(t), u1(t), u2(t), the solution involves
exponentially growing modes in the x direction, linked
to the imaginary parts of k1(ω) and k2(ω).

This can be avoided if the initial data are sufficiently
smooth, not involving HF modes. As a minimum
condition for a local existence theorem, one should
require the Fourier transforms va(ω) to decrease like
e−α|ω| 1

3 for some positive constant α.5
However, it is difficult to respect these essential

smoothness constraints on the behavour of u(t, x) in
the numerical calculations. The standard Mathemat-
ica algorithms do not do so, and that is why we,
starting from some values of x, observe the HF noise
in our results.

5See Ref. [18] for more detailed discussion.
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Figure 3. u(t, x = 3) for the focusing MKdV.
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Figure 4. ux(t, x = 3) for the focusing MKdV.

In Figures 3, 4, we present the results of numerical
calculations of u(t, x) and ux(t, x) for x = 3. There
is no trace of a blow-up. For the plot of u(t, x), one
also does not see a HF noise, but it is seen in the
plot for ux(t, x). For larger values of x, the noise also
shows up in the plot of u(t, x). At x >∼ 3.8, the noise
overwhelms the signal.

The observed noise is a numerical effect associated
with a finite computer accuracy. To confirm this, we
performed a different calculation choosing the initial
conditions which correspond to the exact solitonic
solution to Eq. (9).

The soliton is a travelling wave, u(t, x) = u(x−ct) ≡
u(x̄). Plugging this Ansatz into (9), we obtain an
ordinary differential equation

∂

∂x̄

[
ux̄x̄ + 2u3 − cu

]
= 0 . (31)

Denoting the constant quantity within the bracket as
C ′, we then get the following second-order equation
for the function u(x̄):

ux̄x̄ = − d

du
V(u) , (32)
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with a potential function V(u) now given by

V(u) = u4 − cu2

2 − C ′u . (33)

As was also the case for the time-independent Ansatz,
the problem is reduced to the dynamics of a particle
moving in the confining quartic potential V(u). The
trajectory of the particle depends on three parameters:
the celerity c, the constant C ′, and the particle energy,

E = 1
2u

2
x̄ + V(u) . (34)

The usually considered solitonic solutions (such that
u(x̄) tends to zero when x̄ → ±∞) are obtained by
taking c > 0, C ′ = 0 (so that the potential represents
a symmetric double-well potential) and E = 0. The
zero-energy trajectory describes a particle starting at
“time" x̄ = −∞, at u = 0 with zero “velocity" ux̄,
gliding down, say, to the right, reflecting on the right
wall of the double well and then turning back to end
up, again, at u = 0 when x̄ = +∞. The explicit form
of the corresponding solution defined on the infinite
(t, x) plane is

u(t, x) =
√
c

cosh[
√
c (x− ct)] . (35)

However, to make contact with our numerical cal-
culations, we need a periodic soliton solution. Such
solutions can be easily constructed by considering
bounded mechanical motions in the potential V(u)
having a non-zero energy. Periodic solutions exist
both for positive and negative c. The trajectories are
the elliptic functions. It was more convenient for us
to assume c = −|c|, in which case we could make
contact with Ref. [12], where the expressions for the
trajectories of motion in the same quartic potential
were explicitly written, one only had to rename the
parameters. Choosing E = 1 and c = −1, we obtain
the following solution:

u(t, x) = cn
[√

3(x+ t),m
]
, (36)

where cn(z) is the Jacobi elliptic cosine function with
the elliptic modulus m = 1/3. The function (36) is
periodic both in t and x with the period

T = L = 4√
3
K

(
1
3

)
≈ 4 . (37)

We fixed the initial conditions for x = 0 and peri-
odic conditions in time as is dictated by (36), and
then numerically solved (9). The numerical solution
should reproduce the exact one, and it does for x <∼ 4.
However, at larger values of x, the HF noise appears.
The result of the calculation for x = 4.5 is given in
Figure 5.

One can suppress the HF noise by increasing the
step size, but then the form of the soliton is distorted.
To find a numerical procedure that suppresses the
noise and gives correct results for large values of x
remains a challenge for future studies.

1 2 3 4
t

-1.0

-0.5

0.5

1.0

u

Figure 5. HF noise for the periodic soliton evolution.
x = 4.5.

3. Discrete models with benign
ghosts

One of the possible solutions to this numerical prob-
lem could consist in discretizing the model in time
direction and assuming that the variable t takes only
the discrete values t = h, 2h, · · · , Nh, for some in-
teger N ≥ 3 and by replacing the continuous time
derivative ψt by a discrete (symmetric) time derivative
[ψ(t+h, x) −ψ(t−h, x)]/(2h). Then the Lagrangian6

L[ψ(t, x)] = ψ2
xx − ψ4

x − ψxψt
2 (38)

acquires the form

LN =
N∑

k=1

{
[ψxx(kh, x)]2 − [ψx(kh, x)]4

2 −

1
2ψx(kh, x)ψ[(k + 1)h, x] − ψ[(k − 1)h, x]

2h

}
, (39)

where we impose the periodicity: ψ(0, x) ≡ ψ(Nh, x)
and ψ[(N + 1)h, x] ≡ ψ(h, x).7

The Lagrangian (39) includes a finite number of
degrees of freedom and represents a mechanical system.
This system involves higher derivatives in x (playing
the role of time) and hence involves ghosts. Defining
the new dynamical variables ak(x) = ψx(kh, x), the
equations of motion derived from the Lagrangian (39)
read

akxxx + 6(ak)2akx + ak+1 − ak−1

2h = 0 . (40)

There are two integrals of motion: the energy

E =
N∑

k=1

[
(akx)2 − 3(ak)4

2 − akakxx

]
(41)

6It is quite analogous to (4). After variation with respect to
ψ(t, x), one gets Eq. (9) after posing u(t, x) = ψx(t, x).

7It is also possible to impose the Dirichlet-type boundary
conditions, ψ(0h, x) = ψ[(N + 1)h, x] = 0. For N = 2, period-
icity cannot be imposed and Dirichlet conditions are the only
option.
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Figure 6. The solution of the system (40) for aN (x)
(N = 350, h = T/N).

and

Q =
N∑

k=1

[
akxx + 2(ak)3]

. (42)

The expression (41) is the discretized version of the
integral

∫
dt

[
(ux)2 − 3u4

2 − uuxx

]
(43)

in the continuous MKdV system, which is conserved
during the x evolution, as follows from the local con-
servation law (11). The second integral of motion
is related to the conservation law (10). By contrast,
the currents in the higher conservation laws of the
MKdV equation, starting with Eq.(12), do not trans-
late into integrals of motion of the discrete systems.
We have only two integrals of motion and many vari-
ables, which means that the equation system (40) is
not integrable and exhibits a chaotic behaviour.

We fed these equations to Mathematica and found
out that their solution stays bounded up to x = 10000
and more – the ghosts are benign! This represents
a further argument in favour of the conjecture that in
the continuous theory the evolution in spatial direction
is also benign. Indeed, one may expect that taking
larger and larger values of N would allow one to simu-
late better and better the continuous theory (though
the presence of chaos might make such a convergence
non uniform in x).

Anyway, we tried the solitonic initial conditions
and found out that the discrete system for large N =
350 (the limit of Mathematica skills) behaves better
than the PDE. As is seen from Figure 6, the discrete
solution stays close to the exact soliton solution up
to x ≈ 10, to be compared to x ≈ 4.5, which was the
horizon of the numerical procedure of the previous
section. Hopefully, a clever mathematician, an expert
in numerical calculations, would be able to increase
the horizon even more...

Lastly, we note that, irrespectively to the relation-
ship of the systems (39) to the MKdV equation, these
systems represent an interest by their own because
they provide a set of nontrivial interacting higher
derivative systems with benign ghosts. Such systems
were not known before.
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Abstract. We summarise the procedure used to find the classical masses of Higgs particle, massive
gauge boson and t’Hooft-Polyakov monopole in non-Hermitian gauge field theory. Their physical
regions are explored, and the mechanism of the real value of the monopole solution is analysed in
different physical regions.

Keywords: t’Hooft-Polyakov monopole, quantum field theory, non-Hermitian quantum field theory.

1. Introduction
Quantum field theory is a key tool to analyse particle
physics. The most modern physical description of
the fundamental particle interaction is described by
the model called the Standard Model. However, the
model possesses several problems such as incompatibil-
ity with the general relativity, hierarchy problem, etc.
Therefore, it is an active area to extend the standard
model.

Recently a growing number of research papers
started exploring the non-Hermitian extension of the
Standard Model [1–14]. We have contributed to
this development by analysing the Goldstone theo-
rem [8, 10], The Higgs mechanism [9] and t’Hooft-
Polyakov monopoles [11]. The classical masses of
Higgs particles, massive gauge boson and monopoles
were analysed. However, a detailed analysis of their
intersecting physical regions and the mechanism of the
real value of the energy of monopole was not explored.
The main aim of this contribution is to fill this gap.

There are two separate mechanisms that guarantee
the real value of the particle masses in question. First,
the masses of Higgs particles are given by a non-
Hermitian mass matrix M . Assume that the matrix
possess anti-linear symmetry, which we refer to as
PT symmetry, that satisfies [PT , M ] = 0, Mv =
λv, PT v = eiθv, where {v, λ} are eigenvectors and
eigenvalues of the mass matrix. From this, it is trivial
to show that the eigenvalues are real

PT Mvi = PT λivi = λ∗
i PT vi = λ∗

i eiθivi,

PT Mvi = MPT vi = Meiθivi = λie
iθivi.

It was shown in [8] that this PT symmetry is related
to the CPT symmetry of the field-theoretic action.

On the other hand, the classical energy of the soli-
ton solution is found by inserting the solution into
the Hamiltonian E = H[ϕ] =

∫
d3xH(ϕ). Therefore,

the techniques from PT symmetric quantum mechan-
ics shown above can not be applied.

We will show below that the energy of the soliton
solutions are real when the three conditions stated

below holds. Therefore they are sufficient conditions
to guarantee the real value of particles in the model.
However, we do not claim that these are necessary
conditions.

Let {ϕ1, ϕ2} be a set of distinct (or identi-
cal) solutions to the equations of motion δL/δϕ −
∂µ(δL/δ∂µϕ) = 0, where L(ϕ) is the field-theoretic
Lagrangian density. The classical energies of the so-
lution are given by inserting the solution into the
Hamiltonian, Ei = H[ϕi] =

∫
d3xH(ϕi), for i ∈ {1, 2}.

The classical mass of the solution ϕ1 and ϕ2 are real
if there exist some anti-linear symmetry CPT (note
that is it not the standard CPT symmetry in quantum
field theory) such that three conditions are satisfied:
(1.) CPT : H[ϕ(x)] → H[CPT ϕ(x)] = H†[ϕ(−x)].
(2.) CPT : ϕ1(x) → ϕ2(−x).
(3.) H[ϕ1] = H[ϕ2].
If two solutions are identical ϕ1 = ϕ2, then the above
condition reduces to the reality condition of the soliton
solution already derived in [15]. Using the above three
conditions, the real value of the classical mass can
easily be shown by the following argument
∫

d3xH[CPT ϕ(x)] (1)=
∫

d3xH†[ϕ(−x)] = M†
1 ,

(2)=
∫

d3xH[ϕ2(−x)] = M2,

=⇒ M†
1 = M2

(3)=⇒ M†
1 = M1,

where numbers above the equal signs indicate the
condition number.

The above analysis can be performed directly on
the complex model. However, the non-Hermitian
theory is only well-defined once the inner-product
is identified. The modern way of the well-defined
non-Hermitian quantum mechanics was first realised
by Frederik Scholtz, Hendrik Geyer, and Fritz Hahne
in 1992, [16]. The authors used the mathematical
condition on the operator called the quasi-Hermiticity
(the term was first coined in [17], but the metric was
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not given) to define the positive definite inner prod-
uct. The quasi-Hermiticity is defined as a condition
on the bounded linear operator of the Hilbert space
A : H → H, which satisfies
(i)⟨v|ρv⟩ > 0 for all |v⟩ ∈ H and |v⟩ ≠ 0.
(ii)ρA = A†ρ .
Where the bounded Hermitian linear operator ρ :
H → H is often called the metric operator because the
inner product is defined by the operator ⟨·|·⟩ρ := ⟨·|ρ·⟩
restores the Hermiticity of the operator. This result
can be shown by using the condition(ii)

⟨v|Aw⟩ρ ≡ ⟨v|ρAw⟩ = ⟨v|A†ρw⟩ = ⟨Av|ρw⟩ = ⟨Av|w⟩ρ ,

for all |v⟩ , |w⟩ ∈ H. Note that the quasi-Hermiticity
alone does not guarantee the real energy spectrum
of the Hamiltonian. In fact, one requires two extra
conditions.
(iii)The metric operator is invertible.
(iv)ρ = η†η.
The operator which satisfies only conditions (ii) and
(iv) is referred to as the pseudo-Hermitian operator,
which was first introduced in [18]. These extra con-
ditions were considered in [16] to prove that, given
a set of pseudo-Hermitian operators A = {Ai}, the
metric operator ρA which satisfies conditions (i), (ii),
(iii) and (iv) for all operators of set A is uniquely
determined if and only if all operators of the set A are
irreducible on the Hilbert space H. This procedure
is analogous to the Dyson mapping first introduced
by Freeman Dyson [19] used in the study of nuclear
reaction [20–22], which maps the non-Hermitian oper-
ator A to Hermitian operator η−1Aη via Dyson map
η. The relation between the metric operator and the
Dyson map is found by utilising the Hermiticity of
the expression η−1Aη in the following way

η−1Aη = (η−1Aη)† =⇒ Aη†η = η†ηA† =⇒ η†η = ρ.
(1)

We will utilise this mapping to transform the non-
Hermitian field-theoretic Hamiltonian to a Hermitian
Hamiltonian. This procedure will resolve the issue of
complex vacuum solution and Derrick’s scaling argu-
ment, as we will see below. However, we note that the
Dyson map used here introduces a negative kinetic
sign in the kinetic term of one of the fields, indicat-
ing the ghost field problem. This issue is removed if
one further diagonalise the Hamiltonian. Such diago-
nalisation can be realised via field-redefinition or via
another Dyson map. A more detailed discussion of
this is found in [23], and a Dyson map which diago-
nalise the free part of the non-Hermitian Hamiltonian
is found in [12].

2. Methods
In this section, we will summarise the method used
in [8–11] to find the masses of the Higgs particles, mas-
sive gauge particles and t’Hooft-Polyakov monopoles
in non-Hermitian gauge field theory. We note that
the explicit forms of the similarity transformation

will not be discussed in this paper as non-Hermitian
and Hermitian theories are isospectral as long as the
CPT symmetry is preserved for Hamiltonian, Higgs
particles and monopole solution.

We begin with the non-Hermitian local SU(2) gauge
theory with matter fields in the adjoint representation

Lad
2 = 1

4Tr (Dϕ1)2 + m2
1

4 Tr(ϕ2
1) (2)

−i
µ2

2 Tr(ϕ1ϕ2) − g

64
[
Tr(ϕ2

1)
]2

+1
4Tr (Dϕ2)2 + m2

2
4 Tr(ϕ2

2) − 1
8Tr

(
F 2)

.

Here we take g, µ ∈ R, mi ∈ R and discrete values
ci ∈ {−1, 1}. The two fields {ϕi}i=1,2 are Hermi-
tian matrices ϕi(t, x⃗) ≡ ϕa

i (t, x⃗)T a, where ϕa
i (t, x⃗) is

a real-valued field. The three generators {T a}a=1,2,3
of SU(2) in the adjoint representation are defined by
three Hermitian matrices of the form (T a)bc = −iϵabc,
satisfying the commutation relation [T a, T b] = iϵabcT c.
One can check that Tr(T aT b) = 2δab. The field
strength tensor is defined as Fµν = ∂µAν − ∂νAµ −
ie[Aµ, Aν ], where the gauge fields are Aµ = Aa

µT a.
The partial derivative is replaced with the covariant
derivative (Dµϕi)a := ∂µϕa

i + eεabcAb
µϕc

i to compen-
sate for the local symmetry group SU(2).

