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ABSTRACT 

Continuous systems can be analysed as lumped masses connected by massless elements. 
This reduces the structure’s degree of freedom and therefore simplifies the analysis. However, this 
over simplification introduces an error in the analysis and the results are therefore approximate. In 
this work, sections of the vibrating beam were isolated and the equations of the forces causing 
vibration obtained using the Hamilton’s principle. These forces were applied to the nodes of an 
equivalent lumped mass beam and the stiffness modification needed for it to behave as a continuous 
beam obtained. The beam’s stiffness was modified using a set of stiffness modification factors 𝜙1to 

𝜙4. It was observed that by applying these factors in the dynamic analysis of the beam using the 
Lagrange’s equation, we obtain the exact values of the fundamental frequency irrespective of the 
way the mass of the beam was lumped. From this work we observed that in order to obtain an 
accurate dynamic response from a lumped mass beam there is need to modify the stiffness 
composition of the system and no linear modification of the stiffness distribution of lumped mass 
beams can cause them to be dynamically equivalent to the continuous beams. This is so because 
the values of the modification factors obtained for each beam segment were not equal. The stiffness 
modification factors were obtained for elements at different sections of the beam  
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INTRODUCTION 

Most imposed loads on structures are dynamic in nature. They either vary in time or in space. 
The structure therefore vibrates frequently under the effect of these loads. Structural and mechanical 
systems in general consist of structural components which have distributed mass and elasticity [1]. 
All bodies possessing mass and elasticity are capable of vibration [2, 3].The dynamic analysis of 
structures can be done using the Newton’s equation of motion. This is possible for very simple 
structures with few degrees of freedom. But as the degrees of freedom increase the resulting 
equations become very cumbersome and an energy method is preferred [4].  

The earliest energy method for such analysis is the Lagrange’s equations. These equations 
were formulated for lumped masses connected by massless elements [5]. The masses are assumed 
to be concentrated at specified points known as nodes. When used to model a system with a 
continuous distribution of mass, this method will give an approximate result. The accuracy of the 
results will however increase with an increase in the number of lumped masses and uniformity in 
their spacing. An increase in the number of lumped mass increases the size of the resulting matrix 
and hence the size of the required computational analysis. A better energy method is the Hamilton’s 
principle. This is an extension of the principle of minimum potential energy. This method enables us 
to formulate partial differential equations for the analysis of the structure as uniform systems (i.e. 
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structures with uniformly distributed masses) [6, 7]. The results are exact. Its major drawback is that 
it is very difficult to formulate the differential equations of complex structural systems using this 
method. 

The prevalence of computers has increased the use of numerical methods in structural 
analysis [8]. Finite difference method, Ritz method, Rayleigh-ritz method and finally the finite element 
method is today widely used in such analysis. The finite element method is the most popular and 
like the Ritz approach incorporates the use of shape function. These shape functions are used to 
formulate inertia matrix known as the consistency matrix [9]. If the shape function is truly 
representative of the deformed shape of the structure, the consistency matrix should be equal to the 
equivalent mass matrix. The equivalent mass matrix for a segment of a continuous system is one 
that returns precisely the dynamic properties of the original segment in discretized form [10]. The 
power of the finite element method is further enhanced by its ability to subdivide the structure into 
finite elements, the smaller the size of the finite elements the better the results from their analysis. 
This has made it a widely applied tool in researches structural analysis [11, 12, 13]. However 
increasing the number of elements however increases the size of the matrices to analyze and 
therefore increases the computational cost. 

Despite the rapid advances in these numerical approaches, the lumping of continuous 
masses has persisted due to its visual appeal and its simplification of the analysis. Mass lumping 
distorts the mass distribution and leads to a less representative inertia matrix [14]. This introduces 
an error in the analysis which ultimately affects the values of the computed natural frequencies of 
the structure. It has limited number of coordinates and may not fully account for the structural 
characteristics of a system accurately [15]. Despite these limitations It is still widely used in 
introductory topics in structural dynamics and in advanced research involving complex systems [16 
-  19]. 

Efforts have been made in time past to generate better equivalent mass matrices for analysis 
of continuous systems [20, 21, 22]. Also Ericson and Parker [23] suggested that varying the stiffness 
of the structural system would lead to better analysis results. This was implemented for longitudinally 
vibrating bars using a set of two stiffness modification factors [24]. In this work, the variation of the 
structure’s stiffness distribution as a means of nullifying the effect of lumping of continuous mass in 
laterally vibrating beams was explored. 

