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ABSTRACT 

Determining the shear stress of a structural element caused by torsion is a vital problem. The 
analytical solution of the Saint-Venant torsion is only suitable for simple cross-sections. The 
numerical methods to evaluate the shear stress due to torsion of complicated cross-sections is 
indispensable. Many scientists have studied the torsion problem with various numerical methods. 
This paper aims to present an efficient finite element method for assessing the shear stress with 
arbitrary cross-sections in homogeneous isotropic elastic material due to torsion. MATLAB is the 
language for programming the numerical method. The validation examples were performed to show 
the reliability and efficiency of the author’s numerical method. 
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INTRODUCTION 

Torsion in the structure occurs due to asymmetrical loads, either by geometric dimensions or 
by interconnections between members. In many cases, torsion can be governing design factors. It 
is, therefore, essential to accurately determine the shear stress caused by torsion. Saint-Venant 
analysed the torsion problem using the semi-inverse method, assuming an unknown displacement 
to satisfy the equilibrium equations and boundary conditions. Prandtl then introduced the stress 
function of the Saint-Venant torsion and the method of membrane analogy [1]. However, determining 
the shear stress due to torsion by the analytic solution is complicated for a complex single connected 
domain or multiply connected domain. A single connected domain is a domain where the cross-
section is bounded by a closed. The multiply connected domain is the domain where the cross-
section is bordered by several closed. 

Nowadays, structural elements such as beams and columns are more and more complicated 
in their shapes. Hence the use of numerical methods to determine shear stress due to torsion is 
indispensable. Various numerical methods to assess torsional shear stress have been performed by 
many researchers [2-22]. Ely, J. F., and Zienkiewicz, O. C. [2] first solved Poisson’s equation of 
Prandtl’s stress function using the finite difference method and investigated the rectangular section 
with and without holes. Herrmann, L. R. [3] utilized the finite element method to calculate the warping 
function of the torsion of irregular sectional shapes. Based on the Hellinger–Reissner principle, Xiao, 
Q. Z., et al. [4] developed a 4-node element with four stress parameters to determine the shear 
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stress for the polygonal section. Gruttmann, F. et al. [5] used the finite element method to evaluate 
shear stress using the warping function, which is more convenient than using Prandtl’s stress 
function when considering a multiply connected domain. Gruttmann’s numerical method has been 
implemented into an enhanced version of the program FEAP [6], which used isoparametric four-
noded quadrilateral elements. Fialko, S.Y. et al. [7] developed a numerical method using constant 
triangular elements to solve the Saint Venant problem of torsion, and torsionless bending of prismatic 
bars is realized in the SCAD software [8]. Jog, S. et al. [9] presented a finite-element formulation for 
Saint Venant torsion with a multiply-connected domain in an anisotropic material. Recently, Beheshti, 
A. [10] derived a finite element from strain-gradient elasticity for torsion of prismatic bars with minimal 
dimensions. 

Besides the finite difference and finite element method, many authors have applied other 
numerical methods such as the boundary element method (BEM) [11-16], line element-less method 
(LEM) [17-18], a null-field integral technique [19], and finite-volume method [20-21] to analyse the 
torsion problem. Katsikadelis, J. T. et al. [11] examined the torsion of general composite bars by 
BEM while Gaspari, D. et al. [12] tackled orthotropic beams with a polygonal cross-section. Barone, 
G. et al. [13] implemented the Complex Variable Boundary Element Method to examine the torsion 
problem in the single connected domain. Lee, J.W. et al. [14] obtained a new BEM from the general 
Cauchy integral formula derived from the Borel–Pompeiu formula to analyse the torsion problem. 
Paradiso, M. et al. [15] achieved an efficient method to determine the warping function parameter 
with the general cross-section. Chen, K. H. et al. [16] introduced a new error estimation technique in 
BEM to optimise the torsion problem with a multiply-connected domain. Di Paola, M. et al. [17] 
proposed LEM to deal with shear stress in torsion problem with isotropic material and arbitrary cross-
section. Santoro, R. [18] handled the Saint Venant torsion problem for orthotropic beams with a 
general cross-section by LEM. Chen, J-T. et al. [19] introduced the null-field integral technique to 
analyse the torsion problem of circular cross-sections with round holes. Chen, H. et al. [20-21] 
developed a new finite-volume based on Bansal and Pindera’s work to investigate Saint Venant’s 
torsion problems of homogeneous and composite prismatic bars with multiply connected domain. 