This action is invariant under the local
SU(2) transformation of the matter fields
ϕi → eiαa(x)T a

ϕie
−iαa(x)T a and gauge fields

Aµ → eiαa(x)T a

Aµe−iαa(x)T a + 1
e ∂µαa(x)T a. It is

also symmetric under modified CPT symmetry, which
transforms two fields, ϕ1 and ϕ2 as

CPT : ϕ1(t, x⃗) → ϕ1(−t, −x⃗) (3)
: ϕ2(t, x⃗) → −ϕ2(−t, −x⃗)
: i → −i.

The equations of motion for the fields ϕi and Aµ of
the Lagrangian (2) are

(DµDµϕi)a + δV
δϕa

i
= 0, (4)

DνF νµ
a − eϵabcϕb

1(Dµϕ)c + eϵabcϕb
2(Dµϕ)c = 0,

where repeated indices are summed over. We per-
form the similarity transformation of the complex
Lagrangian (2) by momentary resorting to a quantum
theory where we assume an equal time commutation
relation between the fields ϕa

i and their canonical
momenta Πa

i = ∂0ϕa
i , satisfying the commutation re-

lation [ϕa
i (t, x⃗), Πb

j(t, y⃗)] = δ(x⃗ − y⃗)δijδab. Using this
relation, we can transform the corresponding complex
Hamiltonian of the Lagrangian (2) by

H → eη±He−η± , (5)
η± =

∏3
a=1 exp

(
± π

2
∫

d3xΠa
2ϕa

2
)

,

where H is the field-theoretic Hamiltonian of our
model (2), obtained via Legendre transformation.
This non-uniqueness of the metric is analogous to
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the non-uniqueness of the metric and its connection
to the observables in the quantum mechanical set-
ting discussed in [16, 24]. The adjoint action of η±
maps the complex action in the equation (2) into the
following real action

s =
∫

d4x
1
4Tr (Dϕ1)2 − 1

4Tr (Dϕ2)2 (6)

+c1
m2

1
4 Tr(ϕ2

1) − c2
m2

2
4 Tr(ϕ2

2)

−c3
µ2

2 Tr(ϕ1ϕ2) − g

64
(
Tr(ϕ2

1)
)2 − 1

8Tr(F 2)

≡
∫

d4x
1
4Tr (Dϕ1)2 − 1

4Tr (Dϕ2)2

−V − 1
8Tr(F 2).

The parameter c3 indicates the different similarity
transformations by taking the values ±1 for η±, re-
spectively.

For convenience, let us rewrite the above real action
in terms of each component of the fields ϕa

i as

lad
2 = 1

2(Dµϕi)aIij(Dµϕj)a + 1
2ϕa

i Hijϕa
j (7)

− g

16
(
ϕa

i Eijϕa
j

)2 − 1
4F a

µνF aµν ,

where the matrices H, I and E are defined as

H :=
(

m2
1 −µ2

−µ2 −m2
2

)
, I :=

(
1 0
0 −1

)
, (8)

E :=
(

1 0
0 0

)
.

2.1. Higgs and gauge masses
Next, we define the trivial solution of the equa-
tions of motion by solving δV = 0 and Dµϕi =
0. Such vacuum is often referred to as Higgs vac-
uum. The first equation can be simplified by choos-
ing an Ansatz (ϕ0

i )a(t, x⃗) = h0
i r̂a(x⃗) where r̂ =

(x, y, z)/
√

x2 + y2 + z2 and {h0
i } are some constants

to be determined. Note that the vacuum solution has
a rotational symmetry SO(3) since r̂ar̂a = 1. Insert-
ing this Ansatz into the equation (7), we find

V = −1
2hiHijhj + g

16h4
1. (9)

Then the vacuum equation δV = 0 is reduced to
simple coupled third order algebraic equations

g

4(h0
1)3 − c1m2

1h0
1 + c3µ2h0

2 = 0, (10)

c2m2
2h0

2 + c3µ2h0
1 = 0,

Dµϕα = 0.

The resulting vacuum solutions are

h0
2 = − c2c3µ2

m2
2

h0
1, (h0

1)2 = 4 c2µ4+c1m2
1m2

2
gm2

2
:= R2, (11)

(A0
i )a = − 1

er ϵiaj r̂j + r̂aAi, (A0
0)a = 0.

The Ai are arbitrary functions of space-time. The
Higgs particle can be identified with the fundamen-
tal fields of the theory after spontaneous symmetry
breaking of the continuous symmetry SU(2) by Taylor
expanding around the vacuum solution. Performing
a Taylor expansion around the Higgs vacuum and
keeping a focus on the second-order terms with only
matter fields ϕa

i , the real Lagrangian (7) contains the
following term

s =
∫

d4x
1
2ϕa

i

(
−∂µ∂µIijδab − H̃ab

ij

)
ϕb

j + . . . ,

where H̃ is a 6 × 6 block diagonal Hermitian matrix.
After diagonalising the above term by redefining the
fields with the eigenvectors of the non-Hermitian mass
matrix Mab

ij := IikδacH̃cb
kj , we find that the masses of

the fundamental fields after the symmetry breaking
to be equal to the eigenvalues of Mab

ij given as

m2
0 = c2

µ4 − m4
2

m2
2

, m2
± = K ±

√
K2 + 2L, (12)

where K = c1m2
1 − c2

m2
2

2 + 3µ4

2c2m2
2

and L = µ4 +
c1c2m2

1m2
2. Notice that we only find three non-zero

eigenvalues. The redefined fields with zero masses
(eigenvalues) are called Goldstone fields, which can
be absorbed into gauge fields Aa

µ by defining the new
massive gauge fields. This process of giving mass to
the previously massless fields is called the Higgs mech-
anism. The mass of the gauge fields can be found
by expanding the kinetic term of ϕ around the Higgs
vacuum ϕ0

i = h0
i r̂a. Without loss of generality, we can

choose a particular direction of the vacuum by taking
r̂ = (0, 0, 1)T . This is possible due to the symmetry
of the SO(3) vacuum as discussed above. Keeping the
term only quadratic in the gauge field, we find

1
2(Dµϕi + Dµϕ0

i )aIij(Dµϕi + Dµϕ0
i )a (13)

= 1
2

(
eAµ × ϕ0

i

)a Iij

(
eAµ × ϕ0

j

)a + . . .

= 1
2e2h0

i Iijh0
j

(
A1

µA1µ + A2
µA2µ

)
+ . . .

= 1
2m2

g

(
A1

µA1µ + A2
µA2µ

)
+ . . . ,

where the mass of the gauge field is identified to be
mg :=

√
h0

i Iijh0
j = e

R
√

m4
2−µ4

m2
2

.

2.2. t’Hooft-Polyakov monopole
To find the monopole solutions, let us consider the
following Ansatz

(ϕcl
i )a(x⃗) = hi(r)r̂a , (Acl

i )a = ϵiaj r̂jA(r) , (14)
(Acl

0 )a = 0,

where the subscript cl denotes the classical solutions
to the equations of motion (4). The difference be-
tween this Ansatz (14) and the Higgs vacuum (11)
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is that the quantity hi now depends on the spatial
radius hi = hi(r). Here we are only considering the
static Ansatz to simplify our calculation, but one may,
of course, also consider the time-dependent solution
by utilising the Lorentz symmetry of the model and
performing a Lorentz boost. According to Derrick’s
scaling argument [25], for the monopole solution to
have finite energy, we require the two matter fields of
the equation (14) to approach the vacuum solutions
in the equation (11) at spatial infinity

lim
r→∞

h1(r) = h0±
1 = ±R , (15)

lim
r→∞

h2(r) = h0±
2 = ∓c2c3µ2

m2
2

R.

Also, notice that at some fixed value of the radius r,
the vacuum solutions ϕ0

α and monopole solutions ϕcl
α

both belongs to the 2-sphere in the field configuration
space. For example, ϕ0

1 belongs to the 2-sphere with
radius R because (ϕ0

1)2 = R2. Therefore, solutions ϕcl
i

can be seen as a mapping between 2-sphere in space-
time (where the radius is given by the profile function
hi) to 2-sphere in field configuration space. Such
mapping has a topological number called the winding
number n ∈ Z, which can be explicitly realised by
redefining the unit vector r̂a as

r̂a
n =




sin(θ) cos(nφ)
sin(θ) sin(nφ)

cos(θ)


 . (16)

Therefore different n represent topologically inequiva-
lent solutions.

Since we require the monopole and vacuum solu-
tions to smoothly deformed into each other at spacial
infinity, both solutions need to share the same wind-
ing number. It is important to note that winding
numbers of ϕ1 and ϕ2 need to be equal to satisfy
Dϕ1 = Dϕ2 = 0, and therefore we will denote the
winding numbers of ϕ1 and ϕ2 as n collectively. If
they are not equal, we would have Dϕ1 = 0 but
Dϕ2 ̸= 0. Next, let us insert our Ansatz equation
(14) into the equations of motion equation (4). We
will also redefine the Ansatz for the gauge fields to be
Aa

i = ϵaibr̂b
(

1−u(r)
er

)
, Aa

0 = 0, which are more in line
with the original Ansatz given in [26, 27], compared
to equation (14). Inserting these expressions into the
equations of motion equation (4), we find

u
′′
(r) +

u(r)
[
1 − u2(r)

]

r2 (17)

+e2u(r)
2

{
h2

2(r) − h2
1(r)

}
= 0,

h
′′
1 (r) + 2h

′
1(r)
r − 2h1(r)u2(r)

r2 (18)

+g
{

−c1
m2

1
g h1(r) + c3

µ2

g h2(r) + 1
4 h3

1(r)
}

= 0,

h
′′
2 (r) + 2h

′
2(r)
r

− 2h2(r)u2(r)
r2 (19)

+c2m2
2

{
h2(r) + c3

µ2

m2
2

h1(r)
}

= 0.

Notice that these differential equations are similar
to the ones discussed in [26, 27], but with the extra
field h2 and extra differential equation (19). In the
Hermitian model, the exact solutions to the differential
equations were found by taking the parameter limit
called the BPS limit [26, 27], where parameters in
the Hermitian model are taken to zero while keeping
the vacuum solution finite. Here we will follow the
same procedure and take the parameter limit where
quantities in the curly brackets of equations (18) and
(19) vanish but keep the vacuum solutions equation
(11) finite. We will see in section 2.4 that we also find
the approximate solutions in this limit.

2.3. The energy bound
Surprisingly, by utilising Derrick’s scaling argument,
one can find the lower bound of the monopole energy
without the explicit form of the solution.

The energy of the monopole can be found by in-
serting the monopole solution into the corresponding
Hamiltonian of equation (6).

h =
∫

d3x Tr
(
E2)

+ Tr
(
B2)

(20)

+Tr
{

(D0ϕ1)2}
+ Tr

{
(Diϕ1)2}

−Tr
{

(D0ϕ2)2}
− Tr

{
(Diϕ2)2}

+ V,

where E, B are Ei
a = Fa

0i , Bi
a = − 1

2 ϵijkF jk
a ,

i, j, k ∈ {1, 2, 3}. The gauge is fixed to be the ra-
diation gauge (i.e Aa

0 = 0, ∂iAa
i = 0). Notice that

our monopole Ansatz equation (10) is static with
no electric charge Ea

i = 0 and therefore, the above
Hamiltonian reduces to

E =
∫

d3x Tr
(
B2)

+ Tr
{

(Diϕ1)2}
(21)

−Tr
{

(Diϕ2)2}
+ V

= 2
∫

d3x Bi
aBi

a + (Diϕ1)a(Diϕ1)a

−(Diϕ2)a(Diϕ2)a + 1
2V.

Here, we simplified our expression by dropping the
superscripts Acl

i → Ai , ϕcl
α → ϕα. We also keep in

mind that these fields depend on the winding numbers
n ∈ Z. In the Hermitian model (i.e. when ϕ2 = 0),
one can rewrite the kinetic term as B2 + Dϕ2 =
(B − Dϕ)2 + 2BDϕ and find the lower bound to be∫

2BDϕ. Here we will follow a similar procedure but
introduce some arbitrary constant α, β ∈ R such that
B2 = α2B − β2B where α2 − β2 = 1. This will allow
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us to rewrite the above energy as

E = 2
∫

d3x α2
{

Bi
a + 1

α
(Diϕ1)a

}2
(22)

−β2
{

Bi
a + 1

β
(Diϕ2)a

}2

+2 {−αBi
a(Diϕ1)a + βBi

a(Diϕ2)a} + 1
2V.

To proceed from here, we need to assume extra con-
straints on α and β such that the following inequalities
are true

∫
d3x α2

{
Bi

a + 1
α

(Diϕ1)a

}2
(23)

−β2
{

Bi
a + 1

β
(Diϕ2)a

}2
≥ 0,

∫
d3xV ≥ 0.

With these constraints we can now write down the
lower bound of the monopole as

E ≥ 2
∫

d3x {−αBi
a(Diϕ1)a + βBi

a(Diϕ2)a} (24)

= 2
∫

d3x − α
{

Bi
a∂iϕ

a
1 + eBi

aϵabcAi
bϕc

1
}

+β
{

Bi
a∂iϕ

a
2 + eBi

aϵabcAi
bϕc

2
}

= 2
∫

d3x − α
{

Bi
a∂iϕ

a
1 +

(
−eϵabcAi

bBi
c
)

ϕa
1
}

+β
{

Bi
a∂iϕ

a
2 +

(
−eϵabcAi

bBi
c
)

ϕa
1ϕc

2
}

= 2
∫

d3x − α {Bi
a∂iϕ

a
1 + ∂iBi

aϕa
1}

+β {Bi
a∂iϕ

a
2 + ∂iBi

aϕa
1}

= 2
∫

d3x − α∂i (Bi
aϕ1

a) + β∂i (Bi
aϕ2

a)

= lim
r→∞

(
−2α

∫

Sr

dSiBi
aϕ1

a + 2β

∫

Sr

dSiBi
aϕ2

a

)
,

where in the fourth line, we used DiB
a
i = 0, which can

be shown from the Bianchi identity DµϵµνρσF a
ρσ = 0.

The last line is obtained by using the Gauss theorem
at some fixed value of the radius r. Since the ϕa

i in
the integrand is only defined over the 2-sphere with
a large radius, we can use the asymptotic conditions
(15) and replace the monopole solutions {ϕa

α, Ba
i } with

the Higgs vacuum {(ϕ0
α)a, (B0

i )a}

E ≥
(
−2αϕ0

1
a + 2βϕ0

2
a)

lim
r→∞

∫

Sr

dSi(B0
i )a (25)

=
(

∓2αRr̂a
n ∓ 2β

c2c3µ2

m2
2

Rr̂a
n

)
lim

r→∞

∫

Sr

dSi(B0
i )a,

where the upper and lower signs of the above energy
correspond to the upper and lower signs of the vacuum
solutions in equation (11). The explicit value of Ba

0i

can be obtained by inserting the Higgs vacuum (11)
into the definition of the magnetic field

Ba
i = −1

2ϵi
jk (∂jAk − ∂kAj + eAj × Ak)a

. (26)

After a lengthy calculation, this expression can be
simplified to Ba

0i = ϕ̂0a
bi = r̂a

nbi, where ϕ̂0a
is a nor-

malised solution
∑

a ϕ̂0a
ϕ̂0a

= 1. The bi is defined
as

bi ≡ −1
2ϵijk

{
∂jAk − ∂kAj + 1

e
r̂n ·

(
∂j r̂n × ∂kr̂n

)}
.