 

Mathematical Theory 

The partial differential equation governing the free lateral vibration of a beam is given by [26] 

𝐸𝐼𝑢𝐼𝑉 + 𝜇�̈� = 0      (1) 

Where EI is the flexural rigidity of the beam and µ is its mass per unit length. For a harmonic vibration 
and by applying the boundary conditions for the beam we obtain four equations that can be solved 
numerically to give us the roots 𝛽𝑗𝐿 from which the natural frequency of vibration 𝜔𝑗 is computed. 

𝛽4 =
𝜇𝜔2

𝐸𝐼
       (2) 

 The mode shape is obtained as [25]  

∅𝑗(𝑥) = cosh𝛽𝑗𝑥 + 𝑏2𝑗 sinh𝛽𝑗𝑥 − cos𝛽𝑗𝑥 + 𝑏4𝑗 sin 𝛽𝑗𝑥   (3) 

Where   

𝑏2𝑗 =
cos𝛽𝑗𝐿−cosh𝛽𝑗𝐿

sinh𝛽𝑗𝐿−sin𝛽𝑗𝐿
      (4) 
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𝑏4𝑗 =
cosh𝛽𝑗𝐿−cos𝛽𝑗𝐿

sinh𝛽𝑗𝐿−sin𝛽𝑗𝐿
       (5) 

Equation (3) is the equation of the jth mode of vibration of the fixed-pinned beam. The first mode of 
vibration (j = 1) can be obtained by substituting 𝛽𝑗𝐿 = 𝛽1𝐿 = 3.92660232 into (3). The second mode 

of vibration (j = 2) can be obtained by substituting 𝛽𝑗𝐿 = 𝛽2𝐿 = 7.06858275 into the equation. The 

general solution by mode superposition is [24][25] 

𝑢1(𝑥1, 𝑡) = ∑ 𝜙𝑗(𝑥1)(𝐴𝑗 cos𝑤𝑗𝑡 + 𝐵𝑗 sin𝑤𝑗𝑡)
∞
𝑗=1        (6) 

Where the constants Aj and Bj can be determined from the initial conditions.  
.  

METHODS 

The vibrations of structural systems are governed by two essential components; the 
structure’s mass distribution and the structure’s stiffness [24, 27]. These properties are represented 
by the structure’s inertia matrix and stiffness matrix. If we alter the mass distribution we will expect 
a corresponding change in the stiffness distribution. The lumping of continuous mass at specified 
nodes alters the mass distribution (inertia matrix). There is need to find the corresponding 
modification in the stiffness distribution needed to restore the vibration characteristics of the system. 
This as in [24] was done by equating two equations. One is the force equilibrium equation while the 
other is the equation of motion of a vibrating system. 

The force equilibrium equations and the equations of motion are force equations. Force 
equilibrium equations have been largely applied in statics [28]. Just as in [24]. It can also be applied 
in dynamics if the equations for the vector of fixed end moments/forces {F} are formulated. The 
structure with continuous mass distribution was analyzed using the Hamilton’s principle and the 
equations for the fixed end forces {F} and nodal displacements {D} formulated for any arbitrary 
segment of a laterally vibrating beam at time t = 0. These were used to get the vector of nodal forces 
{P} causing the vibration. 

The equations of motion were used to simulate the lumped mass beam.  For a vibrating 
element of the real beam (beam with continuous mass) and that of a corresponding element of a 
lumped mass beam to be equivalent then their nodal deformation {D} and forces acting on their 
nodes {P} must be equal [24].     

Figure 1 shows a propped cantilever beam under inertia forces. A segment of the beam 
shown is being restrained by the fixed end forces F1 to F4.  

From the D’Alembert principle the forces on the vibrating beam can be calculated from its 
inertia force [29]. For an elementary part of the beam at a distance z from the origin this force is  
𝜇�̈�𝑑𝑧. (See Figure 1) 
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`  

Using the principle of virtual work and the flexibility method we determine the fixed end forces 
F1 to F4 of the isolated element of the excited beam of Figure 1b to be  

𝐹1 = −6∑
𝐸𝐼𝐴𝑗

𝐿3(𝜉2−𝜉1)
3𝑊1

∞
𝑗=1       (7) 

𝐹2 = −2∑
𝐸𝐼𝐴𝑗

𝐿2(𝜉2−𝜉1)
2

∞
𝑗=1 𝑊2      (8) 