In summary, all of the works show the feasibility and effectiveness in academia. Currently, to 
the author’s knowledge, Gruttmann’s method [5] has been developed into the FEAP program [6 ] of 
the University of California, Berkeley, and Allplan Bridge [22]. Fialko’s method [7] is similar to 
Gruttmann, developed as a module in the SCAD commercial software [8]. It means the methods of 
Gruttmann and Fialko are practical. However, due to the use of the four-noded quadrilateral element 
in FEAP and the constant strain triangle element in SCAD, to achieve high accuracy, it is necessary 
to mesh very smoothly, which affects the calculation speed. So, this research aims to develop a new 
numerical method (NMB) based on the work of Gruttmann by using the isoparametric eight-noded 
quadrilateral element. The validation examples were performed to show the reliability and efficiency 
of NMB. 

 

FINITE ELEMENT METHOD PROCEDURE 

Figure 1 shows the arbitrary cross-section of prismatic beam in homogeneous isotropic elastic 
material, the longitudinal axis is the x-axis, the cross-section denoted   is in yz plane. The multiply 

connected domain   is bounded by 1 2 1, ,..., ,n n    . S is the centre of gravity. On 

1 2 1, ,..., ,n n     the right-handed orthogonal basis system is defined with tangent vector t and 

outward normal vector [ , ]
T

y zn nn . With t the orientation of the associated coordinate s is uniquely 

defined. 

The displacement field x y z[u ,u ,u ]
T

u  is expressed as [1] 

T

xu  , y xu z  , ,z xu y       (1) 
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where x : torsion angle, x
d

dx


  , ( , )

T
y z : warping function for torsion. Here, the constraint of the 

warping for torsion is 

0.
T
dA



        (2) 

 
Fig. 1 - Cross-section of a prismatic bar. 

 

The shear stresses are given as 

T

xy G z
y


 

 
  

 
, .

T

xz G y
z


 

 
  

 
    (3) 

The polar second moment of area can be written as 

.
T T

TI y y z z dA
z y

 



     
       

     
      (4) 

The governing differential equation for the Saint-Venant torsion is expressed as 

2 2

2 2
0 .

T T

in
y z

  
  

 
      (5) 

Meanwhile, the boundary condition is given as 

( 1,2,..., ),
T T

y z y z in n n z n y on i n
y z

  
    

 
   (6) 

where y

dz
n

ds
 , .z

dy
n

ds
          (7) 

The governing differential equation (5) is transformed into the weak form by using the 
Galerkin’s method as below 

( , ) ( ) 0,
T T

T

y zG dA n z n y ds
y y z z

   
  

 

    
     

    
    (8) 

with test function 
1
( )H  . 
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The equation (8) is approximated by using the finite element method. Gruttmann’s method 
used isoparametric four-noded quadrilateral elements. To improve the computation speed, NMB 

used isoparametric eight-noded quadrilateral elements. The [ , ]
T

y zx , the unknown function 
T  

and the test function   are interpolated in the local coordinate system as follows 

 
8

1

,
h

i i

i

N  


x x ,  
8

1

( ) ,
T h T

i i

i

N   


 ,  
8

1

( ) , ,
h

i i

i

N   


    (9) 

where h denotes the approximate solution of the finite element method,  ,iN    denotes the shape 

function of the element. Figure 2 shows the isoparametric eight-noded quadrilateral element used in 
NMB. The shape functions of this element can be described as follows [23, 24] 
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  (10) 

 
Fig 2 -. Isoparametric eight-noded quadrilateral element. 

Inserting the derivatives of ( )
T h  and h  into the equation (8) reads as 

8 8

1 11

( ) 0.
numel

e T e

ij j i

i je

K F
 

          (11) 

Here, denotes the assembly operator with numel the total number finite elements. The 

stiffness part e

ijK  to the nodes i and j and the right hand e

iF read 

1 1

1 1

1 1

,

( , ) ( , ) ( , ) ( , ) ( , ) .

e

j j j je i i i i

ij e

QP
j je i i
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p q
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K dA d d
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   (13) 

where J  denoted as Jacobian matrix defined as 

 ,

y z

y z
J

x x

h h

é ů¶ ¶
ę ú
ę ú¶ ¶
ę ú=
ę ú¶ ¶
ę ú
ę ú¶ ¶ë ű

          (14) 

pw  and qw  are the weights and p and q  are the integration points of the Gaussian integration 

technique. NMB uses 3 x 3 Gauss quadrature derived from the 1D case, where the quadrature points 

are located at 3 / 5 , 0 and 3 / 5 , and the corresponding weights are equal to 5/9, 8/9, and 5/9, 

respectively (see [23, 24]). The value T

i  of one arbitrary nodal point i has to be value 0. 