(27)
Where A was defined in equation (11). Notice that
integrating the first term over the 2-sphere gives zero
by Stoke’s theorem

∫
S

∂ × A =
∫

∂S
A = 0, where

one can show that Stoke’s theorem on the closed
surface gives zero by dividing the sphere into two
open surfaces. The second term is a topological term
which can be evaluated as

∫
dSiBi = −4πn

e
. (28)

The explicit calculation is in [28]. This is the magnetic
charge of the monopole solutions. Therefore integer
n, which corresponds to the winding number of the
solution, comes from the Ansatz Ba

i = ϕ̂0a
bi. In

our case, there is an ambiguity of whether to choose
Ba

i = ϕ̂0
1

a
bi or Ba

i = ϕ̂0
2

a
bi. Now we see explicitly the

reason why we choose to keep the same integer values
for solutions ϕ0

1 and ϕ0
2. If the integer values of r̂a

n

in solutions ϕ0
1, ϕ0

2 are different, then the integration∫
Sr

dSi(B0
i )a will be different, leading to inconsistent

energy.
Finally, we find our lower bound of the monopole

energy

E ≥ ∓2R

(
α + β

c2c3µ2

m2
2

)
r̂a

nr̂a
n

(−4πn

e

)
(29)

= ±8πnR

e

(
α + β

c2c3µ2

m2
2

)
.

Notice that we have some freedom to choose α, β ∈ R
as long as our initial assumptions (23) are satisfied.
We will see in the next section that we can take a pa-
rameter limit of our model, which saturates the above
inequality and gives exact values to α and β.

2.4. The fourfold BPS scaling limit
Our main goal is now to solve the coupled differential
equations (17)-(19). Prasad, Sommerfield, and Bo-
gomolny [26, 27] managed to find the exact solution
by taking the parameter limit, which simplifies the
differential equations. The multiple scaling limit is
taken so that all the parameters of the model tend
to zero with some combinations of the parameter re-
maining finite. The combinations are taken so that
the vacuum solutions stay finite in this limit. Inspired
by this, we will take here a fourfold scaling limit

g, m1, m2, µ → 0 ,
m2

1
g

< ∞ ,
µ2

g
< ∞ ,

µ2

m2
2

< ∞.

(30)
This will ensure that the vacuum solutions equation
(11) stays finite, but crucially the curly bracket parts
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in equations (18) and (19) vanish. There is a physical
motivation for this limit in which the mass ratio of
the Higgs and gauge mass are taken to be zero (i.e.
mHiggs << mg) as described in [29]. We will see
in the next section that the same type of behaviour
is present in our model, hence justifying equation
(30). The resulting set of differential equations, after
taking the BPS limit, is similar to the ones considered
in [26, 27] with the slightly different quadratic term
in equation (17). It is natural to consider a similar
Ansatz as given in [26, 27]

u(r) = evr

sinh (evr) , (31)

h1(r) = −αf(r), (32)
h2(r) = −βf(r), (33)

where α, β ∈ R were introduced in section 2.3 and
f(r) ≡

{
v coth (evr) − 1

er

}
. One can check that this

Ansatz indeed satisfies differential equations equation
(17)-(19) in the BPS limit. We have decided to put
a prefactor α and β in front of equations (32) and (33)
to satisfy the differential equation (17). Note that
if we take α = 1, we get exactly the same as given
in [26, 27], which is known to satisfy the first-order
differential equation called the Bogomolny equation
Bi − Diϕ = 0. The Ansatz (31)-(33) only differs
from the ones given in [26, 27] by the prefactors α
and β, and therefore our Ansatz should satisfy the
Bogomolny equation with the appropriate scaling to
cancel the prefactor in equations (32) and (33)

Bb
i + 1

α
(Diϕ1)b = 0, (34)

Bb
i + 1

β
(Diϕ2)b = 0, (35)

where ϕα ≡ hα(r)r̂n. If we compare these equations
to the terms appearing in the energy of the monopole
equation (22), then we can saturate the inequality in
equation (29) by

E[ϕ1, ϕ2] = ±8πnR

e

(
α + β

c2c3µ2

m2
2

)
, (36)

where upper and lower signs correspond to the vacuum
solutions equation (11), when taking the square root.
We can calculate the explicit forms of α and β by
comparing the asymptotic conditions in equation (15)

lim
r→∞

h±
1 = h0±

1 = ±R, (37)

lim
r→∞

h±
2 = h0±

2 = ∓c2c3µ2

m2
2

R,

with the asymptotic values of equations (31)-(33)

limr→∞ u(r) = 0 , limr→∞ h±
1 (r) = −αv, (38)

limr→∞ h±
2 (r) = −βv.

By Derrick’s scaling argument, the two asymptotic
values (37) and (38) should match, resulting in al-
gebraic equations for α and β. Using α2 − β2 = 1

and assuming m4
2 ≥ µ4, we find the four set of real

solutions

α = ∓(±)m2
2

l
, v = (±) Rl

m2
2

, β = ±(±)c2c3µ2

l
,

(39)
where l =

√
m4

2 − µ4. The plus-minus signs in the
brackets correspond to the two possible solutions to
the algebraic equation α2 − β2 = 1. These need to be
distinguished from the upper and lower signs of α and
β, which correspond to the vacuums solutions (11).
Inserting the explicit values of α and β to the energy
equation (36) we find

E[ϕ1, ϕ2] ≡ (±)8πnR

em2
2

(−m4
2 + µ4

l

)
(40)

= (±)−8πnR

em2
2

l,

with corresponding solutions

h±
1 (r) = ±(±)m2

2
l

[
Rl

m2
2

coth
(

eRl

m2
2

r

)
− 1

er

]
, (41)

h±
2 (r) = ∓(±)c2c3µ2

l

[
Rl

m2
2

coth
(

eRl

m2
2

r

)
− 1

er

]
.

It is crucial to note that although it seems like
there are two monopole solutions {h±

1 , h±
2 }, the

two solutions are related non-trivially in their
asymptotic limit by the constraint limr→∞ h±

2 =
(−c2c3µ2/m2

2) limr→∞ h±
1 given in equation (10). For

example, one can not choose {h+
1 , h−

2 } as a solution
as this will break the asymptotic constraint.

The solution (41) can be constrained further by
imposing that the energy (40) is real and positive.

E[ϕ1, ϕ2] > 0 =⇒ −(±)8πnR

em2
2

l =⇒ −(±)n > 0. (42)

Therefore we can ensure positive energy if (±) =
sign(n). The final form of the monopole solution with
positive energy are

h±
1 (r) = ±sign(n)m2

2
l

[
Rl

m2
2

coth
(

eRl

m2
2

r

)
− 1

er

]
, (43)

h±
2 (r) = ∓sign(n)c2c3µ2

l

[
Rl

m2
2

coth
(

eRl

m2
2

r

)
− 1

er

]
.

with energy E = 8|n|πlR/em2
2. We conclude this

subsection by observing that the above solution de-
pends on the parameter c3, which takes value {−1, 1}
depending on the choice of the similarity transforma-
tion. Choosing a different values of c3 also result in
a different asymptotic values (37), meaning solutions
for c3 = 1 and c3 = −1 are topologically different.
Since the energy is independent of c3, two distinct
solutions share the same energy. Respecting one of the
main features of similarity transformation, which is to
preserve the energy of the transformed Hamiltonian.

In the next section, we will investigate in detail
how the solution changes and a new CPT symmetry
emerges by changing the parameter values.
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Figure 1. Monopole, gauge and Higgs masses plotted for m2
1/g = −0.44, µ/g = −0.14, e = 2, c1 = −c2 = −1. The

solid line represents the real part, and the dotted line represents the imaginary part of the masses. The dotted
vertical lines indicate the boundaries of the physical regions where all the masses acquire real positive values.

3. Results and discussion
This section will investigate the behaviour of solution
(43) in different regimes of the parameter spaces. We
will compare the physical regions of gauge particles,
Higgs particles and monopoles found in the previous
section. We will see that the two regions coincide,
but the solutions in different regions possess different
CPT symmetries. Different symmetries of solutions
in different regions are not coincident, but the conse-
quence of the three reality conditions stated in the
introduction. In fact, it is deeply related to the real
value of energy, which will be discussed extensively
in [30].

3.1. Higgs mass and exceptional points
Let us recall the masses of the particles and monopole

m2
0 = c2

µ4−m4
2

m2
2

, m2
± = K ±

√
K2 + 2L, (44)

mg = e Rl
m2

2
, Mmono = 8|n|πlR

em2
2

.

where K = c1m2
1 − c2

m2
2

2 + 3µ4

2c2m2
2

and L = µ4 +
c1c2m2

1m2
2. Notice that the masses do not depend

on c3, meaning they do not depend on the similarity
transformation as expected. We also comment that
in the BPS limit, we have m0 = m± = 0, but mg

and M± stays finite, such that the ratios mHiggs/mg

vanish in the BPS limit. This is in line with the Her-
mitian case [29], providing the physical interpretation
with mHiggs << mg for the BPS limit.

One may notice that when c2 = 1, requiring positive
mass m2

0 > 0, implies that µ4 − m4
2 > 0. This means

the quantity l =
√

m4
2 − µ4 is purely imaginary. One

may then discard this region as unphysical. However,
we will see in the next section that there is a discon-
nected region beyond µ4 − m4

2 > 0, which admit real
energy because R also becomes purely complex. This
is not coincident, and in fact, we will see an emerging
new CPT symmetry for the monopoles.

In the rest of the section, we will exclusively fo-
cus on the monopole and gauge masses. The main

message of this section is the emerging symmetry re-
sponsible for the real value of the monopole masses.
The requirement to make the whole theory physical de-
mands also to consider the intersection of the physical
regions between monopole masses and Higgs masses.
As an example, we plot all the masses of the theory
in Figure 1.

As one can see, intersection points of the physical re-
gions of Higgs masses and monopole/gauge masses are
non-trivial. In fact, they are bounded by two types of
exceptional points. The first type is when two masses
of Higgs particles coincide and form a complex con-
jugate pair. Such a point is known as an exceptional
point where the mass matrix is non-diagonalisable,
and the corresponding eigenvectors coincide. The sec-
ond type is when the gauge and the monopole masses
vanishes. Interestingly, this is where one of the Higgs
masses also vanish. Since the mass matrix already
has a zero eigenvalue, as the result of the spontaneous
symmetry breaking, it seems the number of massless
fields is increased. However, at this point, the mass
matrix is also non-diagonalisable. Therefore one can
not diagonalise the Hamiltonian to identify the field
which corresponds to the extra massless fundamen-
tal field. Therefore this point is also an exceptional
point. However, the eigenvalues do not become com-
plex conjugate pairs beyond this point, and as one
can see from Figure 1 that one of the mass square
m2

0 become negative, and gauge and monopole masses
become complex but with no conjugate pair. We dub
such a point as zero exceptional point to distinguish
from the standard exceptional point.

3.2. Change in CPT symmetry and
complex monopole solution

We begin by introducing the useful quantities m2
1/g ≡

X, µ2/g ≡ Y, µ2/m2
2 ≡ Z. The gauge mass, monopole

mass and monopole solutions can be rewritten in terms
of these quantities

mg = eR
√

1 − Z2, mmono = 8|n|πR

e

√
1 − Z2, (45)
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Figure 2. Monopole and gauge masses plotted for X = 1, Y = 0.8, e = 2, c1 = −c2 = 1. The solid line represents the
real part, and the dotted line represents the imaginary part of the masses.

Figure 3. Both panels are plotted for X = 1, Y = 0.8, n = 1, e = 2. The solid line represents the real part, and the
dotted line represents the imaginary part of the masses. Panel (a) shows the monopole and gauge masses against
Z ≥ 0, with vertical lines indicating the location of the boundaries of three regions. Panel (b) shows three profile
function h1(r) defined on each region indicated in panel (a).

h±
1 (r) = ± sign(n)√

1 − Z2

[
R

√
1 − Z2coth(r̂) − 1

er

]
, (46)

h±
2 (r) = ∓ sign(n)c2c3Z√

1 − Z2

[
R

√
1 − Z2coth(r̂) − 1

er

]
, (47)

where R2 = 4(c2ZY + c1X) and r̂ = eR
√

1 − Z2r.
The monopole masses are plotted against the gauge
mass for fixed parameters with n ∈ {1, 2, 3, 4} in
Figure 2 with weak and strong couplings e = 2, e = 10.
Notice that the gauge mass is smaller than any of
the monopole masses for weak coupling, but when
e is large enough, some of the monopole masses can
become smaller than the gauge mass. This is clear by
inspecting the monopole, and gauge mass in equation
(45) and two masses coincide when e =

√
8|n|π. Note

that n = 0 is not a monopole mass as it corresponds
to the solution with zero winding number, which is
topologically equivalent to the trivial solution.

From Figure 2, we also observe disconnected regions
where both monopole and gauge masses become real
to purely complex. A more detailed plot of this is
shown in Figure 3. Region 2 is bounded by two points
with lower bound µ2/m2

2 = 1 corresponding to the
zero exceptional point where the vacuum manifolds
stay finite (i.e. spontaneous symmetry breaking oc-
cur). However, the Higgs mechanism fails because
the Hamiltonian is non-diagonalisable, as discussed in
the previous section. The upper bounds correspond to
the point where the vacuum manifold vanishes. There-
fore, the spontaneous symmetry breaking does not
occur, implying that the gauge fields do not acquire

a mass through the Higgs mechanism, resulting in
a massless gauge field. Most crucially, an interesting
region (denoted by region 3 in Figure 4) reappears
as one increases the value of Z. The profile function
in region 3 is purely complex, which signals that this
may lead to complex energies. However, as one can
see from Figure 3, the energy is real. The reason for
the real energy is that the conditions stated in the
introduction hold. We will specify below the CPT
symmetry responsible for the real value of the energy.
Note that the profile function h2 only differ from h1
by some factor in front. Therefore we omitted it from
the plot.

Another physical region is when c1 = −c2 = −1.
The monopole and gauge masses for this case is plotted
in Figure 4. We observe almost an identical plot
from the Figure 3 but with real and imaginary parts
swapped. The profile functions also respect these
changes as regions 1 and 3 no longer have a definite
asymptotic value. The boundaries are unchanged, as
one can see from the Figure 4.

Finally, there is an interesting parameter point X =
Y where region 2 vanishes (see Figure 5). The two
boundaries Z2 = 1 and c2ZY + c1X = 0 coincide
when X = Y and the zero exceptional point no longer
exists because the spontaneous symmetry breaking
does not occur in this case.

Next, let us explain the real value of the energies in
different regions. First, to realise the conditions 1-3,
stated in the introduction, we require the following
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Figure 4. Both panels are plotted for X = 1, Y = 1, n = 1, e = 2. The solid line represents the real part, and the
dotted line represents the imaginary part of the masses.

Figure 5. Both panels are plotted for X = 1, Y = 1, n = 1, e = 2. The solid line represents the real part, and the
dotted line represents the imaginary part of the masses.

transformations

h±
2 (r) → −h±

2 (r) , h±
1 (r) → h±

1 (r) in region 1
No symmetry in region 2

h±
2 (r) → −

(
h±

2 (r)
)∗

, h±
1 (r) →

(
h±

1 (r)
)∗ in region 3

.

By using the explicit forms of the solutions (46) and
(47). We can show that the above transformations sat-
isfy condition 2 stated in the introduction, in regions
1

h±
2 (r) → −h±

2 (r) = h∓
2 (r) , h±

1 (r) → h±
1 (r), (48)

and in region 3

h±
2 (r) → −

(
h±

2 (r)
)∗ = h±

2 , (49)
h±

1 (r) →
(
h±

1 (r)
)∗ = h∓

1 .

