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Abstract

This paper discusses the concepts of verificatimh\alidation in computational mechanics
with special attention to structural fire enginegriby referring to recently published papers
and guides on V&V that define some best practiced ahow directions for future
development. The perspective of an analyst, wheldpg computational models, makes runs,
and analyses numerical results mostly using soévibased on the finite element method, is
presented. The considerations emphasize practichlgms encountered in the V&V process,
potential sources of errors and uncertainties,irtiqgortance of sensitivity study, new ideas
regarding the relationship between validation agfication, differences between calibration
and validation, new aspects of the validation rmefrand guides for designing validation
experiments. The discussion is illustrated by caiamnal problem examples.
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INTRODUCTION

Wide application of numerical models in structugabineering raises the question about their
predictive capability. This question is especidgitimate in the research areas where
complex, highly nonlinear structural behaviour ignberest. One of such research areas is the
structural fire engineering where interaction ofliéidnal effects due to elevated temperatures
has to be considered. Among such effects therettagemal reduction of material properties,
generation of additional forces due to constraitieermal deformation, complex thermo,
chemical and mechanical effects such as dehydradimh vapour pressure leading to
premature concrete failure and spalling.

The high, steady interest in computational resedochstructural fire engineering can be
observed based on the simplified statistics preskeimt Fig. 1 which shows number of related
papers recorded in the Google Scholar databask BARE in the title and FIRE + “FINITE
ELEMENT” anywhere in the article). There can besapectation for more precise evaluation
procedures, specifically dedicated to the constleesearch area such as structural fire
engineering however, in the topic literature deéilyy dominates opinion that a general
procedure applicable to what is called Computati@@ence and Engineering (CS&E) or
Computational Engineering and Physics (CE&P) shddddeveloped, (Oberkampf et al,
2004). The mentioned broad areas encompass malulg fti¢ engineering and physics,
characterized usually by adjective “computatioraith as (computational) fluid dynamics,
solid mechanics, and structural dynamics. Evenghoit is clear that the expected predictive
capability for linear FE static analysis is diffetghan for structural fire engineering, as it is
shown schematically in Fig. 2, the same principleg&V are applicable to all these research
fields.

Report (Oden et al, 2006) describes the importaotecomputer simulation for the
development of technical ideas today and predictisaap increase in the near future. We are
witnessing the continuation of the computer revohyt which, according to Moore's law
recognizes (Moore, 1998) a two-fold increase in potimg power over the 18 months. In the



80's and 90's it was represented by doubling of pmecessor clock speed and now
represented by an increase of number of transigtatan be packed in a standard chip size.
The hardware development is followed by the rapidaacement of numerical programs. For
example, based on the finite element method (FEbmercial program LS-DYNA®,
whose source code had 50,000 lines in its earls,daythe 70s, now has more than 2.5
million lines in little more than a decade (Kwasmski, 2009). The improvements in
computational capabilities are well illustrated dry example presented in (Belytschko et al,
2000): in the 1970s, a 20 ms crash test simulaiging a 300-element vehicle model took
about 30 hours of computer time at a cost equivdtethe three-year salary of a university
professor. Today’s multiprocessor machines allomguig& much higher number of finite
elements - tens of millions in some FE models. 8gpncreasing number of users or of such
programs, with the increasing access to multipmmesomputers with high-performance
computing, degrades the computational resourcetdiions as an excuse for simplified
computer simulations. The only limitation left five use of multiple processors to solve a
given problem is scalability of the software fogigen problem.

6000

Oin title: FIRE

~ LJFIRE "FINITE ELEMENT" |

5000

4000

Linear FE dynamic
3000 1 — analysis

2000 4 — 1
4

Linear FE static
1000 1 — . analysis

Nonlinear static

(stability) .
Structural Fire
Engineering

Transient dynamics Computational Fluid
J (crash tests) Dynamics

CFD

2007 2008 2009 2010 2011 2012 ] l
E |

BETTER MORE DIFFICULT

Fig. 1 Number of articles accordingto  Fig. 2 Predictive capabilities of computer
Google Scholar simulations

Despite the rapid hardware and software developiiemé are many contradictory opinions
about the reliability of computer predictions (Baka & Oden, 2004), best expressed by a
famous statement: “Essentially, all models arengrdout some are useful” (Box & Draper,
1987). It is almost impossible to model all the ex¢p of a complex event, yet valuable
conclusions from a series of simulations can beclooled if proper tools and statistical
measures are used through the V&V procedures. Harlhe development of the finite
element method, the Journal of Applied Mechanigscted FE papers for being insufficiently
scientific (Belytschko et al, 2000). Today’s geheatitude is definitely evolving towards
more acceptance of computer predictions, and theenuoal results obtained using the
dominant FE method are present in numerous tedhaiwé scientific papers from many
different research areas.