 

VALIDATION EXAMPLES 

The objective of this section is to demonstrate the reliability and effectiveness of NMB. For 
this purpose, four validation examples derived from [1, 5, 9] were examined, and their results are 
compared with those analyzed by NMB implemented in MATLAB R2015a. 

A bar of square cross-section subjected to the torsion moment 1TM   kN.m with the length 

of the edge 2 m is analysed in the first example. Jog, C.S. et al. [9] investigated this problem using 
16 isoparametric nine-noded quadrilateral elements. To achieve convergence values of the shear 
stress and the polar second moment of area, the square cross-section is divided into 16, 64, 256 
elements with uniform mesh by NMB, respectively. Figure 3 shows the discretization of the square 
cross-section with 16 eight-noded quadrilateral elements. The points, A, B, C, D, correspond with 
the coordinates (0, 1), (2, 1), (0, 0), (0, 2), respectively. 

The analytical results of maximum shear stress and polar second moment of area obtained 

from [1, 9] are max 0.592   kPa, 2.24923TI   m4, respectively. Table 1 shows the comparison of the 

results of the maximum shear stress, the polar second moment of area between the methods. The 
results of NMB-16 elements and Jog, C.S. et al. [9] are the same. When the square cross-section is 
refined into 256 elements, NMB is in good agreement with analytical solutions. 

 

Tab. 1 - The maximum shear stress max
 and the polar second moment of area T

I of square cross-

section 

Factors Analytical solutions Jog, C.S. et al. [9] NMB- 16 elements NMB- 256 elements 

( )

max

a [kPa] 0.592 0.6173 0.619174 0.601461 

( )b

T
I [m4] 2.24923 2.2519 2.25187 2.24925 

Error(a), (%) - 4.273 4.590 1.598 

Error(b), (%) - 0.1187 0.1173 0.000 

Figure 4 depicts the distribution of shear stress xz for square cross-section, which decreases 

the magnitude gradually from the midpoint of the edge to the centre of gravity along the y-axis [1]. 
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Figure 5 and 6 present the variation of the shear stress xz  along the AB and CD segment, 

respectively. With 16 elements, NMB and Jog, C.S. et al. [9] cannot capture precisely the shear 
stress distribution along the CD segment. When the mesh is fine enough, in this case, 256 elements, 
the results of NMB and theory harmonize very well. 

 
Fig. 3 - Discretization of the square cross-

section with 16 elements. 

 
Fig. 4 - Distributed shear stresses xz for 

square cross-section. 
 

 
Fig. 5 - The variation of shear stress xz along 

the AB segment. 

 
Fig. 6 - The variation of shear stress xz  along 

the CD segment. 

The second example is an equilateral triangle subjected to the torsion moment 1TM   kN.m 

with the height of the triangle 0.2 m. The analytical results of maximum shear stress max and polar 

second moment of area TI  are 1.62380 MPa and 6158.40 cm4, respectively [1]. The triangular cross-

section was discretized 4, 8, 14, 37, 57, 109, 658 eight-noded quadrilateral elements with non-
uniform mesh to obtain the convergence results. 
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Tab. 2 - The maximum shear stress max
  and the polar second moment of area T

I of triangular 

cross- section 

Factors Analytical solution NMB- 658 elements Error, (%) 

max
 [MPa] 1.62380 1.6247 0.055 

T
I [cm4] 6158.40 6158.40 0.000 

It is clear from Table 2 that the results of the maximum shear stress, the polar second moment 
of area obtained from NMB are in good agreement with the theoretical solution [1]. Figure 7 shows 
the triangular cross-section divided by 14 eight-noded quadrilateral elements. The points, E, F, 

correspond with the coordinates (0, 
0.2

3
), (0.2, 

0.2

3
), respectively. 

Figure 8 depicts the stress distribution 
xy  for triangular cross-section, where magnitude 

values do not exist along with segment EF [1]. Figure 9 presents the stress distribution xz  for  

triangular cross-section. It can observe from Figure 10 that the result of the variation of shear stress 

xz  along the EF segments of NMB and analytical method is very well matched. 

 
Fig. 7 - Discretization of the triangular cross-

section with 14 elements. 

 
Fig. 8 - Distributed shear stresses xy for 

triangular cross-section. 

 
Fig. 9 - Distributed shear stresses xz for 

triangular cross-section. 

 
Fig. 10 - The variation of shear stress xz along 

the EF segment with NMB-109 element. 
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The third example concerns a bar of square cross-section with hole applied to the torsion 

moment 1TM   kN.m. Figure 11 shows the geometrical dimensions and the meshing to 96 

isoparametric eight-noded quadrilateral elements by NMB of the square cross-section with hole. The 
points, G, H, I, J, correspond with the coordinates (0, 1), (1.6, 1), (0, 0), (0, 2), respectively. 