Notice that in regions 1 and 3, the CPT relates two
distinct solutions in two different ways. For example,
h±

2 is mapped to h∓
2 in region 1, but it is mapped to

itself in region 3.
Finally, the condition 3 stated in the introduction is

satisfied because the energy does not depend on the ±
signs of the solutions. This explains the real energies of
complex monopoles in region 3 and complex energy in
region 2. Indeed, we observe the predicted behaviour
in Figure 3. Region 2 is a hard barrier between two
CPT symmetric regions where solutions are either real
or purely imaginary. The same analysis can be carried
out in the other physical region c1 = −c2 = −1 where

the symmetry is now

No symmetry in region 1
h±

2 (r)→−(h±
2 (r))∗

h±
1 (r)→(h±

1 (r))∗ in region 2
No symmetry in region 3

. (50)

We have observed that one can find a well-defined
monopole solution in two disconnected regions. How-
ever, in the full theory where we include the Higgs
particles, it is only one of the regions which are con-
sidered physical. This is because the Higgs mass m2

0
is either positive or negative depending on which side
of Z2 = 1 it is defined. Because two disconnected re-
gions are defined on either side of the zero exceptional
point Z2 = 1, the full physical region restricts one
from moving region 1 to region 3 by changing Z. This
is most clearly seen in Figure 1 where the plot of m2

0
(green line) becomes negative beyond the zero excep-
tional point. This may imply that the purely complex
monopole solution we observed is not a possible so-
lution of the theory. However, the purely complex
solution can exist in the full physical region. An exam-
ple of this is shown in the Figure 6 where we observe
that the profile function h1 (therefore h2) is purely
complex, and the Higgs masses, gauge mass are all
real and positive.

4. Conclusions
We have found the t’Hooft-Polyakov monopole solu-
tion (43) in the non-Hermitian theory by drawing an
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Figure 6. Both panels are plotted for X = −2, Y = −0.6, c1 = −c2 = 1, n = 1, e = 2. The solid line represents the
real part, and the dotted line represents the imaginary part of the masses.

analogue from the standard procedure in the Hermi-
tian theory. The monopole masses were plotted with
the massive gauge and Higgs masses, where the physi-
cal region of the monopole masses coincided with that
of the gauge mass. It was also observed that there
are two distinct physical regions bounded by the zero
exceptional point and the parameter limit where the
vacuum manifold becomes trivial. The profile function
(radial part of the monopole solution) is plotted in
Figures 3, 4, 5, where it is real and purely complex
in regions 1 and 3, respectively. Incidentally, the CPT
symmetries of the solution are different in regions
1 and 3.
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Abstract. Quantum quartic single-well anharmonic oscillator Vao(x) = x2 + g2x4 and double-well
anharmonic oscillator Vdw(x) = x2(1−gx)2 are essentially one-parametric, they depend on a combination
(g2ℏ). Hence, these problems are reduced to study the potentials Vao = u2 + u4 and Vdw = u2(1 − u)2,
respectively. It is shown that by taking uniformly-accurate approximation for anharmonic oscillator
eigenfunction Ψao(u), obtained recently, see JPA 54 (2021) 295204 [1] and arXiv 2102.04623 [2], and
then forming the function Ψdw(u) = Ψao(u)±Ψao(u−1) allows to get the highly accurate approximation
for both the eigenfunctions of the double-well potential and its eigenvalues.

Keywords: Anharmonic oscillator, double-well potential, perturbation theory, semiclassical expansion.

1. Introduction
It is already known that for the one-dimensional
quantum quartic single-well anharmonic oscillator
Vao(x) = x2 + g2x4 and double-well anharmonic
oscillator with potential Vdw(x) = x2(1 − gx)2 the
(trans)series in g (which is the Perturbation Theory in
powers of g (the Taylor expansion) in the former case
Vao(x) supplemented by exponentially-small terms
in g in the latter case Vdw(x)) and the semiclassical
expansion in ℏ (the Taylor expansion for Vao(x) sup-
plemented by the exponentially small terms in ℏ for
Vdw(x)) for energies coincide [3]. This property plays
crucially important role in our consideration.

Both the quartic anharmonic oscillator

V = x2 + g2x4 , (1)

with a single harmonic well at x = 0 and the double-
well potential

V = x2(1 − gx)2 , (2)

with two symmetric harmonic wells at x = 0 and
x = 1/g, respectively, are two particular cases of the
quartic polynomial potential

V = x2 + agx3 + g2x4 , (3)

where g is the coupling constant and a is a parameter.
Interestingly, the potential (3) is symmetric for three
particular values of the parameter a: a = 0 and
a = ±2. All three potentials (1), (2), (3) belong to
the family of potentials of the form

V = 1
g2 Ṽ (gx) ,

for which there exists a remarkable property: the
Schrödinger equation becomes one-parametric, both
the Planck constant ℏ and the coupling constant g

appear in the combination (ℏg2), see [2]. It can be
immediately seen if instead of the coordinate x the
so-called classical coordinate u = (g x) is introduced.
This property implies that the action S in the path
integral formalism becomes g-independent and the fac-
tor 1

ℏ in the exponent becomes 1
ℏg2 [4]. Formally, the

potentials (1)-(2), which enter to the action, appear
at g = 1, hence, in the form

V = u2 + u4 , (4)

V = u2(1 − u)2 , (5)

respectively. Both potentials (4), (5) are symmetric
with respect to u = 0 and u = 1/2, respectively.

Namely, this form of the potentials will be used in
this short Note. This Note is the extended version of
a part of presentation in AAMP-18 given by the first
author [5].

2. Single-well potential
In [1] for the potential (4) matching the small distances
u → 0 expansion and the large distances u → ∞
expansion (in the form of semiclassical expansion) for
the phase ϕ in the representation

Ψ = P (u) e−ϕ(u) ,

of the wave function, where P is a polynomial, it
was constructed the following function for the (2n +
p)-excited state with quantum numbers (n, p), n =
0, 1, 2, . . . , p = 0, 1 :

Ψ(n,p)
(approximation) =

upPn,p(u2)

(B2 + u2)
1
4

(
B +

√
B2 + u2

)2n+p+ 1
2
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Figure 1. Two lowest, normalized to one eigenfunc-
tions of positive/negative parity: for single-well poten-
tial (4), see (6) (top) and for double-well potential (5),
see (9)(bottom). Potentials shown by black lines.

× exp
(

− A + (B2 + 3) u2/6 + u4/3√
B2 + u2

+ A

B

)
,

(6)
where Pn,p is some polynomial of degree n in u2 with
positive roots. Here A = An,p, B = Bn,p are two pa-
rameters of interpolation. These parameters (−A), B
are slow-growing with quantum number n at fixed p
taking, in particular, the values

A0,0 = −0.6244 , B0,0 = 2.3667 , (7)

A0,1 = −1.9289 , B0,1 = 2.5598 , (8)

for the ground state and the first excited state, re-
spectively. This remarkably simple function (6), see
Figure 1 (top), provides 10-11 exact figures in energies
for the first 100 eigenstates. Furthermore, the func-
tion (6) deviates uniformly for u ∈ (−∞, +∞) from
the exact function in ∼ 10−6.

3. Double-well potential:
wavefunctions

Following the prescription, usually assigned in folklore
to E. M. Lifschitz – one of the authors of the famous
Course on Theoretical Physics by L. D. Landau and
E. M. Lifschitz – when a wavefunction for single well
potential with minimum at u = 0 is known, Ψ(u),
the wavefunction for double well potential with min-
ima at u = 0, 1 can be written as Ψ(u) ± Ψ(u − 1).
This prescription was already checked successfully for
the double-well potential (2) in [6] for somehow sim-
plified version of (6), based on matching the small
distances u → 0 expansion and the large distances

u → ∞ expansion for the phase ϕ but ignoring sub-
tleties emerging in semiclassical expansion. Taking
the wavefunction (6) one can construct

Ψ(n,p)
(approximation) =

Pn,p(ũ2)

(B2 + ũ2)
1
4

(
αB +

√
B2 + ũ2

)2n+ 1
2

exp
(

− A + (B2 + 3) ũ2/6 + ũ4/3√
B2 + ũ2

+ A

B

)
D(p) ,

(9)
where p = 0, 1 and

D(0) = cosh
(

a0ũ + b0ũ3
√

B2 + ũ2

)
,

D(1) = sinh
(

a1ũ + b1ũ3
√

B2 + ũ2

)
.

Here
ũ = u − 1

2 , (10)

α = 1 and A, B, a0,1, b0,1 are variational param-
eters. If α = 0 as well as b0,1 = 0 the func-
tion (9) is reduced to ones which were explored in [6],
see Eqs.(10)-(11) therein. The polynomial Pn,p is
found unambiguously after imposing the orthogonal-
ity conditions of Ψ(n,p)

(approximation) to Ψ(k,p)
(approximation)

at k = 0, 1, 2, . . . , (n − 1), here it is assumed that the
polynomials Pk,p at k = 0, 1, 2, . . . , (n − 1) are found
beforehand.

4. Double-well potential: Results
In this section we present concrete results for energies
of the ground state (0, 0) and of the first excited state
(0, 1) obtained with the function (9) at p = 0, 1, re-
spectively, see Figure 1 (bottom). The results are com-
pared with the Lagrange-Mesh Method (LMM) [7].

4.1. Ground State (0,0)
The ground state energy for (5) obtained variationally
using the function (9) at p = 0 and compared with
LMM results [7], where all printed digits (in the second
line) are correct,

E(0,0)
var = 0.932 517 518 401 ,

E
(0,0)
mesh = 0.932 517 518 372 .

Note that ten decimal digits in E
(0,0)
var coincide with

ones in E
(0,0)
mesh (after rounding). Variational parame-

ters in (9) take values,

A = 2.3237 ,

B = 3.2734 ,

a0 = 2.3839 ,

b0 = 0.0605 ,

cf. (7). Note that b0 takes a very small value.
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4.2. First Excited State (0,1)
The first excited state energy for (5) obtained varia-
tionally using the function (9) at p = 1 and compared
with LMM results [7], where all printed digits (in the
second line) are correct,

E(0,1)
var = 3.396 279 329 936 ,

E
(0,1)
mesh = 3.396 279 329 887 .

Note that ten decimal digits in E
(0,1)
var coincide with

ones in E
(0,1)
mesh. Variational parameters in (9) take

values,

A = −2.2957 ,

B = 3.6991 ,

a1 = 4.7096 ,

b1 = 0.0590 ,

cf. (8). Note that b1 takes a very small value similar
to b0.

5. Conclusions
It is presented the approximate expression (9) for the
eigenfunctions in the double-well potential (5). In Non-
Linearization procedure [8] it can be calculated the
first correction (the first order deviation) to the func-
tion (9). It can be shown that for any u ∈ (−∞, +∞)
the functions (9) deviate uniformly from the exact
eigenfunctions, beyond the sixth significant figure sim-
ilarly to the function (6) for the single-well case. It
increases the accuracy of the simplified function, pro-
posed in [5] with α = 0 and b0,1 = 0, in the domain
under the barrier u ∈ (0.25, 0.75) from 4 to 6 sig-
nificant figures leaving the accuracy outside of this
domain practically unchanged.
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Abstract. This work reports the construction of constants of motion for a family of time-dependent
mass oscillators, achieved by implementing the formalism of form-preserving point transformations.
The latter allows obtaining a spectral problem for each constant of motion, one of which leads to
a non-orthogonal set of eigensolutions that are, in turn, coherent states. That is, eigensolutions
whose wavepacket follows a classical trajectory and saturate, in this case, the Schrödinger-Robertson
uncertainty relationship. Results obtained in this form are relatively general, and some particular
examples are considered to illustrate the results further. Notably, a regularized Caldirola-Kanai mass
term is introduced in an attempt to amend some of the unusual features found in the conventional
Caldirola-Kanai case.

Keywords: Time-dependent mass oscillators, Caldirola-Kanai oscillator, quantum invariants, coherent
states, semiclassical dynamics.

1. Introduction
The search for exact solutions for time-dependent
(nonstationary) quantum models is challenging task as
compared to the stationary (time-independent) coun-
terpart. In the stationary case, the dynamical law
(Schrödinger equation) reduces to an eigenvalue equa-
tion associated with the energy observable, the Hamil-
tonian, for which several methods can be implemented
to obtain exact solutions. Particularly, new exactly
solvable models can be constructed from previously
known ones through Darboux transformations [1] (also
known as SUSY-QM). In the nonstationary case, it
is still possible to recover an eigenvalue problem for
the Hamiltonian if one restricts to the adiabatic ap-
proximation [2, 3]. However, in general, the latter is
not feasible, and other workarounds should be imple-
mented. Despite all these challenges, time-dependent
phenomena find exciting applications in physical sys-
tems such as electromagnetic traps of charged particles
and plasma physics [4–8].

The parametric oscillator is perhaps the most well-
known exactly solvable nonstationary model in quan-
tum mechanics. A straightforward method to solve
such a problem was introduced by Lews and Riesen-
feld [9] by noticing that the appropriate constant of
motion (quantum invariant) admits a nonstationary
eigenvalue equation with time-dependent solutions
and constant eigenvalues. In this form, nonstationary
models can be addressed similarly to their station-
ary counterparts. This paved the way to solve other
time-dependent problems [10–14].

Recently, the Darboux transformation has been
adapted into the quantum invariant scheme to con-
struct new time-dependent Hamiltonians, together
with the corresponding quantum invariant and the
set of solutions [15–17]. Alternatively, other meth-

ods exist to build new time-dependent models, such
as the modified Darboux transfomation introduced
by Bagrov et al. [18], which relies on a differential
operator that intertwines a known Schrödinger equa-
tion with an unknown one. This has led to new re-
sults in the nonstationary Hermitian regime [19–21].
A non-Hermitian PT-symmetric extension has been
discussed in [22], and some further models were re-
ported in [23, 24].

On the other hand, the point transformations for-
malism [25] has been proved useful to construct and
solve time-dependent oscillators. This was achieved by
implementing a geometrical deformation that trans-
forms the stationary oscillator Schrödinger equa-
tion into one with time-dependent frequency and
mass [26, 27]. This allows obtaining further infor-
mation such as the constants of motion, which are
preserved throughout the point transformation [25],
leading to a straightforward way to get such constants
of motion without imposing any ansatz. A further
extension for non-Hermitian systems was introduced
in [28], whereas a non-Hermitian extension of the
generalized Caldirola-Kanai oscillator was discussed
in [29].

In this work, the point transformation formalism
is exploited to construct and study the dynamics of
semiclassical states associated with time-dependent
mass oscillators. This is achieved by using the afore-
mentioned preservation of constants of motion and
identifying their corresponding spectral problem. No-
tably, it is shown that one constant of motion leads
to an orthogonal set of solutions, whereas a differ-
ent one leads to nonorthogonal solutions that behave
like semiclassical states. That is, Gaussian wavepack-
ets whose maximum point follows the corresponding
classical trajectory and minimize, in this case, the

211



Kevin Zelaya Acta Polytechnica

Schrödinger-Robertson uncertainty principle. Two
particular examples are considered to illustrate the
usefulness of the approach further.

2. Materials and methods
Throughout this manuscript, the time-dependent mass
m(t) and frequency Ω2(t) oscillator subjected to an
external driving force F (t) is considered. Such a model
is characterized by the time-dependent Hamiltonian

Ĥck(t) = p̂2

2m(t) + m(t)Ω2(t)
2 x̂2 + F (t)x̂, (1)

with x̂ and p̂x the canonical position and momentum
operators, respectively, with [x̂, p̂x] = iℏI. Henceforth,
the identity operator I is omitted each time it mul-
tiplies a constant or a function. The corresponding
Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m(t)
∂2ψ

∂x2 +m(t)Ω2(t)x2

2 ψ+F (t)xψ, (2)

is recovered by using the coordinate representation
px ≡ −iℏ ∂

∂x and x̂ ≡ x ∈ R.
The solutions of Eq. (2) have been discussed by

several authors, see [27, 30–32]. Here, a brief sum-
mary of the point transformation approach discussed
in [26, 27] is provided. This eases the discussion of
semiclassical states and dynamics to be presented later
in Section 3.