𝐹3 = ∑
𝐸𝐼𝐴𝑗

𝐿3(𝜉2−𝜉1)
3 [6𝑊1 + 𝛽𝑗

3𝐿3(𝜉2 − 𝜉1)
3 (sinh𝛽𝑗𝐿𝜉2 − sinh𝛽𝑗𝐿𝜉1 − sin𝛽𝑗𝐿𝜉2 + sin𝛽𝑗𝐿𝜉1 +

∞
𝑗=1

𝑏2𝑗(cosh𝛽𝑗𝐿𝜉2 − cosh𝛽𝑗𝐿𝜉1) − 𝑏4𝑗(cos𝛽𝑗𝐿𝜉2 − cos𝛽𝑗𝐿𝜉1))] (9) 

𝐹4 = ∑
𝐸𝐼𝐴𝑗

𝐿2(𝜉2−𝜉1)
2 [−6𝑊1 + 2𝑊2 − 𝛽𝑗

3𝐿3(𝜉2 − 𝜉1)
3(− sinh𝛽𝑗𝐿𝜉1 − 𝑏2𝑗 cosh𝛽𝑗𝐿𝜉1 + sin𝛽𝑗𝐿𝜉1 +

∞
𝑗=1

𝑏4𝑗 cos𝛽𝑗𝐿𝜉1) + (cosh𝛽𝑗𝐿𝜉2 + 𝑏2𝑗 sinh𝛽𝑗𝐿𝜉2 + cos𝛽𝑗𝐿𝜉2 − 𝑏4𝑗 sin𝛽𝑗𝐿𝜉2) − (cosh𝛽𝑗𝐿𝜉1 +

𝑏2𝑗 sinh𝛽𝑗𝐿𝜉1 + cos𝛽𝑗𝐿𝜉1 − 𝑏4𝑗 sin𝛽𝑗𝐿𝜉1)]    (10) 

Where  

𝑊1 = 𝛽𝑗
3𝐿3 (

(𝜉2+𝜉1)(𝜉2
2−𝜉1

2)

2
−
2(𝜉2

3−𝜉1
3)

3
) (− sinh𝛽𝑗𝐿𝜉1 − 𝑏2𝑗 cosh𝛽𝑗𝐿𝜉1 + sin𝛽𝑗𝐿𝜉1 + 𝑏4𝑗 cos𝛽𝑗𝐿𝜉1) +

𝑏2𝑗(𝛽𝐿(𝜉1 − 𝜉2) cosh𝛽𝑗𝐿𝜉2 + 2 sinh𝛽𝑗𝐿𝜉2 − 𝛽𝑗𝐿(𝜉2 − 𝜉1) cosh𝛽𝑗𝐿𝜉1 − 2sinh𝛽𝑗𝐿𝜉1) −

Fig. 1 - (a) A fixed-pinned beam under lateral vibration due to the inertial forces 
𝜇�̈� 

  (b) A segment of the beam under longitudinal vibration due to inertial 
forces 𝜇�̈� 
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𝑏4𝑗(−𝛽𝑗𝐿(𝜉1 − 𝜉2) cos 𝛽𝑗𝐿𝜉2 − 2 sin𝛽𝑗𝐿𝜉2 + 𝛽𝑗𝐿(𝜉2 − 𝜉1) cos 𝛽𝑗𝐿𝜉1 + 2 sin𝛽𝑗𝐿𝜉1) + 𝛽𝑗𝐿(𝜉1 −

𝜉2) sinh𝛽𝑗𝐿𝜉2 − 𝛽𝑗𝐿(𝜉2 − 𝜉1) sinh𝛽𝑗𝐿𝜉1 + 𝛽𝑗𝐿(𝜉1 − 𝜉2) sin 𝛽𝑗𝐿𝜉2 − 𝛽𝑗𝐿(𝜉2 − 𝜉1) sin𝛽𝑗𝐿𝜉1 +

2cosh𝛽𝑗𝐿𝜉2 − 2cosh𝛽𝑗𝐿𝜉1 − 2cos𝛽𝑗𝐿𝜉2 + 2cos𝛽𝑗𝐿𝜉1     (11a) 

𝑊2 = 𝛽𝑗
3𝐿3 (

(2𝜉2+𝜉1)(𝜉2
2−𝜉1

2)

2
−
𝜉1(𝜉2−𝜉1)

2

2
− (𝜉2

3 − 𝜉1
3)) (− sinh𝛽𝑗𝐿𝜉1 − 𝑏2𝑗 cosh𝛽𝑗𝐿𝜉1 + sin𝛽𝑗𝐿𝜉1 +

𝑏4𝑗 cos𝛽𝑗𝐿𝜉1) − (
𝛽𝑗
2𝐿2(𝜉2−𝜉1)