1 MODELLING, VERIFICATION AND VALIDATION

Today verification and validation (V&V) is recogeid as the primary method for evaluating
the confidence of computer simulations (Oberkamle2004). The relationships between
activities involved in the development of mathematand computational models and in their
verification and validation, are often schematicg@tesented using diagrams such as the one
shown in Fig. 3 (Kwasniewski, 2009). In Fig. 3, thexes represent four main concepts:
reality of interest, mathematical model, computedeis, and validation experiments. Reality
of interest relates itself to two aspects: to thggical system containing objects as well as to



the processes intended for analysis. Realitytef@st can apply to existing objects or to new
solutions (prototyping) but always refers to somehiefined physical objects, for example to
a structural element subjected to furnace test arwhole structure subjected to full scale fire
test.

The mathematical (or conceptual) model comprisds agssumptions and definitions
characterizing the mathematical representatiorhefréality of interest formulated generally
as a system of partial differential equations (PDé&snplemented by boundary and initial
conditions (Oberkampf et al, 2004). The transitioom reality of interest to mathematical
model depends on the objective of the analyseserstahding of physics, the analyst's
experience, and resources. Formulation of the matieal model is the first step in the
model development and the first source of errors.

Usually, physical problems of a practical natuepresented by such mathematical models,
cannot be solved analytically due to the complegityfor example, their geometry. To find
the solution, a mathematical model is replaced by proximate computer (computational)
model using the process of numerical discretizatwhich replaces PDEs with sets of
algebraic (matrix) equations more suitable for cataps. The discretization of space and time
can be done using procedures such as the finiteesle finite difference, finite volume, and
boundary element methods. In solid mechanics andtatal dynamics, space discretization
is dominantly done with the finite element (FE) hoat. Time domain of transient events is
discretized with finite difference method. In piaetFE model development, especially when
a commercial code is used, requires many deciginrsglection among numerous options.
The last box in Fig. 3 contains a set of validatexperiments designed using the validation
hierarchy (Oberkampf et al, 2004). The objectivéheise tests is to increase the accuracy and
predictive capability of computer models. Speciallgsigned additional experiments are
supposed to provide answers for the questions dailsging model development and to
quantify the model’s uncertainties.
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Fig. 3 Relations between modelling,  Fig. 4 Example parametric study of furnace test
verification and validation on rotationally restrained steel columns in fire
(Kwasniewski, 2009)

The solid lines indicate the activities of genemabvdel development, including concep
modelling, computer (FE) model development (i.eftvgare implementation), and desigr
validation experiments. Some thiese activities are marked with arrows on botesio shoy
their interactive character, and especially goodopeoation between analysts

experimentalists is recommended (Kwasniewski, 2008 assessment activities, mail
with dashed lines, inveé verification and validation. Verification analidation should k
performed with respect to assumed objectives definihe quantities of interest. 1
difference between verification and validation i©hmbly most accurately expressec



Roache’s iformal statement: “Verification deals with matherosit validation deals wi
physics” (Roache 1998). Verification uses comparison of computaiosolutions wit
highly accurate (analytical or numerical) benchmadutions and among themsel
whereas validation compares the numerical solutiith the experimental dat&erification
comprises of model and code verification stagese @&halyst is usually provided witl
software and the code verification stage is usyadifformed by for software develop@ihe
objective of V&V practices, which is generally toorroborate (mathematical &
computational) model for its intended use, can taetally split into three tasks: to det
and separate the model's significant discrepandiesemove and rede removable ar
unavoidable errors, and to evaluate uncertaintieke results. A very important aspect of
V&V process is the proper determination of sourfoesall significant errors. The dashed |
representing validation connects experimentshwioth the computer and mathema
models. Although validation involves direct comgan of computational results ¢
experimental data, the differences encountered treiesources in both models. It has &
pointed out (ASME, 2006) that verificati should precede validation, but even the
extensive verification cannot remove all errorgg(edue to discretization) so validat
evaluates the whole modelling process, and somheferrors that originated in differ
modelling phases cannot be completely separatedpae (Schwer, 2006).