2.1. Point transformations
In general, the method of form-preserving point trans-
formations relies on a geometrical deformation that
maps an initial differential equation with variable
coefficients into another one of the same form but
with different coefficients. To illustrate this, be the
stationary oscillator Hamiltonian

Ĥosc =
p̂2
y

2m0
+ m0w

2
0 ŷ

2

2 , [ŷ, p̂y] = iℏ, (3)

with ŷ and p̂y another couple of canonical position
and momentum observables, respectively. The corre-
sponding Schrödinger equation

iℏ
∂Ψ
∂τ

= − ℏ2

2m0

∂2Ψ
∂y2 + m0w

2
0y

2

2 Ψ, (4)

admits the well-known solutions [2]

Ψn(y, τ) = e−iw0(n+ 1
2 )τΦn(y), (5)

where

Φn(y) =
√

1
2nn!

√
m0w0

πℏ
e− m0w0

2ℏ y2
Hn

(√
m0w0

ℏ
y
)
,

(6)
with Hn(z) the Hermite polynomials [33], fulfills the
stationary eigenvalue problem

HoscΦn(y) = E(osc)
n Φn(y), E(osc)

n = ℏw0

(
n+ 1

2

)
, (7)

with Hosc the coordinate representation of Ĥosc,
i.e., a second-order differential operator that admits
a Sturm-Liouville problem.

To implement the point transformation, one im-
poses a set of relationships between the coordinates,
time paramaters, and solutions of both systems in
consideration [25]. In general one has

y(x, t), τ(x, t), Ψ(y(x, t), τ(x, t)) ≡ G(x, t;ψ), (8)

where G(x, t;ψ) is a reparametrization of Ψ as an
explicit function of x, t, and ψ.

In the case under consideration, some further con-
ditions are required to preserve the linearity and the
Hermiticity of Ĥosc and Ĥck(t). A detailed discussion
on the matter can be found in [27]. Here, the final
form of the point transformation is used, leading to

y(x, t) = µ(t)x+ γ(t)
σ(t) , τ(t) =

∫ t dt′

σ2(t′) , (9)

and

Ψ(y(x, t), τ(t)) ≡ G(x, t;ψ) = A(x, t)ψ(x, t), (10)

with m(t) = µ2(t), together with σ(t) and γ(t) some
real-valued functions to be determined.

By substituting (9) into the Schrödinger equa-
tion (4), and after some calculations, one arrives to
a new partial differential equation for ψ(x, t) that
takes the exact form in (2). The latter allows obtain-
ing

A(x, t) =
√
σ

µ
exp A(x, t),

A(x, t) :=
(
i
m0w0
ℏ

µ

σ

(
Wµ

2 x2 +Wγx

)
+ iη

)
,

(11)

where A(x, t) is a local time-dependent complex-phase
and [27]

η(t) := m0
2ℏ

γ(t)Wγ(t)
σ(t) − 1

2ℏ

∫ t

dt′
F (t′)
µ(t′) ,

Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t),
Wγ(t) = σ(t)γ̇(t) − σ̇(t)γ(t),

(12)

with ḟ(t) ≡ df(t)
dt a short-hand notation for the time

derivative. In the latter, σ(t) and γ(t) fulfill the
nonlinear Ermakov equation

σ̈(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
σ(t) = w2

0
σ3(t) , (13)

and non-homogeneous equation

γ̈(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
γ(t) = F (t)

m0µ(t) , (14)

The solutions of the Ermakov equation are well-
known [34–36] and computed from two linearly inde-
pendent solutions of the associated linear equation

q̈j(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
qj(t) = 0, j = 1, 2, (15)
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through the nonlinear combination

σ(t) =
[
aq2

1(t) + bq1(t)q2(t) + cq2
2(t)

] 1
2 , (16)

with b2 −4ac = −4 w2
0

W2
0

and W0 = Wr(q1(t), q2(t)) ̸= 0
the Wronskian of two linearly independent solutions
of (15), which is in general a time-independent com-
plex constant. The previous constraint on a, b, and
c guarantees that σ(t) is different from zero [26] for
t ∈ R.

In this form, one obtains a set of solutions
{ψn(x, t)}∞

n=0 to the Schrödinger equation (2), where

ψn(x, t) =

√
µ(t)
σ(t) [A(x, t)]−1e−iw0(n+ 1

2 )τ(t)

× e
− m0w0

2ℏ
(

µ(t)x+γ(t)
σ(t)

)2

Hn

(√
m0w0
ℏ

µ(t)x+ γ(t)
σ(t)

)
.

(17)

From (10)-(11) it follows that

(ψm, ψn) :=
∫

R
dxψ∗

m(x, t)ψn(x, t)

=
∫

R
dyΨ∗

m(y, τ)Ψn(y, τ) = δn,m, (18)

with z∗ the complex conjugate of z. That is, the inner
product is preserved and thus the set {ψn(x, t)}∞

n=0
is orthonormal in L2(R, dx).

The expressions presented so far are general,
and specific result may be obtained once the time-
dependent mass and frequency terms are specified.
This is discussed in the following sections.

Before concluding, an explicit expression for τ(t)
can be determined in terms of the two linearly inde-
pendent solutions q1(t) and q2(t) as well. One gets

τ(t) = w−1
0 arctan

[W0
2w0

(
b+ 2cq2(t)

q1(t)

)]
. (19)

3. Results: Constants of motion
and semiclassical states

Additional information can be extracted from the sta-
tionary oscillator into the time-dependent model. Par-
ticularly, point transformations preserve first-integrals
of the initial equation [25]. In the context of the
Schrödinger equation, such first-integrals correspond
to constants of motion, also known as quantum in-
variant, associated with the physical models under
consideration. From the stationary oscillator, it is
straightforward to realize that the Hamiltonian Ĥosc
is a constant of motion that characterize the energy
observable. In the time-dependent case, Ĥck(t) is no
longer a constant of motion, as dĤck(t)

dt ≠ 0. This
implies that an eigenvalue problem associated with
Ĥck is not possible1.

1One can still link an eigenvalue problem with Ĥck(t) under
the adiabatic approximation [3]. This work focuses on exact
solutions and such an approach will be disregarded.

On the other hand, an orthonormal set of solutions
{ψn(x, t)}∞

n=0 has been already identified, and it is still
unclear the eigenvalue problem that such a set solves.
This problem was addressed by Lewis-Riesenfeld [9]
while solving the dynamics of the parametric oscillator.
They notice that even in the time-dependent regime,
there may be a constant of motion Î0(t) that admits
a spectral problem

Î0(t)ϕ(x, t) = λϕ(x, t), (20)

where the eigenvalues λ are time-independent. The
existence and uniqueness of such a quantum invariant
is not necessarily ensured. Still, for the parametric
oscillator, Lewis and Riesenfeld managed to find the
quantum invariant and solve the related spectral prob-
lem.

Here, some quantum invariants associated with Ĥck
can be found through point transformations. First,
notice that the point transformation was implemented
in the Schrödinger equation to get the time-dependent
counterpart. The same transformation can be applied
to a constant of motion of the harmonic oscillator
to get the corresponding one on the time-dependent
model. Particularly, by consider the eigenvalue prob-
lem (7), and after some calculations, one gets a first
quantum invariant of the form

Î1(t) := σ2(t)
2m0µ2(t) p̂

2
x + m0

2

(
W 2
µ(t) + w2

0
µ2(t)
σ2(t)

)
x̂2

+ σWµ(t)
2µ(t) (x̂p̂x + p̂xx̂) + σWγ(t)

µ(t) p̂x

+m0

(
Wγ(t)Wµ(t) + w2

0
µ(t)γ(t)
σ2(t)

)
x̂

+
(
m0
2 W 2

γ (t) + γ2(t)
σ2(t)

)
. (21)

It is straightforward to show that Î1(t) is indeed
a quantum invariant,

i

ℏ
[Ĥck, Î1(t)] + ∂Î1(t)

∂t
= 0. (22)

Moreover, I1(t), the coordinate representation of
Î1(t), defines a Sturm-Liouville problem with time-
dependent coefficients,

I1(t)ψn(x, t) = ℏw0

(
n+ 1

2

)
ψn(x, t), (23)

which justifies the existence of the orthogonal set of
solutions found in Section 2. Note that orthogonal-
ity has been alternatively proved in (18) using the
preservation of the inner product.

Remarkably, there are still more quantum invari-
ants to be exploited. To see this, let us consider the
operators

â =
√
m0w0

2ℏ ŷ + i
p̂y√

2m0ℏw0
,

â† =
√
m0w0

2ℏ ŷ − i
p̂y√

2m0ℏw0
,

(24)
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which factorize the stationary oscillator Hamiltonian
as Ĥosc = ℏw0(â†â+ 1

2 ) and fulfill the commutation
relationship [â, â†] = 1. Although â and â† are not
constants of motion of Ĥosc, one can introduce a new
pair of operators

â := eiw0τ â, â† := e−iw0τ â†, (25)

where the straightforward calculations show that
i
ℏ [Ĥosc, â] + ∂â

∂τ = 0, and similarly for â†. That is,
a and a† are quantum invariants of Ĥosc.

The latter can now be mapped into the time-
dependent model, leading straightforwardly to new
quantum invariants of Ĥck(t) of the form

Îa(t) = eiw0τ(t)
[

i√
2m0ℏw0

σ(t)
µ(t) p̂x

+
(√

m0w0
2ℏ

µ(t)
σ(t) + i

√
m0

2ℏw0
Wµ(t)

)
x̂

+
(√

m0w0
2ℏ

γ(t)
σ(t) + i

√
m0

2ℏw0
Wγ(t)

)]
, (26)

and its adjoint Î†
a(t).

Before proceeding, it is worth to recalling that two
arbitrary quantum invariants Î(t) and ˆ̃

I(t) of a given
Hamiltonian Ĥ(t) can be used to construct further
invariants. This follows from the fact that the linear
combination ℓÎ(t) + ℓ̃

ˆ̃
I(t) and the product ℓÎ(t)ˆ̃I(t)

of quantum invariants are also quantum invariants
of the same Hamiltonian Ĥ(t), for ℓ, ℓ̃, and ℓ time-
independent coefficients.

In this form, Îa(t) and Î†
a(t) generate Î1(t) through

Î1(t) = ℏw0

(
Î†
a(t)Îa(t) + 1

2

)
, (27)

which is analogous to the factorization of the station-
ary oscillator. Similarly, the commutation relationship
[â, â†] = 1 of the stationary oscillator is preserved.
One thus get [Îa(t), Î†

a(t)] = 1 together with

[Î1(t), Îa(t)] = −ℏw0Îa(t), [Î1(t), Î†
a(t)] = ℏw0Î

†
a(t), (28)

which means that Îa(t) and Î†
a(t) are annihilation and

creation operators, respectively, for the eigensolutions
of Î1(t). The latter leads to

Îa(t)ψn+1(x, t) =
√
ℏw0(n+ 1)ψn(x, t),

Î†
a(t)ψn(x, t) =

√
ℏw0(n+ 1)ψn+1(x, t),

(29)

for n = 0, . . . .
On the other hand, the orthonormal set

{ψn(x, t)}∞
n=0 can be used as a basis to expand any

arbitrary solution ψ(x, t) of (2) through

ψ(x, t) =
∞∑

n=0

Cnψn(x, t), Cn := (ψn(x, t), ψ(x, t)). (30)

Now, from the above results, one may investigate
the spectral problem related to the remaining quan-
tum invariants Îa(t) and Î†

a(t). By considering the

annihilation operator Îa(t), one obtains the eigenvalue
problem

Îa(t)ξα(x, t) = αξα(x, t), (31)
where the eigensolution ξα(x, t) can be expanded as
the linear combination

ξα(x, t) =
∞∑

n=0
C̃n(α)ψn(x, t), α ∈ C. (32)

This corresponds to the construction of coherent states
using the Barut-Girardelo approach [37]. The com-
plex coefficients C̃n(α) are determined by using the
action of the ladder operators (29) and exploiting
the orthonormality of the set {ψn(x, t)}∞

n=0. After
substituting the linear combination ξα(x, t) into the
corresponding eigenvalue problem in (31), one obtains
the one-parameter normalized eigensolutions

ξα(x, t) = exp
(

− |α|2
2ℏw0

) ∞∑

n=0

(
α√
ℏw0

)n
ψn(x, t)√

n!
. (33)

Henceforth, the latter are called time-dependent co-
herent states or semiclassical states interchangeably.

Similar to Glauber coherent states [38], the eigenso-
lutions of the annihilation operator Îa are not orthog-
onal among themselves. This follows from the overlap
between two solutions with different eigenvalues, let
say α and β, leading to

|(ξβ , ξα)|2 = exp
(

−|α|2 + |β|2 − 2 Re(α∗β)
ℏw0

)
, (34)

which is different from zero for every α, β ∈ C, with
the inner product defined in (18). Interestingly, the
eigensolution ξα(x, t) can be brought into an alterna-
tive and handy expression by using the explicit form of
ψn(x, t) given in (17), together with the well-known
summation rules for the Hermite polynomials. By
doing so one gets

ξα(x, t) ≡
√
µ(t)
σ(t)

√
m0w0

πℏ
[A(x, t)]−1e−i

w0τ(t)
2

× exp

[
i

√
2m0w0

ℏ

(
µ(t)x+ γ(t)

σ(t)

)
Im α̃(t)

]

×exp

[
−m0w0

2ℏ

(
µ(t)x+ γ(t)

σ(t) −
√

2ℏ
m0w0

Re α̃(t)

)2]
,

(35)

with α̃(t) = αe−iw0τ(t). Thus, ξα(x, t) is a normal-
ized Gaussian wavepacket with time-dependent width.
The complex constants α plays the role of the initial
conditions of the wavepacket at a given time t0. See
the discussion in the following section.

Despite the lack of orthogonality in the elements of
the set {ξα(x, t)}α∈C, they can be still used as a non-
orthogonal basis so that any arbitrary solution of (2)
can be constructed through the appropriate linear
superposition. That is, a given solution ψ(x, t) of (2)
expands as

ψ(x, t) =
∫

C

d2α

πℏ
C(α)ξα(x, t), (36)
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where C(α) = (ξα(x, t), ψ(x, t)).
So far, the spectral problem related to the quantum

invariants Î1(t) and Îa(t) has led to a discrete and
a continuous representation, respectively, in which any
solution of (2) can be expanded.

Although the eigenvalue problem related to the
quantum invariant Î†

a(t) can be established, it leads
to non-finite norm solutions and is thus discarded.

3.1. Semiclassical dynamics
With the time-dependent coherent states already con-
structed, one can now study the evolution on time of
such state and its relation with physical observables
such as position and momentum x̂ and p̂x, respec-
tively. To this end, note that the quantum invariants
obtained through point transformations preserve the
commutation relation (28) of the corresponding op-
erators of the stationary oscillator. That is, the set
{Îa(t), Î†

a(t), Î†
a(t)Îa(t)} fulfill the Weyl-Heisenberg al-

gebra [39]. This allows the construction of a unitary
displacement operator of the form [39]

D(α; t) = eαÎ
†
a(t)−α∗Îa(t) = e− |α|

2 eαÎ
†
ae−α∗Îa ,

α ∈ C,
(37)

so that

D†(α, t)Îa(t)D(α, t) = Îa(t) + α,

D†(α; t)Î†
a(t)D(α; t) = Î†

a(t) + α∗.
(38)

It follows that the action of the first relationship
acted on ψ0(x, t) leads to Îa(t)D(α, t)ψ0(x, t) =
αD(α, t)ψ0(x, t), from which one recovers the eigen-
value equation previously analyzed in (31) by identi-
fying ξα(x, t) = D(α, t)ψ0(x, t). This corresponds to
the coherent states construction of Perelomov [39].