2

2
) (cosh𝛽𝑗𝐿𝜉1 + 𝑏2𝑗 sinh𝛽𝑗𝐿𝜉1 + cos𝛽𝑗𝐿𝜉1 − 𝑏4𝑗 sin𝛽𝑗𝐿𝜉1) +

𝛽𝑗𝐿(𝜉1 − 𝜉2) sinh𝛽𝑗𝐿𝜉2 − 2𝛽𝑗𝐿(𝜉2 − 𝜉1) sinh𝛽𝑗𝐿𝜉1 + 𝛽𝑗𝐿(𝜉1 − 𝜉2) sin 𝛽𝑗𝐿𝜉2 − 2𝛽𝑗𝐿(𝜉2 − 𝜉1) sin𝛽𝑗𝐿𝜉1 −

3cos𝛽𝑗𝐿𝜉2 + 3cos𝛽𝑗𝐿𝜉1 + 3cosh𝛽𝑗𝐿𝜉2 − 3cosh𝛽𝑗𝐿𝜉1 + 𝑏2𝑗(𝛽𝑗𝐿(𝜉1 − 𝜉2) cosh𝛽𝑗𝐿𝜉2 −

2𝛽𝑗𝐿(𝜉2 − 𝜉1) cosh𝛽𝑗𝐿𝜉1 + 3 sinh𝛽𝑗𝐿𝜉2 − 3 sinh𝛽𝑗𝐿𝜉1) − 𝑏4𝑗(−𝛽𝑗𝐿(𝜉1 − 𝜉2) cos 𝛽𝑗𝐿𝜉2 +

2𝛽𝑗𝐿(𝜉2 − 𝜉1) cos 𝛽𝑗𝐿𝜉1 − 3 sin𝛽𝑗𝐿𝜉2 + 3 sin𝛽𝑗𝐿𝜉1)  (11b) 

𝜉1 =
𝑥1
𝐿⁄  , 𝜉2 =

𝑥2
𝐿⁄       (12) 

For us to be able to evaluate these equations (for the fixed end forces F1, F2, F3 and F4) there 
is need to derive an expression for Aj for a fixed-pinned beam.  
Consider a uniform propped cantilever beam under the action of its self weight as shown in Figure 
2.  µ is the mass per unit length of the beam and g is the acceleration due to gravity.  

From the equation of elastic curve and by considering the initial boundary conditions and the 
equation for the static deflection of the uniform beam under its self weight, let the initial deflection of 
the beam (at time t = 0) be  

𝑢(𝑥, 0) = 𝑏𝐿 (
5𝑥3

𝐿3
−
2𝑥4

𝐿4
−
3𝑥2

𝐿2
)     (13) 

where b is a dimensionless constant equal to 
𝜇𝑔𝐿3

48𝐸𝐼
. 

Then from [19] by substituting equations (3) and (13) 

𝐴𝑗 =
𝜇

𝑀𝑗
∫ 𝑢(𝑥, 0)∅𝑗
𝐿

0
𝑑𝑥 =

𝑏𝜇𝐿2

𝑀𝑗
[
−(cosh𝛽𝑗𝐿+cos𝛽𝐿)

𝛽𝑗
2𝐿2

+
18(cosh𝛽𝑗𝐿−cos𝛽𝑗𝐿)

𝛽𝑗
4𝐿4

−
48(sinh𝛽𝑗𝐿−sin𝛽𝑗𝐿)

𝛽𝑗
5𝐿5

+

𝑏2𝑗 (
−2(sinh𝛽𝑗𝐿+sin𝛽𝑗𝐿)

𝛽𝑗
2𝐿2

+
18(sinh𝛽𝑗𝐿−sin𝛽𝑗𝐿)

𝛽𝑗
4𝐿4

−
48(cosh𝛽𝑗𝐿+cos𝛽𝑗𝐿−2)

𝛽𝑗
5𝐿5

)]  (14) 

Equation (14) is an expression for the constant Aj for a propped cantilever beam under an 
initial lateral displacement caused by its self weight. It can be substituted into Equations (7) to (10) 
to obtain the values of the fixed end forces F1, F2, F3 and F4. With these equations the force 
equilibrium equations for segments of a vibrating beam can be written and the inherent nodal forces 
in the system that is causing motion calculated. An arbitrary segment of a vibrating element is 

identified by means of the normalized distances 𝜉1  and 𝜉2  of its nodes from an origin. Having 
obtained the fixed end forces, the vector of nodal forces {P} is obtained from the force equilibrium.  
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If a segment of a vibrating beam is isolated it will be in equilibrium with the application of the 
force vector {P} (see Figure 3). The force vector {P} represents the effect of the removed adjourning 
elements on the isolated segment. When the continuous bar is represented by a lumped mass bar 
just like the real segment the equivalent segment is supported by the same nodal forces P1, P2 P3 

and P4 and has the same nodal displacements as the continuous/real bar.  