2 DIFFICULTIESWITH EXPERIMENTAL VALIDATION IN STRUCTURAL
FIRE ENGINEERING

Experimental validation in the structural fire emggring through comparison between
numerical results and experimental data obtainetyudarnace tests is difficult and has many
limitations which are not only economical but alace due to inevitable uncertainties
characterising the specimen behaviour (Gillie, 30@89actically, always limited number of
measurements during such tests cannot provideeanformation about the space and time
distribution of temperatures, evolution of boundagnditions, or generation of additional
forces due to constrained thermal and mechanicdbrdation. The limitations of
experimental validation increase the importanceasffication which is supposed to deliver
evidence that mathematical models are properlyemphted and that the numerical solution
is correct with respect to the mathematical model.

The problems with experimental validation of conguigimulations of structures subjected to
fires can be illustrated using the following parameestudy (Kwasniewski et al, 2013) where

a furnace test (Ali F & O’Connor, 2001) on rested steel columns was replicated using a
coupled structural-thermal numerical calculaticses Fig. 4. The objective of the study was
to identify and quantify all possible modelling pareters which can affect the numerical
results. The study was focused on improving preshictapabilities for the purpose of virtual
testing.

Common model calibration was replaced by experialesatlidation and extensive parametric
study. The calibration is understood here as aepiost procedure where through repeated
calculations with modified input parameters we tioyfind an “optimal” set of input data
which can provide the model’s response closesidé@ttual experimental data. It can happen
that due to superimposing of errors we can get gawcelation between experimental and
numerical results for a wrong model, defined byomect input parameters. Often, such a
situation can be detected when the model is usea fdifferent case with changed input
conditions. Also, a complex model with only some tbé input parameters “correctly”
calibrated should give a response different frone thxperimental data due to the
indeterminacy of other parameters. This is whydadlon based on more than one experiment
is considered as more reliable (Oberkampf et &420

In the considered parametric study the comparisbrthe numerical results and the
experimental data was presented for the relatipsshetween column’s average temperature
and axial force, axial displacement, and laterapldicement in the middle section. Three



critical modelling characteristics were determinethaterial behaviour, geometrical
imperfections, and longitudinal variation of thelwsan temperature. It was found that the
postponed buckling occurring at higher furnace terafures is due to a non-uniform
temperature distribution along the column, causgdhdat transfer at the partially insulated
furnace openings. The study shows how the modethtprs, initially ignored, may affect

the numerical results without calibrating the FEdelo In the authors’ opinion it is not

possible to correlate better numerical results with existing experimental data without
reducing model uncertainties (e.g. imperfection mi@agles and loading variation) through
additional experiments and measurements. It sedms due to many uncertainties
characterizing the fire experiments, with oftenitinade variation, it is not justifiable to show

the comparison between numerical and experimeesalts in a traditional deterministic way,
where only two numbers or curves (i.e. experimeaal numerical) are presented.

3 BENCHMARK PROBLEMSAND VERIFICATION

Verification is supposed to deliver evidence thaatmematical models are properly
implemented and that the numerical solution is esdrwith respect to the mathematical
model. Due to the high complexity of mostly nonineproblems that are practically
important, such verification can be conducted arypirically using “a posteriori” approach
where the reasoning is based on the experiencengdnam repeated calculations. A standard
example is the posteriori error estimation basednamerical results for different mesh
resolutions. According to (AIAA, 1998) verificationan be conducted through tests of
agreement between a computational solution and tgpes of benchmark solutions:
analytical, highly accurate numerical solution@pnfODE or PDE problem, and manufactured
solutions. In contrast to numerical solutions usedthe validation stage, the numerical
solutions applied for verification can representtimeeatical models with little physical
importance.

The importance and usefulness of benchmark studdrespecific areas of CS&E such as
structural fire engineering is postulated in margpgrs and conference proceedings. A
benchmark example should satisfy the following meuents. The problem considered
should be relatively simple, easy to understande Thnsidered case can show little of
practical meaning. It is supposed to be used fafieation of computational models not to
solve an engineering problem. The complete inptd daust be provided in an easy to follow
way. All assumptions regarding material propertiéeundary conditions, temperature
distribution, loading conditions, large/small def@tions and displacements should be
identified. If a numerical solution is consideresl @ benchmark problem the mesh density
study should also be considered and it should bevsthat provided results are within the
range of asymptotic convergence. One should alssider as a part of verification to use
alternative numerical models e.g. different codesadid vs. shell finite elements (if possible).
Publishing a benchmark study we claim that thisaiseliable solution. Hopefully, this
assumption will be verified by other users. Benchtknproblems can serve for code
developers but are probably the most helpful fatecasers who can verify their modelling
assumptions, as most of the errors are due tondlgst’'s mistakes.