Jog, C.S. et al. [9] analysed this problem using 96, 1536, 6144 isoparametric nine-noded 
quadrilateral elements, respectively. Figure 12 depicts the variation of polar second moment of area 
corresponding to 96, 1536, 6144 discretization elements investigated by NMB. In Table 3, the 
convergence of the polar second moment of area value by NMB is presented as a comparison with 

that obtained from Jog, C.S. et al. [9]. Figure 13 and 14 present the stress distribution 
xy , xz  for 

square cross-section with hole, respectively. Figure 15 and 16 plot the variation of shear stress xz  

along the segments, GH, IJ, respectively, evaluated with the two methods, Jog, C.S. et al. [9], and 
NMB. From the figures and table mentioned above, the reliability of the NMB is once more verified. 

 

 
Fig. 11 - The dimension and the discretization 

to 96 elements of the square cross-section 
with hole. 

 
Fig. 12 - The variation of polar second moment 

of area corresponding to discretization elements. 

 
Tab. 3 - The polar second moment of area of square cross-section with hole 

 

Factors Jog, C.S. et al.- 6144 elements [9] NMB- 6144 elements Error, (%) 

T
I [m4] 1.707 1.70718 0.01054 
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Fig. 13 - Distributed shear stresses xy for the 

square cross-section with hole. 

 
Fig. 14 - Distributed shear stresses xz for the 

square cross-section with hole. 

 
Fig. 15 - The variation of shear stress xz along 

the GH segment. 

 
Fig. 16 - The variation of shear stress xz along 

the IJ segment. 

According to Figure 17, the bridge cross-section is an example for multiply connected domains 
was considered the fourth example. With this example, the polar second moment of area of the 
bridge cross-sections neglected the cantilever part obtained by the analytical solution is 40.0 m4 [5]. 
A comparison with a theoretical explanation is not possible. The comparison between NMB and 
FEAP [5,6], implemented Gruttmann’s numerical method by using isoparametric four-noded 
quadrilateral element, was performed on the convergence speed. The bridge cross-section was 
divided into 50000 nodes with a uniform mesh by FEAP to obtain the convergence of the results. 

In NMB, the bridge cross-section is meshed with 80, 406, 1892, 4634, 11414 nodes to 
investigate the convergence result. Figure 18 shows the bridge cross-section divided into 80 nodes 
by NMB. Figure 19 depicts the convergence of the polar second moment of area obtained by NMB 
with 4634 nodes. 
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Fig. 17 - Bridge cross-section, with measurements in [m]. 

 
Fig.18 - Discretization of the bridge cross-section to 80 nodes by NMB. 

The comparison of the polar second moment of area between the two methods was 
performed. In Table 4, we can see that the error of the value of the polar second moment of area 
between the two methods is 1.904%. It should be emphasized that there is no exact analytical 
solution for this example, and the number of nodes required for the convergence problem of NMB is 
10.8 times smaller than that of FEAP. From Table 4, the efficiency of NMB is verified. Figure 20 

shows the shear flow of the bridge cross-section under torsion 1TM   kN.m of NMB. As expected, 

shear stress is mainly concentrated in the closed part of the section [5]. 
 

Tab. 4 - The polar second moment of area of bridge cross-section 
 

Factors FEAP- 50000 nodes [5,6] NMB- 4634 nodes Error, (%) 

T
I  [m4] 42.487 43.2963 1.904 



 
 

  Article no. 30 
 

THE CIVIL ENGINEERING JOURNAL 2-2021 
 

 

  DOI 10.14311/CEJ.2021.02.0030 419 

 
Fig.19 - The values of polar second moment of area with respect to the number of nodes in bridge 

cross-section. 

 
Fig.20.- Shear flow for the bridge cross-section under torsion of NMB. 

 

CONCLUSION 

Gruttmann [5] proposed an excellent finite element method for evaluating shear stress due 
to torsion with arbitrary cross-sections in homogeneous isotropic elastic material based on the Saint-
Venant theory. However, the use of isoparametric four-noded quadrialeral elements made the 
method not reach the best optimization. NMB has been improved Gruttmann’s work by using 
isoparametric eight-noded quadrilateral elements. Through 4 validated examples represented by 
single connected domain and multiply connected domains, it can conclude that NMB is reliable and 
efficient in assessing shear stress due to torsion. The shear stress research due to torsion of the 
arbitrary reinforced concrete section is desirable in the future. 
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