The equation of motion for the lumped mass vibrating beam is taken as [24] 

[𝑚]{�̈�} + [𝑘𝑑]{𝑢} = {𝑃}     (15) 

Where [m] is the inertial matrix, {u} is a vector of nodal displacement and kd is the stiffness of 
the lumped mass segment under consideration. The proposed stiffness matrix for the lumped mass 
segment kd is written as 

[𝑘𝑑] =

[
 
 
 
 
 

12𝐸𝐼

𝑙3
𝜙1

6𝐸𝐼

𝑙2
𝜙2

6𝐸𝐼

𝑙2
𝜙2

4𝐸𝐼

𝑙
𝜙1

−
12𝐸𝐼

𝑙3
𝜙3

6𝐸𝐼

𝑙2
𝜙4

−
6𝐸𝐼

𝑙2
𝜙4

2𝐸𝐼

𝑙
𝜙3

−
12𝐸𝐼

𝑙3
𝜙3 −

6𝐸𝐼

𝑙2
𝜙4

6𝐸𝐼

𝑙2
𝜙4

2𝐸𝐼

𝑙
𝜙3

12𝐸𝐼

𝑙3
𝜙1 −

6𝐸𝐼

𝑙2
𝜙2

−
6𝐸𝐼

𝑙2
𝜙2

4𝐸𝐼

𝑙
𝜙1 ]

 
 
 
 
 

    (16) 

Where 𝜙1, 𝜙2, 𝜙3 and 𝜙4 are the stiffness modification factors for lateral vibration. They are 
to help redistribute the stiffness of the lumped mass segment in such a way as to annul the effect of 
the discretization of the beam mass due to the lumping of its distributed mass on selected nodes.  

By rearranging (15) we obtain 

P1 

P3 

𝜉2 − 𝜉1 

𝑢(𝜉1, 0) 𝑢(𝜉2, 0) 

(a) 

𝜉2 − 𝜉1 

(b) 

𝑢(𝜉1, 0) 𝑢(𝜉2, 0) 

Fig. 3 – (a)An isolated segment of the laterally vibrating continuous beam showing the 
nodal forces P1, P2, P3 and P4 

   (b) An equivalent lumped mass segment showing the nodal forces 

𝜇(𝜉2 − 𝜉1)

2
 

𝜇(𝜉2 − 𝜉1)

2
 

P2 

P4 

P1 

P2 

P4 

P3 
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{

𝜙1
𝜙2
𝜙3
𝜙4

} =

[
 
 
 
 
 
12𝐸𝐼

𝑙3
𝑢11

6𝐸𝐼

𝑙2
𝑢21

4𝐸𝐼

𝑙
𝑢21

6𝐸𝐼

𝑙2
𝑢11

−
12𝐸𝐼

𝑙3
𝑢31

6𝐸𝐼

𝑙2
𝑢41

2𝐸𝐼

𝑙
𝑢41 −

6𝐸𝐼

𝑙2
𝑢3

12𝐸𝐼

𝑙3
𝑢31 −

6𝐸𝐼

𝑙2
𝑢41

4𝐸𝐼

𝑙
𝑢41 −

6𝐸𝐼

𝑙2
𝑢31

−
12𝐸𝐼

𝑙3
𝑢11 −

6𝐸𝐼

𝑙2
𝑢21

2𝐸𝐼

𝑙
𝑢21

6𝐸𝐼

𝑙2
𝑢11 ]

 
 
 
 
 
−1

{
 
 

 
 𝑃1 +

𝜇(𝜉2−𝜉1)

2
𝜔2𝑢11

𝑃2

𝑃3 +
𝜇(𝜉2−𝜉1)

2
𝜔2𝑢31

𝑃4 }
 
 

 
 

 (17) 

Equation (17) is a mathematical expression for calculating the four stiffness modification 
factors 𝜙1, 𝜙2, 𝜙3 and 𝜙4 for a segment of a beam under lateral vibration. µ is the mass per unit 
length of the beam. ω is the fundamental frequency of the vibrating mass, u11, u21, u31, u41 are the 
values of nodal displacements u1, u2, u3 and u4 for the first mode of vibration. 