4 COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

The soundness of an experiment as a source offdataalidation depends also on the
relationship between the application and the vébdadomains (Oberkampf et al, 2004). The
application domain defines the intended bounddaethe use and predictive capability of the
computational model. The validation domain charémts the representation capabilities of
the experiment. When a complex system is modetleete is a need for many validation
experiments capturing different physical aspectsthd system (e.g., different loading
scenarios, boundary and initial conditions) onedéht level of complexity of the model.
Unfortunately, due to high cost of furnace tegtg, éxperiments are rarely repeated and the



probability distribution of the test results is @fided. This distribution can be dramatically
different, depending on the selection of the stedatystem response quantity (SRQ). Some
of the researchers acknowledge large discrepanoetsieen the experiment and the
computation especially for concrete structural elets subject to elevated temperatures when
the important role of moisture transport on thdlsgamechanism is not sufficiently captured
in the computational model (Heijden & Bijnen, 200¥he need for multiple experiments and
computational probabilistic analysis can be bestdeed by Fig. 5 presenting the difference
that can be measured between a single experimehtaingle simulation and the actual
means of a given measure. Sensitivity of this meagua given parameter is represented by
the shape (width) of the distribution function. Wiheomparing simulated results to just one
experimental result the analyst has no confidehoeitarepresentativeness of the experiment
result. In the process of calibrating the compatel model to just one experiment actually
more errors can be introduced in the model angbrigglictive capability can be negatively
affected for a different set of initial parameters
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Fig. 5 Difference between simulated and experimesatiaies for a single and item and a
population of results

4.1 Validation domains

The ideal situation, possible only for simple sysde is when the validation domain

completely overlaps the application domain. Thisanse that the available set of the
validation experiments covers all possible paramsetiefining the computational model

within its intended application. When complex systeare analysed, it is sometimes
infeasible or even impossible to conduct all neagsexperiments to verify all features of the
computational model. An example of such a situaisathe global analysis of structures in the
fire (Foster, 2007). There have been only a fewdchle experimental fire tests (i.e., the
Cardington tests) conducted so far, but there araenical capabilities for such complex
analysis. The extreme, theoretical situation iswak possible or available experiments are
too far from the application of interest and thisr@ao overlap between the validation domain
and the application domain. The credibility of sucltomputational model, validated only
through extrapolation, is obviously much smalleo improve the predictive capability of

computation in such cases, hierarchical validatsomtroduced where closer correlation of
the domains is possible for lower-level experimeatsl then the gained confidence is
extrapolated to the global model.
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4.2 Validation metrics

Another important issue affecting the outcome @& tomparison between the experimental
and numerical results is which parameter (SRQ) &lecs for the comparison and how it is
represented, deterministically or in a probabdishanner. In (Oberkampf et al, 2004), the
authors distinguish six levels of validation conmpans, see Fig. 6. In the first level approach,
the simplest and the most common in today’s practc strictly qualitative comparison is
done using plots over the domain, for example, shgwhe deformation of a structure. The
second level represents a more quantitative blitfslly deterministic comparison of the
numerical and corresponding experimental, singlaevanput-response pairs, using tables or
plots. The second and third levels are most commopapers and reports dealing with
computational analyses. In the next, higher leeélsomparison, the nondeterministic nature
of experimental data with both errors and uncetitegns taken into account. Instead of single
values for the input and the corresponding reshéire are value bars with the centre point
representing the mean value and the length equaldstandard deviations (Oberkampf et al,
2004). The value bars provide information on thebpbility distribution estimated based on
the multiple experiments and can be applied to hotbertainties in the input and in the
results.
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Fig. 7 Quality levels of validation metrics (Obankpf et al, 2004)



The highest levels are represented by comparisothaue where additionally the
computational results are treated as nondeternanistith their own input and output
uncertainties. The necessary information is pravibdg repeated computations for the input
variation determined by the experimentally estimdgieobability distributions (Szabo, 2008).
The ideal approach according to (Oberkampf et@d42 would show the difference between
the computational and experimental probabilityrdisitions over the whole possible range of
the input quantity, but that would require an enousieffort for any real life application. It
should be remembered that for a nonlinear systemdlationship between the input and the
output can be very complex, and for example, tharmalues of the response do not have to
be equal to the response for the mean values afphe parameters, compare Fig. 5.