So far, two different and equivalent ways to con-
struct the solutions ξα(x, t) have been identified,
a property akin to Glauber coherent states. To further
explore the time-dependent coherent states, one can
take the unitary transformations (38) and combine
them with the relationship between the ladder opera-
tors and the physical position x̂ and momentum p̂x
observables presented in (26). After some calculations
one obtains

⟨x̂⟩α(t) =
√

2ℏ
m0w0

σ(t)
µ(t)r cos (w0τ(t) − θ) − γ(t)

µ(t) , (39)

where α = reiθ. By using (19) and some elemen-
tary trigonometric identities, one recovers an explicit
expression in terms of q1(t) and q2(t) as

⟨x̂⟩α(t) = −γ(t)
µ(t)

+
√

2ℏw0
m0c

r

W0

[(
cos θ + W0

2w0
c sin θ

)
q1(t)
µ(t)

+ W0
w0

c sin θ q2(t)
µ(t)

]
. (40)

Similarly, the calculations for the momentum observ-
able leads to

⟨p̂x⟩α(t) = −m0
µ(t)
σ(t) (Wµ(t)⟨x̂⟩α(t) +Wγ(t))

−
√

2m0ℏw0
µ(t)
σ(t)r sin (w0τ(t) − θ)). (41)

In the latter, ⟨Ô⟩α(t) ≡ (ξα(x, t), Ôξα(x, t)) stands
for the average value of the observable Ô computed
through the time-dependent coherent state ξα(x, t).

The expectation value of the momentum (41) can
be further simplified so that it simply rewrites as

⟨p̂x⟩α(t) = m(t) d
dt

⟨x̂⟩α(t), m(t) = m0µ
2(t), (42)

which is an analogous relation to that obtained from
the canonical equations of motion of the corresponding
classical Hamiltonian. This is also consequence of the
quadratic nature of the time-dependent Hamiltonian
Ĥck(t) and the Ehrenfest theorem.

From the expectation values obtained in (39)-(42),
a relationship between the complex parameter α =
reiθ and the expectation values at a given initial time
t = t0 can be established. The straightforward calcu-
lations lead to
(

Re α̃t0
Im α̃t0

)
=
(√m0w0

2ℏ
γt0
σt0√

m0
2ℏw0

Wγt0

)

+
(√m0w0

2ℏ
µt0
σt0

0√
m0

2ℏw0
Wµt0

1√
2m0ℏw0

σt0
µt0

)(
⟨x̂⟩t0
⟨p̂x⟩t0

)
, (43)

with α̃t0 = αe−iw0τt0 = rei(θ−w0τt0 ), τt0 = τ(t0),
σt0 = σ(t0), γt0 = γ(t0), Wγt0

= Wγ(t0), Wµt0
=

Wµ(t0), ⟨x̂⟩t0 = ⟨x̂⟩α(t0), and ⟨p̂x⟩t0 = ⟨p̂x⟩α(t0).
On the other hand, one can write the probability

density associated with the time-dependent coherent
state in terms of ⟨x̂⟩α(t) through

Pα(x, t) := |ξα(x, t)|2 =
√
m0w0
πℏ

µ(t)
σ(t)

× exp
[
−m0w0

2ℏ
µ2(t)
σ2(t) (x− ⟨x̂⟩α(t))2

]
, (44)

which is a Gaussian wavepacket whose maximum
follows the classical trajectory. That is, the time-
dependent coherent state is considered as a semiclas-
sical state.

Before concluding this section, it is worth explor-
ing the corresponding uncertainty relations associ-
ated with the canonical observables, which can be
computed by using (26), (31), and (38). After some
calculations one gets

(∆x̂)2
α = ℏ

2m0w0

σ2(t)
µ2(t) ,

(∆p̂x)2
α = m0ℏw0

2
µ2(t)
σ2(t)

(
1 +

σ2(t)W 2
µ(t)

w2
0µ

2(t)

)
,

(45)
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from which the uncertainty relation reduces to

(∆x̂)2
α (∆p̂x)2

α = ℏ2

4

(
1 +

σ2(t)W 2
µ(t)

w2
0µ

2(t)

)
, (46)

where it is clear that, in general, ξα(x, t) does not min-
imize the Heisenberg uncertainty relationship, except
for those times t′ at which Wµ(t′) = 0. The latter
follows from the fact that σ ̸= 0 for t ∈ R. Still, there
are two special cases for which Eq. (46) minimizes at
all times.
• For µ(t) = µ0 and Ω(t) = w1, one can always find

a constant solution σ4(t) = w2
0/w

2
1 so that Wµ = 0.

The uncertainty relationship (46) is minimized, and
the time-dependent Hamiltonian becomes

Ĥck(t) = p̂2
x

2m0µ2
0

+ m0µ
2
0w

2
1

2 x̂2 + F (t)x̂, (47)

which is nothing but a stationary oscillator with an
external time-dependent driving force F (t)2. Thus,
the uncertainty relation gets minimized in the sta-
tionary limit, as expected.

• For Ω2(t) = w2
0µ

−4(t), there is a solution σ(t) =
µ(t) for which Wµ = 0. This leads to a Hamiltonian
of the form

Ĥck(t) =
1

µ2(t)

(
p̂2
x

2m0
+ m0w

2
0

2 x̂2 + µ2(t)F (t)x̂
)
. (48)

Although the solutions ξα(x, t) minimize the Heisen-
berg uncertainty relation only on some restricted cases,
one can still explore the Schrödinger-Robertson in-
equality [40, 41]. This is defined for a pair of observ-
ables Â and B̂ through

(
∆Â

)2 (
∆B̂

)2
≥ |⟨[Â, B̂]⟩|2

4 + σ2
A,B , (49)

where σA,B := 1
2 ⟨ÂB̂ + B̂Â⟩ − ⟨Â⟩⟨B̂⟩ stands for the

correlation function.
For the canonical position x̂ and momentum p̂x

observables one gets

σ2
x,px

= ℏ2

4w2
0

σ2(t)W 2
µ(t)

µ2(t) , (50)

when computed through ξα(x, t). Thus, the semiclassi-
cal states ξα(x, t) minimize the Schrödinger-Robertson
relationship for t ∈ R.

4. Discussion: Conventional and
regularized Caldirola-Kanai
oscillators

So far, the most general setup has been addressed
for a time-dependent mass oscillator. Two particular

2The Hamiltonian (47) is essentially stationary, for the term
F (t) can be absorbed through an appropriate reparametrization
of the canonical coordinate.

examples are considered in this section to further illus-
trate the usefulness and behavior of the so-constructed
solutions and coherent states. Henceforth, all calcula-
tions are carried on by working in units of ℏ = 1 to
simplify the ongoing discussion. Throughout the rest
of this manuscript, the following two time-dependent
masses are considered:

µck(t) = e−κt, κ ≥ 0, (51a)
µrck(t) = e−κt + µ0, κ, µ0 ≥ 0. (51b)

The first one corresponds to the well-known
Caldirola-Kanai oscillator [42, 43], which contains
a mass-term that asymptotically approaches to zero.
This is a rather unrealistic scenario in the context of
the Schrödinger equation. Still, one can study the
dynamics on a given time range, let say t ∈ [0, T ],
where T denotes the time spent by the mass to re-
duce its initial value in a factor e−1. In other words,
T = κ−1 is equivalent to the lifetime of a decay-
ing system. One thus may disregard the dynamics
for t > T . To amend such issue, the second mass
term µrck(t) has been introduced, which transits from
µrck(0) = 1 to µck(t → ∞) = µ0. Thus, there is
no need to introduce any artificial truncation on the
time domain. The Hamiltonian associated with this
mass-term will be called regularized Caldirola-Kanai
oscillator. Despite the apparent advantages of the
regularized system, analytic expressions for σ(t) are
significantly more complicated with respect to those
obtained from µck(t). Still, exact result can be ob-
tained. The discussion is thus divided for each case
separately.

4.1. Caldirola-Kanai case
The so-called Caldirola-Kanai system is another well-
known nonstationary problem, characterized by time-
dependent mass decaying exponentially on time. It
was independently introduced by Caldirola [42] and
Kanai [43] in an attempt to describe the quantum
counterpart of a damped oscillator. This model
has been addressed by different means, such using
a Fourier transform to map the map it into a para-
metric oscillator [32], and using the quantum Arnold
transformation [30].

For this particular case, a constant frequency
ω2(t) = w2

1 and a driven force F (t) = A0 cos(νt),
for ν,A0 ∈ R, are considered. This leads to a forced
Caldirola-Kanai oscillator Hamiltonian [10, 44] of the
form

Ĥck(t) = e2κt

2m0
p̂2
x+e−2κtm0w

2
1

2 x̂2 +A0 cos(νt)x̂. (52)

From the results obtained in previous sections,
one gets the solutions to the Ermakov and non-
homogeneous equations as

σ(t) =
(
aq2

1(t) + bq1(t)q2(t) + cq2
2(t)

) 1
2 ,

γ(t) = γ1q1(t) + γ2q2(t) + γp(t),
(53)
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(a) . Wµ(t) (b).

Figure 1. (A) Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t) for the Caldirola-Kanai mass term µck(t). (B) Variances (∆x̂)2
α (solid-

blue), (∆p̂x)2
α (dashed-red), the Schrödinger-Robertson uncertainty minimum (dotted-green), and the Heisenberg

uncertainty minimum (thick-solid-black) associated with the coherent states ξα(x, t) and the mass term µck(t). The
parameters have been fixed as a = c = w0 = 1, w1 = 2, and κ = 0.5.

(a) . n = 0 (b) . n = 1 (c).

Figure 2. Probability density Pn = |ψn(x, t)|2 for n = 0 (A), n = 1 (B), and Pα = |ψn(x, t)|2 (C) associated with
the Caldirola-Kanai mass term µck(t). For simplicity, the external force F (t) and γ(t) have been fixed to zero. The
rest of parameters have been fixed as w0 = a = b = 1, w1 = 2, and κ = 0.5.

respectively, with γ1 and γ2 arbitrary real constants,
b2 − 4ac = −16 w2

0
w2

1−κ2 , and

q1(t) = cos(
√
w2 − κ2 t), q2(t) = sin(

√
w2 − κ2 t),

γp(t) = A0e
−kt (w2

1 − ν2) cos(νt) − 2κν sin(νt)
(w2

1 + ν2)2 − 4ν2(w2
1 − κ2) .

(54)
In the sequel, κ = 0.5 is consider so that the

Caldirola-Kanai oscillator is constrained to the time
interval t ∈ [0, 2]. Further discussions concerning the
dynamics will be restricted to such a time interval.

It is worth recalling that the zeros of Wµ(t) corre-
spond to the times for which the Heisenberg uncer-
tainty relationship saturates. Although the expression
for Wµ(t) is rather simple in this case, determining
the zeros consist of solving a transcendental equation.
Thus, to get further insight, one may analyze Fig-
ure 1a, which depicts the behavior of such a function
for µck(t) (solid-blue). From the latter, one can see
that zeroes do exist indeed, and thus one should expect

points in time for which the Heisenberg inequality sat-
urates. Despite the latter, the Schrödinger-Robertson
inequality saturates at all times.

In Figure 1b, one can see the behavior of the vari-
ances, from which it is clear that the variance in the
position blows up at time pass by, whereas the mo-
mentum variance squeezes indefinitely, approaching
asymptotically to zero. This odd behavior results
from a mass term that quickly decays, approaching
zero but never converging to it. For those reasons,
a truncation on the time interval was previously in-
troduced in the form of a mean lifetime, which in this
case becomes T = κ−1 = 2. In this form, one still has
a realistic behavior for t ∈ (0, 2).

The previous results can be verified by looking at
the probability density associated with the solutions
ψn(x, t) and the coherent state ξα(x, t), which is de-
picted in Figure 2. From those probability densities,
one may see the increase on the position variance
(∆x̂)2

α, for the wavepacket spreads rapidly on time,
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(a) . Wµ(t) (b).

Figure 3. (A) Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t) for the regularized Caldirola-Kanai mass term µrck(t). (B) Variances
(∆x̂)2

α (solid-blue), (∆p̂x)2
α (dashed-red), the Schrödinger-Robertson uncertainty minimum (dotted-green), and the

Heisenberg uncertainty minimum (thick-solid-black) associated with the coherent states ξα(x, t) and the mass term
µrck(t). The parameters have been fixed as a = c = w0 = 1, w1 = 2, µ0 = 0.3, and κ = 0.5.

to the point that, for times t > 4 is almost indistin-
guishable. For completeness, the classical trajectory is
depicted as a dashed-black curve in Figure 2c, where
the initial conditions ⟨x̂⟩t0 = 2 and ⟨p̂x⟩t0 = 0 have
been used.

4.2. Regularized Caldirola-Kanai
In this section, the regularized Caldirola-Kanai os-
cillator is introduced so that it amends the diffi-
culties found in the Caldirola-Kanai for t >> T .
This model is characterized by a constant frequency
Ω2(t) = w2

1 and a mass term µrck(t) = µ0e
−κt + µ1,

with w1, µ0, µ1, κ > 0. The mass term will converge at
a constant value (different from zero) and the anoma-
lies found in the conventional Caldirola-Kanai case
will be fixed. The main consequence of the mass reg-
ularization is that the classical equation of motion is
not as trivial as in Section 4. In turn one has

q̈(t) +
(
w2

1 − κ2

1 + µ0eκt

)
q(t) = 0. (55)

Two linearly independent solutions to the correspond-
ing linear equation (15) can be found as

q1(t) = z(t)i
w1
k 2F1



A1, A2

1 − 2iw1
k

∣∣∣∣∣∣
−1
z(t)


 ,

q2(t) = q∗
1(t),

(56)

where z(t) = µ0e
κt, A1 = −iw1

k −i
√

w2
1
k2 − 1, and A2 =

−iw1
k + i

√
w2

1
k2 − 1. On the other hand, 2F1(a, b; c;Z)

stands for the hypergeometric function [33], which
converges in the complex unit-disk |Z| < 1. Given
that z(t) : R → (1,∞), the solutions q1,2(t) in (56)
converge for t ∈ R.

Since both solutions in (56) are complex-valued,
with q2 = q∗

1, one can construct a real-valued solution
to the Ermakov equation by taking q1 =Re(q1) and

q2 =Im(q1). To simplify the ongoing discussion, the
external force is considered null, F (t) = 0. One thus
obtains

σ2(t) = a Re[q1(t)]2 + b Re[q1(t)] Im[q1(t)]
+ c Im[q1(t)]2, (57)

γ(t) = γ1 Re[q1(t)] + γ2 Im[q1(t)], (58)
where the Wronskian of the two linearly independent
solutions Re q1 and Im q1 becomes W0 = w1, leading
to the constraint b2 − 4ac = −4w

2
0

w2
1
.

Similarly to the Caldirola-Kanai case, the Heisen-
berg uncertainty relation saturates for times tm such
that Wµ(tm) = 0. In this case, an analytic expression
for such points is fairly complicated. Instead, one may
look at the behavior of Wµ(t) depicted in Figure 3a,
from which it is clear that such points exist. On the
other hand, Figure 3b reveals that, in contradistinc-
tion to the Caldirola-Kanai case, the position variance
does not grow indefinitely in time. This is rather ex-
pected as, for asymptotic times t >> 1, the mass term
converges to a finite value different from zero. That is,
the Hamiltonian becomes stationary for asymptotic
values.

Before conclude, the probability density for ψn(x, t)
and ξα(x, t) are shown in Figure 4. In the latter, it
can be verified that the width of the wavepackets
oscillates in a bounded way for times t > 2. Partic-
ularly, for the coherent state case of Figure 4c, the
dynamics of the wavepacket can be identified clearly,
where the maximum point follows the corresponding
classical trajectory (dashed-black). Therefore, there
is no need to introduce a truncation time T , for the
mass converges to a constant value different from zero,
remaining physically reasonable at all times.