Equation (6) was used to evaluate the total displacements u1 to u4 at the nodal points of a 
segment of the vibrating beam. Though the equation represents the summation of an infinite series, 
an evaluation of the first few terms provides values of very good precision. 

The values of a2j, and a4j for j = 1, 2, 3, 4, 5, 6, 7 can be evaluated from (4) and (5). These 
are substituted into (7) – (10) to obtain the fixed end forces, which are applied to the force equilibrium 
equations to get the nodal forces P1, P2, P3 and P4. And finally (17) is evaluated to obtain the stiffness 
modification factors ϕ1, ϕ2, ϕ3 and ϕ4.  

For this beam there are two possible cases, and the method of obtaining the stiffness modification 
factors depends on the case being considered. 

a) When ξ1 is greater or equal to zero and ξ2 is less than 1 
In this case the segment of the fixed-pinned beam under consideration is not positioned to 

the far right of the beam (the end that is pinned). Hence the process of calculating the stiffness 
modification factors will be as outlined above. 

b) When ξ2 is equal to 1 
In this case the segment under consideration is located at the far right of the fixed-pinned 

beam. This implies that the segment is fixed at the left end and pinned at the right end hence its 
stiffness matrix is different from that of (16). The proposed stiffness matrix for this beam segment is 
therefore 

[𝑘𝑑] =

[
 
 
 
 
 

3𝐸𝐼

𝑙3
𝜙1

3𝐸𝐼

𝑙2
𝜙2

3𝐸𝐼

𝑙2
𝜙2

3𝐸𝐼

𝑙
𝜙1

−
3𝐸𝐼

𝑙3
𝜙3       0

−
3𝐸𝐼

𝑙2
𝜙4      0

−
3𝐸𝐼

𝑙3
𝜙3 −

3𝐸𝐼

𝑙2
𝜙4

0    0    

3𝐸𝐼

𝑙3
𝜙1        0

0        0 ]
 
 
 
 
 

    (18) 

By substituting (18) into (15) and putting P4 = 0 because of the hinged end we obtain a set of 
three equations with four unknowns (𝜙1𝑡𝑜 𝜙4). To solve it there is need to know the value of one of 

the unknowns. By assuming 𝜙4 = 1 we obtain the values of the other three as 

{

𝜙1
𝜙2
𝜙3

} =

[
 
 
 
 
3𝐸𝐼

𝑙3
𝑢11

3𝐸𝐼

𝑙
𝑢21

3𝐸𝐼

𝑙3
𝑢31

3𝐸𝐼

𝑙2
𝑢21

3𝐸𝐼

𝑙2
𝑢11

0

−
3𝐸𝐼

𝑙3
𝑢31

0

−
3𝐸𝐼

𝑙3
𝑢11

]
 
 
 
 
−1

{
 
 

 
 𝑃1 +

𝜇(𝜉2−𝜉1)

2
𝜔2𝑢11

𝑃2 −
3𝐸𝐼

𝑙2
𝑢31

𝑃3 +
𝜇(𝜉2−𝜉1)

2
𝜔2𝑢31 +

3𝐸𝐼

𝑙2
𝑢21}

 
 

 
 

 (19) 

Note that 𝜙4 = 1. 

Equations (17) and (19) provide a way of calculating the stiffness modification factors ϕ1 to 
ϕ4 for a element of a fixed-pinned beam under lateral vibration are calculated. Using these equations 

the values of stiffness modification factors at different values of 𝜉1 and 𝜉2 for the lateral vibration of 
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a fixed-pinned beam can be obtained. A numerical demonstration of these steps are presented Table 
1 below. 

Tab 1 - Calculation of the Stiffness modification factor for an element positioned at  𝜉1 = 0, 𝜉2 = 0.5 
on a propped cantilever beam under lateral vibration 

𝜉1 = 0,   𝜉2 = 0.5 

From Equation (6) 

u11 = 0                               u31 = -0.2500280951625 

u21 = 0                                u41 = -0.2501752736690 

From Equations (7) to (10) 

F1 = 8.98435096276653                        F3 = 11.92853399194589 

F2 = 0.92592074058035                         F4 = -0.98636146391392 

From force equilibrium equations (see Figure 3) 

P1 = 26.98284153031153                       P3 = -6.06995657559912 

P2 = 5.92589392980464                          P4 = 3.01291063063430 

From equation (17) taking EI = 1 

ϕ1 = 1.11502214241540                       ϕ3 = 1.45734448442994 

ϕ2 = 0.90229998347702                       ϕ4 = 1.24678725977081 

A sample Matlab program for the calculation of the stiffness modification factors can also be written. 