4.3 System response quantity

As already mentioned, the validation procedure @&sebl on the comparison between
computational results and experimental data. Gégeea experiment can provide much less
information than the calculation. The measuremdatsa quasi-static experiment on an
engineering structure usually give us loadingspldisements, and strains. A dynamic
experiment provides time histories of loads, staidisplacements, and accelerations. In
thermal analysis, the spatial distribution of tenap@res is measured. The measurements are
done for a limited number of selected locationst Ml the experimental output data is
equally representative and has the same imporfano®mparison with the computation. For
example, strain in a uniform beam subject to bemdsna local quantity related to internal
forces in the considered cross-section. Howeverptaximum deflection of the same beam is
a more representative quantity as it is the resbilall deformations along the beam and
depends on the whole distribution of internal feraand on boundary conditions. The
correlation between the experimental and computatiaisplacements for such a case is
more important for the purpose of validation thaomparison of local strains. The
comparison of stresses instead of strains is naremon in engineering practice but requires
recalculation of experimentally directly measurédias using material properties affected by
their uncertainties. In structural dynamics, we @dtetter correlation between smoother time
histories of displacements than between their skdone derivatives—time histories of
accelerations that are rougher. The selection @fsistem response quantity (SRQ) is often
limited by the experiment output, e.g., for thetleqmake or crash analyses time histories of
accelerations are the basic output information.
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Fig. 8 Different sensitivity of a response on &ig. 9 Model of a hollow glass ball subject
parameter variation to gravity acceleration

Also the range in which we test given responseah@seat impact on accuracy of the results.
If in a given range the response is not sensitovevdriation of the input parameter the



accuracy of prediction can be high (See Fig. 8)sdme other range the response may be
highly sensitive to the variation of the input paeter and the accuracy of the prediction may
be significantly lower.

Let's introduce the general idea of predictive d¢altees of numerical calculations (i.e.
computer simulations) through a simplified exammieblem of structural mechanics. In this
problem we consider a test where a hollow glaskvii#th external radius of 25mm and the
wall Imm thick is falling under gravity from a poedbed height (2.0 m) and hits a rigid
surface. The schematic of the test is shown in &igihe question is how precisely we can
predict the considered process using available days software. From an experimental
point of view this test can be performed multiplmds and probabilistic values for input
parameters characterizing glass as well as respaase be measured. Geometrical
imperfections on macroscopic level can be also aredsfor the ball. Although experiments
are controlled by many parameters we don’'t havedasure all of them to be able to perform
the tests. For example, not knowing failure paransein the glass we can drop a hundred
balls and measure a radius occupied by all thetesledt pieces of the ball. To perform an
equivalent simulation many more parameters hastméasured or provided to the analyst.
Performed here simulation in LS-DYNA software re@qdi detailed material properties of the
glass including failure and erosion criteria tooall for material separation. Such process,
although non-physical, is often used in simulatitreg pertain to material separation. If any
of the SRQ is related to the failure it may be priedl with large error or uncertainty. Mesh
size and mesh pattern are directly influencing ghterns of cracks that can develop only
through the eroded elements. On the other handexample the maximum force that is
exerted by the ball on the ground is less affetigthe mesh pattern and primarily depends
on the mass and the drop height of the ball.
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1.0 msec 2.0 msec_

Fig 10. Evolution of glass ball failure upon impactrigid surface

5 SUMMARY

Recently in the literature, some guidelines for iaying validation procedures have been
formulated. Validation hierarchy, placed in oppasitto the model calibration common
today, and new validation metrics are examplesiof Smprovement concepts. The examples
presented in this paper show how much the resulvatiflation can be affected by the
selection of the system response quantity and tivate is no universal metrics. The
importance of the comparisons using view graphgnofonsidered in the literature as lower-



level practice, is also emphasized as an effigiegtihod for checking the physical validity of
mathematical models. What should be recommendeecisly for complex problems with
practical meaning, is the design of simple expeni@etests placed on different levels of
hierarchical validation. Such simple and less expentests can provide more valuable
material for comparison than costly experimentgtire structure.
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