5. Conclusions
In this work, the class of form-preserving point trans-
formations has been used to construct the constants of
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(a) . n = 0 (b) . n = 1 (c).

Figure 4. Probability density Pn = |ψn(x, t)|2 for n = 0 (A), n = 1 (B), and Pα = |ψn(x, t)|2 (C) associated with
the regularized Caldirola-Kanai mass term µrck(t). The rest of parameters have been fixed as w0 = a = b = 1, w1 = 2,
µ0 = 0.3, and κ = 0.5.

motion for the family of time-dependent mass oscilla-
tors. This was achieved by exploiting the preservation
of first-integrals on the initial stationary oscillator
model. Since several constants of motion are already
known for the initial system, the corresponding coun-
terparts for the time-dependent model are straightfor-
wardly constructed by implementing the appropriate
mappings. Notably, three different constants of mo-
tion were identified, one that admits an orthogonal set
of eigensolutions, another that permits non-orthogonal
eigensolutions, and the third one that does not admit
finite-norm solutions.

Interestingly, the non-orthogonal eigensolutions are
actually coherent states, for they are constructed from
the annihilation operator of the time-dependent os-
cillator. Furthermore, by exploiting the underlying
Weyl-Heisenberg algebra fulfilled by the quantum in-
variants, it was possible to find exact expressions for
the expectation values of the position and momentum
observables. The latter revealed the coherent states
are represented by Gaussian wavepacket whose maxi-
mum follows the corresponding classical trajectory.

Besides the latter properties, it was also found that,
in general, the Schrödinger-Robertson uncertainty re-
lation saturates for all times, whereas the Heisenberg
one gets minimized only for some times. Still, two
special time-dependent Hamiltonians exist so that the
Heisenberg inequality saturates at all times, one of
which is the stationary limit case, as expected.

Remarkably, the newly introduced regularized
Caldirola-Kanai mass term admits exact solutions that
regularize the unusual behavior observed in the con-
ventional Caldirola-Kanai case. More precisely, the
variances become bounded as well as the expectation
values. This allows obtaining localization of particles,
which is desired in physical implementations such as
traps of charged particles.
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Abstract. We study the classification of entanglement in tripartite systems by using Bell-type
inequalities and principal basis. By using Bell functions and the generalized three dimensional Pauli
operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully
separable and bi-separable mixed states. By using the correlation tensors in the principal basis
representation of density matrices, we obtain separability criteria for fully separable and bi-separable
2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the
tripartite entanglement.

Keywords: Bell inequalities, separability, principal basis.

1. Introduction
One of the most remarkable features that distinguishes
quantum mechanics from classical mechanics is the
quantum entanglement. Entanglement was first rec-
ognized by EPR [1], with significant progress made
by Bell [2] toward the resolution of the EPR problem.
Since Bell’s work, derivation of new Bell-like inequali-
ties has been one of the important and challenging sub-
jects. CHSH generalized the original Bell inequalities
to a more general case for two observers [3]. In [4] the
authors proposed an estimation of quantum entangle-
ment by measuring the maximum violation of the Bell
inequality without information of the reduced density
matrices. In [5] series of Bell inequalities for multi-
partite states have been presented with sufficient and
necessary conditions to detect certain entanglement.
There have been many important generalizations and
interesting applications of Bell inequalities [6–8]. By
calculating the measures of entanglement and the
quantum violation of the Bell-type inequality, a rela-
tionship between the entanglement measure and the
amount of quantum violation was derived in [9]. How-
ever, for high-dimensional multiple quantum systems
the results for such relationships between the entan-
glement and the nonlocal violation are still far from
being satisfied. In [10], an upper bound on fully entan-
gled fraction for arbitrary dimensional states has been
derived by using the principal basis representation of
density matrices. Based on the norms of correlation
vectors, the authors in [11] presented an approach to
detect entanglement in arbitrary dimensional quan-
tum systems. Separability criteria for both bipartite
and multipartite quantum states was also derived in
terms of the correlation matrices [12].

In this paper by using the Bell function and the
generalized three dimensional Pauli operators, we de-
rive a quantum upper bound for 3 ⊗ 3 ⊗ 3 quantum

systems. We present a classification of entanglement
for triqutrit mixed states by a set of Bell inequalities.
These inequalities can distinguish fully separable and
bi-separable states. Moreover, we propose criteria
to detect classification of entanglement for 2 ⊗ 2 ⊗ 3
mixed states with correlation tensor matrices in the
principal basis representation of density matrices.

2. Entanglement identification
with Bell inequalities

We first consider relations between entanglement and
non-locality for 3 ⊗ 3 ⊗ 3 quantum systems. Consider
three observers who may choose independently be-
tween two dichotomic observables denoted by Ai and
Bi for the i-th observer, i = 1, 2, 3. Let V̂i denote the
measurement operator associated with the variable
Vi ∈ {Ai, Bi} of i-th observer. We choose a complete
set of orthonormal basis vectors |k⟩ to describe an
orthogonal measurement of a given variable Vi. The
measurement outcomes are indicated by a set of eigen-
values 1, λ, λ2, where λ = exp( i2π3 ) is a primitive third
root of unity. Therefore the measurement operator
can be represented by V̂i =

∑2
k=0 λ

k|k⟩⟨k|. Inspired
by the Bell function (the expected value of Bell oper-
ator) constructed in [13], we introduce the following
Bell operator,

B =
2∑

j=1

1
4(Â1

j ⊗ Â2
j ⊗ Â3

j
+ λjÂ1

j ⊗ B̂2
j ⊗ B̂3

j

+ λjB̂1
j ⊗ Â2

j ⊗ B̂3
j

+ λjB̂1
j ⊗ B̂2

j ⊗ Â3
j
),
(1)

where Âi
j

(B̂i
j
) denotes the j-th power of Âi (B̂i).

Next we construct three Bell operators in terms
of Eq. (1). Consider three dimensional Pauli opera-
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tors [14] X̂ and Ẑ which satisfy

X̂|k⟩ = |k + 1⟩, Ẑ|k⟩ = λk|k⟩, X̂3 = I, Ẑ3 = I,

where I denotes the identity operator. Therefore,
if we replace Âi and B̂i with the following unitary
operators, Â1 = Ẑ, Â2 = λ2X̂Ẑ, Â3 = X̂Ẑ2, B̂1 = Ẑ,
B̂2 = X̂Ẑ2 and B̂3 = λ2X̂Ẑ, we obtain

B1 =
2∑

j=1

1
4 [Ẑj ⊗ (λ2X̂Ẑ)j ⊗ (X̂Ẑ2)j + λjẐj ⊗ (X̂Ẑ2)j

⊗ (λ2X̂Ẑ)j + λjẐj ⊗ (λ2X̂Ẑ)j ⊗ (λ2X̂Ẑ)j

+ λjẐj ⊗ (X̂Ẑ2)j ⊗ (X̂Ẑ2)j ].
(2)

If we choose unitary operators as follows, Â1 = λ2X̂Ẑ,
Â2 = X̂Ẑ2, Â3 = Ẑ, B̂1 = X̂Ẑ2, B̂2 = λ2X̂Ẑ and
B̂3 = Ẑ, we have

B2 =
2∑

j=1

1
4 [(ω2X̂Ẑ)j ⊗ (X̂Ẑ2)j ⊗ Ẑj + λj(λ2X̂Ẑ)j

⊗ (λ2X̂Ẑ)j ⊗ Ẑj) + λj(X̂Ẑ2)j ⊗ (X̂Ẑ2)j

⊗ (Ẑ)j + λj(X̂Ẑ2)j ⊗ (λ2X̂Ẑ)j ⊗ (Ẑ)j ].
(3)

Taking Â1 = λ2X̂Ẑ, Â2 = Ẑ, Â3 = X̂Ẑ2, B̂1 = X̂Ẑ2,
B̂2 = Ẑ and B̂3 = λ2X̂Ẑ, we have

B3 =
2∑

j=1

1
4 [(λ2X̂Ẑ)j ⊗ Ẑj ⊗ (X̂Ẑ2)j + λj(λ2X̂Ẑ)j

⊗ (Ẑ)j ⊗ (λ2X̂Ẑ)j) + λj(X̂Ẑ2)j ⊗ Ẑj

⊗ (λ2X̂Ẑ)j + λj(X̂Ẑ2)j ⊗ Ẑj ⊗ (X̂Ẑ2)j ].
(4)

Concerning the bounds on the mean values |⟨Bi⟩| of
the operators Bi, i = 1, 2, 3, we have the following
conclusions.

Theorem 1. For 3 ⊗ 3 ⊗ 3 mixed states, we have
the inequality, |⟨Bi⟩| ≤ 5

4 , i = 1, 2, 3.
Proof Due to the linear property of the average values,
it is sufficient to consider pure states. Any triqutrit
pure state can be written as,

|ψ⟩ =c1|000⟩ + c2|011⟩ + c3|012⟩ + c4|021⟩ + c5|022⟩
+ c6|101⟩ + c7|102⟩ + c8|110⟩ + c9|111⟩
+ c10|120⟩ + c11|122⟩ + c12|201⟩ + c13|202⟩
+ c14|210⟩ + c15|212⟩ + c16|220⟩ + c17|221⟩
+ c18|222⟩,

(5)

where c5, c11, c13, c15, c16, c17 and c18 are real and non-
negative, |c1| ≥ |ci| for i = 1, 2, . . . , 18, |c9| ≥ |c18|

and
∑18
i=1 |ci|2 = 1. Therefore,

|⟨B1⟩| =|14(−c1c2 + 5c1c5 − c2c5 − c6c10 + 2c7c8

+ 2c9c11 + 2c12c15 + 5c12c16 − c13c14 − c13c17

− 4c14c17 + 5c15c16)|

≤1
8 × 10 ×

18∑

i=1
c2
i

=5
4 .

(6)

Similarly one can prove that |⟨Bi⟩| ≤ 5
4 for i = 2, 3. □

Theorem 2. If a triqutrit mixed state ρ is fully
separable, then |⟨Bi⟩| = 0, i = 1, 2, 3.

The proof is straightforward. Due to the linear
property of the average values, it is sufficient to
consider pure states again. A fully separable pure
state can be written as under suitable bases, |ψ⟩ =
|0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩. Therefore |⟨Bi⟩| = |tr(ρBi)| = 0.

Theorem 3. For bi-separable states ρi|jk under bi-
partition i and jk, i ̸= j ̸= k ∈ {1, 2, 3}, we have

|⟨B1⟩| ≤ 3
4 , |⟨B2⟩| = 0, |⟨B3⟩| = 0,

|⟨B1⟩| = 0, |⟨B2⟩| ≤ 3
4 , |⟨B3⟩| = 0,

|⟨B1⟩| = 0, |⟨B2⟩| = 0, |⟨B3⟩| ≤ 3
4 ,

for ρ1|23, ρ3|12 and ρ2|13, respectively.
Proof It is sufficient to consider pure states only. Every
bi-separable pure state ρ1|23 can be written as via
a suitable choice of bases [15],

|ψ⟩ = |0⟩ ⊗ (c0|00⟩ + c1|11⟩ + c2|22⟩),

where |c0| ≥ |c1| ≥ |c2| and
∑2
i=0 |ci|2 = 1. Therefore,

we have by direct calculation,

|⟨B1⟩| =|14(5c2c0 − c0c1 − c1c2)|

≤1
8(5 × (c2

2 + c2
0) + (c2

0 + c2
1) × (c2

1 + c2
2))

≤3
4 .

It is straightforward to prove similarly, |⟨B2⟩| = 0 and
|⟨B3⟩| = 0. For bi-separable states ρ3|12 and ρ2|13, the
results can be proved in a similar way. □

The above relations given in Theorem 1-3 give rise
to characterization of quantum entanglement based
on the Bell-type violations. If we consider |⟨Bi⟩|, i =
1, 2, 3, to be three coordinates, then all the triqutrit
states are confined in a cube with size 5

4 × 5
4 × 5

4 . The
bi-separable states are confined in a cube with size
3
4 × 3

4 × 3
4 , see Figure 1.
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Figure 1. All states lie in the yellow cube, while in
the green cube are bi-separable states.

3. Entanglement classification
under principal basis

Consider the principal basis on d-dimensional Hilbert
space H with computational basis |i⟩, i = 1, 2, ..., d.
Let Eij be the d×d unit matrix with the only nonzero
entry 1 at the position (i, j). Let ω be a fixed d-th
primitive root of unity, the principal basis is given by

Aij =
∑

m∈Zd

ωimEm,m+j , (7)

where ωd = 1, i, j ∈ Zd and Zd is Z modulo d. The
set {Aij} spans the principal Cartan subalgebra of
gl(d). Under the stand inner product (x|y) = tr(xy)
of matrices x and y, the dual basis of the principal
basis {Aij} is {(ωij/d)A−i,−j}, which follows also
from the algebraic property of the principal matrices,
AijAkl = ωjkAi+k,j+l. Namely, A†

i,j = ωijA−i,−j ,
and thus tr(AijA†

kl) = δikδjld [10].
Next we consider the entanglement of 2 ⊗ 2 ⊗ 3

systems. Let {Aij} and {Bij} be the principal bases
of 2-dimensional and 3-dimensional Hilbert space, re-
spectively. For any quantum state ρ ∈ H2

1 ⊗H2
2 ⊗H3

3 ,
ρ has the principal basis representation:

ρ = 1
12(I2 ⊗ I2 ⊗ I3 +

∑

(i,j)
̸=(0,0)

uijAij ⊗ I2 ⊗ I3

+
∑

(k,l)
̸=(0,0)

vklI2 ⊗Akl ⊗ I3 +
∑

(s,t)̸=(0,0)

wstI2 ⊗ I2 ⊗Bst

+
∑

(i,j),(k,l)
̸=(0,0)

xij,klAij ⊗Akl ⊗ I3 +
∑

(i,j),(s,t)
̸=(0,0)

yij,stAij

⊗ I2 ⊗Bst +
∑

(k,l),(s,t)
̸=(0,0)

zkl,stI2 ⊗Akl ⊗Bst

+
∑

(i,j),(k,l),(s,t)
̸=(0,0)

rij,kl,stAij ⊗Akl ⊗Bst),

(8)
where I2 (I3) denotes the two (three) dimensional
identity matrix, uij = tr(ρA†

ij ⊗ I2 ⊗ I3), vkl =

tr(ρI2 ⊗A†
kl ⊗ I3), wst = tr(ρI2 ⊗ I2 ⊗B†

st), xij,kl =
tr(ρA†

ij⊗A†
kl⊗I3), yij,st = tr(ρA†

ij⊗I2⊗B†
st), zkl,st =

tr(ρI2 ⊗A†
kl⊗B†

st) and rij,kl,st = tr(ρA†
ij⊗A†

kl⊗B†
st).

Denote T
1|23
1 , T 1|23

2 , T 2|13
1 , T 2|13

2 , T 3|12
1 and T

3|12
2

the matrices with entries given by r01,kl,st, r11,kl,st,
rij,01,st, rij,11,st, rij,kl,10 and rij,kl,20 (i, j, k, l ∈ Z2,
s, t ∈ Z3), respectively. Let ∥A∥tr =

∑
σi = tr

√
AA†

be the trace norm of a matrix A ∈ Rm×n, where σi
are the singular values of the matrix A.

First we note that ∥T 1|23
1 − T

1|23
2 ∥tr is invariant

under local unitary transformations. Denote UAU†

by AU . Suppose ρ′ = ρ(I⊗U2⊗U3) with U2 ∈ U(2)
and U3 ∈ U(3), AU2

ij =
∑

(i′,j′)
̸=(0,0)

mij,i′j′Ai′j′ and BU3
ij =

∑
(i′,j′)
̸=(0,0)

nij,i′j′Bi′j′ for some coefficients mij,i′j′ and

nij,i′j′ . The orthogonality of {AU2
ij } and {BU3

ij } re-
quires that

tr(AU2
ij A

U2
kl ) = tr(U2AijA

†
klU

†
2 )

=tr(AijA†
kl) = 2δikδjl;

tr(BU3
ij B

U3
kl ) = tr(U3BijB

†
klU

†
3 )

=tr(BijB†
kl) = 3δikδjl.