RESULTS 

 

 

 

 

 

 

 

 

 

For the propped cantilever beam of Figure 4a, the lumped mass is at a distance L1 from the 
fixed end. By solving it for different values of L1 using the steps outlined in Table 1 and comparing 
results with that from the finite element model we obtain the results presented in Table 2. For the 
finite element model the inertia matrix used was the popular consistency matrix derived from the 
shape functions.  

Tab 2 - Natural frequency of a lumped mass propped cantilever of Figure 4a 

L 

Fig. 4 - Some lumped mass propped cantilever beams 

L1 

1 2 

(a) 

1 

(b) 

2 3 

L2 L1 L2 L3 
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S/N L1/L L2/L Natural frequency ω in √𝐸𝐼/𝜇𝐿4 

Lagrange without ϕ Lagrange with ϕ Finite Element Model 

1 1/10 9/10 87.1627 15.4182 373.5870 

2 2/10 8/10 35.1220 15.4182 93.3968 

3 3/10 7/10 22.1424 15.4182 41.5097 

4 4/10 6/10 17.0103  15.4182 23.3492 

5 5/10 5/10 14.8131 15.4182 14.9435 

6 6/10 4/10 14.2915 15.4182 10.3774 

7 7/10 3/10 15.3490 15.4182 7.6242 

8 8/10 2/10 19.1366 15.4182 5.8373 

9 9/10 1/10 35.582 15.4182 4.6122 

From the results in Table 2 we observe that the values of the natural frequency obtained from 
the lumped mass beam varied with the relative values of L1 and L2. It varied more with increase in 
the difference between L1 and L2 and gave the best prediction of the fundamental frequency when 
L1 was equal to L2. The results in Table 2 also shows that using the Lagrange’s equations it is 
possible to obtain a near accurate value of natural frequency by a careful section of the relative 
values of L1 and L2. For instance at L1/L= 0.7 the value of natural frequency obtained was 15.35Hz 
which has an error of only 0.45%. This is not so with the finite element at the best value is only 
available when L1 = L2. However with the application of the stiffness modification factors the obtained 
values of fundamental natural frequency was exact irrespective of the relative values of L1 and L2. 

The natural frequency values obtained from a finite element model continued to decrease 
steadily with an increase in the ratio of L1 to L2. It gave the maximum value at L1/L = 1/10, L2/L = 
9/10. The trend is better appreciated in the plot of natural frequency against L1/L presented in Fig 5. 

 

Fig. 5 - Fundamental frequencies as functions of L1/L for the propped cantilever beam presented in 
Fig. 4a 

From Figure 5 it is observed that the plots for analysis with and without stiffness modification 
factors and finite element model tend to converge at L1/L = 0.5. At this point L1 = L2. It shows that 
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analysis with Lagrange’s equation without ϕ gives its best results when the lumps are evenly spaced. 
This is also true of the finite element model as its best result of 14.94Hz with an error of 3.1% was 
obtained when L1 was equal to L2. The error margins increased continuously as the difference 
between L1 and L2 increased. The plot of natural frequencies obtained with the application of the 
stiffness modification was a horizontal line showing that it was not affected by the relative values of 
L1 and L2. 

To further study the effect of mass lumping and the stiffness modification factors on the 
accuracy of results the beam of Figure 4b was analyzed using the Lagrange’s equation and the finite 
element model. The result is presented in Table 3. 

Tab. 3 - Natural frequency of a lumped mass propped cantilever of Fig. 4b 

 S/N L1 L2 L3 

Natural frequency ω in √𝐸𝐼/𝜇𝐿4 

Lagrange without 
ϕ 

Lagrange with ϕ Finite Element 
Model (FEM) 