Hence, we have M = (mij,i′j′) ∈ SU(3) and N =
(nij,i′j′) ∈ SU(8) since any two orthogonal bases are
transformed by an unitary matrix. One sees that

∑

(i,j),(k,l),
(s,t)̸=(0,0)

rij,kl,stAij ⊗AU2
kl ⊗BU3

st

=
∑

(i,j),(k,l),
(s,t)̸=(0,0)

∑

(k′,l′),(s′,t′)
̸=(0,0)

rij,kl,stmkl,k′l′nst,s′t′Aij ⊗Ak′l′

⊗Bs′t′

=
∑

(i,j),(k,l),
(s,t)̸=(0,0)

(
∑

(k′,l′),(s′,t′)
̸=(0,0)

mk′l′,klrij,k′l′,s′t′ns′t′,st)Aij ⊗Akl

⊗Bst.

We have T 1|23
1 (ρ′) = M tT

1|23
1 (ρ)N and T

1|23
2 (ρ′) =

M tT
1|23
2 (ρ)N. Therefore,

∥T 1|23
1 (ρ′) − T

1|23
2 (ρ′)∥tr = ∥T 1|23

1 (ρ) − T
1|23
2 (ρ)∥tr,

(9)
due to that the singular values of a matrix are the
same as those of M tTN when M and N are unitary
matrices.

Theorem 4. If a mixed state ρ is fully separable,
then ∥T 1|23

1 − T
1|23
2 ∥tr ≤

√
3.

Proof If ρ = |φ⟩⟨φ| is fully separable, we have
|φ1|2|3⟩ = |φ1⟩ ⊗ |φ23⟩ ∈ H2

1 ⊗ H6
23, where

|φ23⟩ = |φ2⟩ ⊗ |φ3⟩ ∈ H2
2 ⊗ H3

3 . Then by Schmidt
decomposition, |φ1|2|3⟩ = t0|0α⟩ + t1|1β⟩, where
t20 + t21 = 1. Taking into account the local unitary
equivalence in H2

2 ⊗ H3
3 and using (9), we only

need to consider that {|α⟩, |β⟩} = {|00⟩, |01⟩}. Then
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|φ1|2|3⟩ = t0|000⟩ + t1|101⟩. T 1|23
1 and T 1|23

2 are given
by

T
1|23
1 =




0 t0t1 0
0 t0t1 0
0 0 0
0 t0t1 0
0 t0t1ω

2 0
0 0 0
0 t0t1 0
0 t0t1ω 0




t

, (10)

T
1|23
2 =




0 t0t1 0
0 −t0t1 0
0 0 0
0 t0t1 0
0 −t0t1ω2 0
0 0 0
0 t0t1 0
0 −t0t1ω 0




t

. (11)

with ω3 = 1. Therefore, we have

∥T 1|23
1 − T

1|23
2 ∥tr

=tr
√

(T 1|23
1 − T

1|23
2 )(T 1|23

1 − T
1|23
2 )†

=
√

12t20t21 ≤
√

3.

For a fully separable mixed state ρ =
∑
pi|φi⟩⟨φi|,

we get

∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr

=∥T 1|23
1 (

∑
pi|φi⟩⟨φi|) − T

1|23
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 1|23
1 (|φi⟩⟨φi|) − T

1|23
2 (|φi⟩⟨φi|)∥tr

≤
√

3,

which proves the theorem. □

Theorem 5. For any mixed state ρ =∑
pi|φi⟩⟨φi| ∈ H2

1 ⊗H2
2 ⊗H3

3 ,
∑
pi = 1, 0 < pi ≤ 1,

we have:
(1) If ρ is 1|23 separable, then ∥T 1|23

1 −T
1|23
2 ∥tr ≤

√
6;

(2) If ρ is 2|13 separable, then ∥T 2|13
1 −T

2|13
2 ∥tr ≤

√
6;

(3) If ρ is 3|12 separable, then ∥T 3|12
1 −T

3|12
2 ∥tr ≤

√
3.

Proof (1) If ρ = |φ⟩⟨φ| is 1|23 separable, we have
|φ1|23⟩ = |φ1⟩ ⊗ |φ23⟩ ∈ H2

1 ⊗ H6
23, where H6

23 =
H2

2 ⊗H3
3 . Then by Schmidt decomposition, one has

|φ1|23⟩ = t0|0α⟩ + t1|1β⟩, where t20 + t21 = 1. Taking
into account the local unitary equivalence in H2

2 ⊗H3
3

and using (9), we only need to consider two cases (i)
{|α⟩, |β⟩} = {|00⟩, |01⟩} and (ii) {|00⟩, |11⟩}.

For the first case we have ∥T 1|23
1 − T

1|23
2 ∥tr ≤

√
3

by Theorem 4. For the second case, we have |φ1|23⟩ =

t0|000⟩ + t1|111⟩, where T 1|23
1 and T

1|23
2 are given by

T
1|23
1 =




t0t1 0 t0t1
t0t1 0 −t0t1
0 0 0
t0t1 0 t0t1
t0t1ω

2 0 −t0t1ω2

0 0 0
t0t1 0 t0t1
t0t1ω 0 −t0t1ω




t

, (12)

T
1|23
2 =




t0t1 0 t0t1
−t0t1 0 t0t1

0 0 0
t0t1 0 t0t1

−t0t1ω2 0 t0t1ω
2

0 0 0
t0t1 0 t0t1

−t0t1ω 0 t0t1ω




t

. (13)

Then we have

∥T 1|23
1 − T

1|23
2 ∥tr

=tr
√

(T 1|23
1 − T

1|23
2 )(T 1|23

1 − T
1|23
2 )†

=
√

24t20t21 ≤
√

6.

Now consider mixed state ρ =
∑
pi|φi⟩⟨φi|. We

obtain

∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr

=∥T 1|23
1 (

∑
pi|φi⟩⟨φi|) − T

1|23
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 1|23
1 (|φi⟩⟨φi|) − T

1|23
2 (|φi⟩⟨φi|)∥tr,

namely, ∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr ≤

√
6.

(2) If ρ = |φ⟩⟨φ| is 2|13 separable, we have |φ2|13⟩ =
|φ2⟩ ⊗ |φ13⟩ ∈ H2

2 ⊗ H6
13, where H6

13 = H2
1 ⊗ H3

3 .
Then by Schmidt decomposition, one has |φ2|13⟩ =
t0|0α⟩+t1|1β⟩, where t20 +t21 = 1. Taking into account
the local unitary equivalence in H2

1 ⊗H3
3 , we obtain

a similar equation of (9). Thus we only need to con-
sider again the two cases (i) {|α⟩, |β⟩} = {|00⟩, |01⟩}
and (ii) {|00⟩, |11⟩}.

In the first case, |φ2|13⟩ = t0|000⟩ + t1|101⟩, and
T

2|13
1 and T 2|13

2 are zero matrices. In the second case,
|φ2|13⟩ = t0|000⟩ + t1|111⟩, with T 2|13

1 and T 2|13
2 given

by

T
2|13
1 =




t0t1 0 t0t1
t0t1 0 −t0t1
0 0 0
t0t1 0 t0t1
t0t1ω

2 0 −t0t1ω2

0 0 0
t0t1 0 t0t1
t0t1ω 0 −t0t1ω




t

, (14)
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T
2|13
2 =




t0t1 0 t0t1
−t0t1 0 t0t1

0 0 0
t0t1 0 t0t1

−t0t1ω2 0 t0t1ω
2

0 0 0
t0t1 0 t0t1

−t0t1ω 0 t0t1ω




t

. (15)

Then we have

∥T 2|13
1 − T

2|13
2 ∥tr

=tr
√

(T 2|13
1 − T

2|13
2 )(T 2|13

1 − T
2|13
2 )†

=
√

24t20t21 ≤
√

6.

For the mixed state ρ =
∑
pi|φi⟩⟨φi|, we have

∥T 2|13
1 (ρ) − T

2|13
2 (ρ)∥tr

=∥T 2|13
1 (

∑
pi|φi⟩⟨φi|) − T

2|13
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 2|13
1 (|φi⟩⟨φi|) − T

2|13
2 (|φi⟩⟨φi|)∥tr

≤
√

6.

(3) If ρ = |φ⟩⟨φ| is 3|12 separable, we have |φ3|12⟩ =
|φ3⟩⊗|φ12⟩ ∈ H3

3 ⊗H4
12, where H4

12 = H2
1 ⊗H2

2 . Then
by Schmidt decomposition, we have |φ3|12⟩ = t0|0α0⟩+
t1|1α1⟩ + t2|2α2⟩, where t20 + t21 + t22 = 1. Taking into
account the local unitary equivalence in H2

1 ⊗ H2
2 ,

we obtain similar equation of (9). We only need to
consider the case |φ3|12⟩ = t0|000⟩ + t1|101⟩ + t2|210⟩.
We have

T
3|12
1 =




0 0 0
0 t20 − ωt21 + ω2t22 0
0 0 0


 ,

T
3|12
2 =




0 0 0
0 t20 − ω2t21 + ωt22 0
0 0 0


 .

(16)

Using 1 + ω + ω2 = 0, we have

∥T 3|12
1 − T

3|12
2 ∥tr

=tr
√

(T 3|12
1 − T

3|12
2 )(T 3|12

1 − T
3|12
2 )†

=
√

3(t20 + t21)2 ≤
√

3.

For the mixed state ρ =
∑
pi|φi⟩⟨φi|, we get

∥T 3|12
1 (ρ) − T

3|12
2 (ρ)∥tr

=∥T 3|12
1 (

∑
pi|φi⟩⟨φi|) − T

3|12
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 3|12
1 (|φi⟩⟨φi|) − T

3|12
2 (|φi⟩⟨φi|)∥tr

≤
√

3.

As an example, let us consider the 2 ⊗ 2 ⊗ 3 state,

ρ = x|GHZ ′⟩⟨GHZ ′| + (1 − x)I12, 0 ≤ x ≤ 1,

where |GHZ ′⟩ = 1
2 (|000⟩ + |101⟩ + |011⟩ + |112⟩). By

Theorem 4, we have that when ∥T 1|23
1 − T

1|23
2 ∥ =

(2
√

3
2 + 1)x >

√
3, i.e., 0.5021 < x ≤ 1, ρ is not fully

separable. By Theorem 5, when ∥T 1|23
1 − T

1|23
2 ∥ =

∥T 2|13
1 − T

2|13
2 ∥ = (2

√
3
2 + 1)x >

√
6, i.e., 0.7101 <

x ≤ 1, ρ is not separable under bipartition 1|23 or 2|13.
When ∥T 3|12

1 − T
3|12
2 ∥ = 7

√
3

4 x >
√

3, i.e., 0.5714 <
x ≤ 1, ρ is not separable under bipartition 3|12.

4. Conclusions
We have presented quantum upper bounds for triqutrit
mixed states by using the generalized Bell functions
and the generalized three dimensional Pauli opera-
tors, from which the triqutrit entanglement has been
identified. Our inequalities distinguish fully separa-
ble states and three types of bi-separable states for
triqutrit states. Moreover, any triqutrits states are
confined in a cube with size 5

4 × 5
4 × 5

4 and the bi-
separable states are in a cube with the size 3

4 × 3
4 × 3

4 .
We have also studied the classification of quantum
entanglement for 2 ⊗ 2 ⊗ 3 systems by using the cor-
relation tensors in the principal basis representation
of density matrices. By considering the upper bounds
on some the trace norms, we have obtained the cri-
teria which detect fully separable and bi-separable
2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example
has been given to show the classification of tripartite
entanglement by using our criteria.

Acknowledgements
This work is supported by the National Natural Science
Foundation of China under grant Nos. 11101017, 11531004,
11726016, 12075159 and 12171044, Simons Foundation un-
der grant No. 523868, Beijing Natural Science Foundation
(Z190005), Academy for Multidisciplinary Studies, Capi-
tal Normal University, Shenzhen Institute for Quantum
Science and Engineering, Southern University of Science
and Technology (SIQSE202001), and the Academician
Innovation Platform of Hainan Province.

References
[1] A. Einstein, B. Podolsky, N. Rosen. Can

quantum-mechanical description of physical reality be
considered complete? Physical Review 47(10):777–780,
1935. https://doi.org/10.1103/PhysRev.47.777.

[2] J. S. Bell. On the Einstein Podolsky Rosen paradox.
Physics 1(3):195–200, 1964. https:
//doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt.
Proposed experiment to test local hidden-variable
theories. Physical Review Letters 23(15):880–884, 1969.
https://doi.org/10.1103/PhysRevLett.23.880.

[4] P. Y. Chang, S. K. Chu, C. T. Ma. Bell’s inequality
and entanglement in qubits. Journal of High Energy
Physics volume 2017(9):100, 2017.
https://doi.org/10.1007/JHEP09(2017)100.

226



vol. 62 no. 1/2022 A Note on Entanglement Classification for Tripartite . . .

[5] M. Li, S. M. Fei. Bell inequalities for multipartite
qubit quantum systems and their maximal violation.
Physical Review A 86(5):052119, 2012.
https://doi.org/10.1103/PhysRevA.86.052119.

[6] D. Collins, N. Gisin, S. Popescu, et al. Bell-type
inequalities to detect true n-body nonseparability.
Physical Review Letters 88(17):170405, 2002.
https://doi.org/10.1103/PhysRevLett.88.170405.

[7] S. W. Ji, J. Lee, J. Lim, et al. Multi-setting Bell
inequality for qudits. Physical Review A 78(5):052103,
2008.
https://doi.org/10.1103/PhysRevA.78.052103.

[8] H. Zhao. Entanglement of Bell diagonal mixed states.
Physics Letters A 373(43):3924–3930, 2009.
https://doi.org/10.1016/j.physleta.2009.08.048.

[9] D. Ding, Y. Q. He, F. L. Yan, T. Gao. Entanglement
measure and quantum violation of Bell-type inequality.
International Journal of Theoretical Physics
55(10):4231–4237, 2016.
https://doi.org/10.1007/s10773-016-3048-1.

[10] X. F. Huang, N. H. Jing, T. G. Zhang. An upper
bound of fully entangled fraction of mixed states.
Communications in Theoretical Physics 65(6):701–704,

2016.
https://doi.org/10.1088/0253-6102/65/6/701.

[11] J. I. de Vicente, M. Huber. Multipartite
entanglement detection from correlation tensors.
Physical Review A 84(6):242–245, 2011.
https://doi.org/10.1103/PhysRevA.84.062306.

[12] M. Li, J. Wang, S. M. Fei, X. Li-Jost. Quantum
separability criteria for arbitrary dimensional
multipartite states. Physical Review A 89(2):767–771,
2014.
https://doi.org/10.1103/PhysRevA.89.022325.

[13] W. Son, J. Lee, M. S. Kim. Generic Bell inequalities
for multipartite arbitrary dimensional systems. Physical
Review Letters 96(6):060406, 2006.
https://doi.org/10.1103/PhysRevLett.96.060406.

[14] D. Gottesman. Fault-tolerant quantum computation
with higher-dimensional systems. Chaos, Solitons &
Fractals 10(10):1749–1758, 1999.
https://doi.org/10.1016/S0960-0779(98)00218-5.

[15] H. A. Carteret, A. Higuchi, A. Sudbery. Multipartite
generalisation of the Schmidt decomposition. Journal of
Mathematical Physics 41(12):7932–7939, 2000.
https://doi.org/10.1063/1.1319516.

227