1 1/12 1/12 10/12 45.6106 15.4182 245.1372 

2 1/12 2/12 9/12 28.0664 15.4182 87.5877 

3 1/12 3/12 8/12 20.7803 15.4182 44.4924 

4 1/12 4/12 7/12 17.2032 15.4182 26.8425 

5 1/12 5/12 6/12 15.4543 15.4182 17.9366 

6 1/12 6/12 5/12 14.8974 15.4182 12.8258 

7 1/12 7/12 4/12 15.4312 15.4182 9.6244 

8 1/12 8/12 3/12 17.4598 15.4182 7.4876 

9 1/12 9/12 2/12 22.6398 15.4182 5.9907 

10 1/12 10/12 1/12 39.6405 15.4182 4.9016 

11 2/12 1/12 9/12 28.1887 15.4182 138.8296 

12 2/12 2/12 8/12 21.2239 15.4182 61.2843 

13 2/12 3/12 7/12 17.7105 15.4182 34.3255 

14 2/12 4/12 6/12 15.9719 15.4182 21.8969 

15 2/12 5/12 5/12 15.4212 15.4182 15.1687 

16 2/12 6/12 4/12 15.9704 15.4182 11.1231 

17 2/12 7/12 3/12 18.0181 15.4182 8.5034 

18 2/12 8/12 2/12 23.1101 15.4182 6.7106 

19 2/12 9/12 1/12 36.8379 15.4182 5.4303 

20 3/12 1/12 8/12 20.7848 15.4182 89.5397 

21 3/12 2/12 7/12 17.6069 15.4182 45.1938 

22 3/12 3/12 6/12 16.0110 15.4182 27.2375 

23 3/12 4/12 5/12 15.5023 15.4182 18.1792 

24 3/12 5/12 4/12 16.0011 15.4182 12.9836 

25 3/12 6/12 3/12 17.7862 15.4182 9.7320 

26 3/12 7/12 2/12 21.5862 15.4182 7.5638 
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27 3/12 8/12 1/12 26.4053 15.4182 6.0465 

28 4/12 1/12 7/12 17.0131 15.4182 62.8185 

29 4/12 2/12 6/12 15.5421 15.4182 34.7074 

30 4/12 3/12 5/12 15.0313 15.4182 22.1212 

31 4/12 4/12 4/12 15.3490 15.4182 15.3211 

32 4/12 5/12 3/12 16.5433 15.4182 11.2307 

33 4/12 6/12 2/12 18.5256 15.4182 8.5814 

34 4/12 7/12 1/12 20.0733 15.4182 6.7686 

35 5/12 1/12 6/12 15.0016 15.4182 46.6862 

36 5/12 2/12 5/12 14.4051 15.4182 27.5194 

37 5/12 3/12 4/12 14.4924 15.4182 18.3201 

38 5/12 4/12 3/12 15.1630 15.4182 13.0819 

39 5/12 5/12 2/12 16.1582 15.4182 9.8055 

40 5/12 6/12 1/12 16.7747 15.4182 7.6200 

41 6/12 1/12 5/12 14.0630 15.4182 36.1680 

42 6/12 2/12 4/12 13.9468 15.4182 22.3849 

43 6/12 3/12 3/12 14.2934 15.4182 15.4255 

44 6/12 4/12 2/12 14.8462 15.4182 11.2985 

45 6/12 5/12 1/12 15.1337 15.4182 8.6329 

46 7/12 1/12 4/12 16.5351 15.4182 28.9079 

47 7/12 2/12 3/12 16.6705 15.4182 18.5901 

48 7/12 3/12 2/12 17.1969 15.4182 13.1734 

49 7/12 4/12 1/12 17.5268 15.4182 9.8571 

50 8/12 1/12 3/12 14.7732 15.4182 23.6730 

51 8/12 2/12 2/12 15.0215 15.4182 15.7046 

52 8/12 3/12 1/12 15.1414 15.4182 11.3879 

53 9/12 1/12 2/12 16.9415 15.4182 19.7664 

54 9/12 2/12 1/12 17.1041 15.4182 13.4574 

55 10/12 1/12 1/12 22.0751 15.4182 16.7688 

To produce the results of Table 3, the lumped mass of Figure 4b were moved at L/12 and the 
fundamental natural frequency calculated at all possible positions of the lumped masses. The results 
in the Table show that the calculated natural frequency varied with the relative values of L1, L2 and 
L3. The same was observed in frequency values obtained from a finite element analyses. To 
appreciate the trend in variation of the obtained natural frequency with the spacing of the lumped 
mass we present an interaction plot showing the variation of frequency with the values of L1/L and 
L2/L in Figure 6. 
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Fig. 6 - Interaction plots of fundamental frequency against L2/L at different values of L1/L using the 
Lagrange’s equations 

Figure 6 shows the interaction plots for the L1/L and L2/L when using Lagrange’s equation on 
the lumped masses.  In Figure 6 only the values of L1 and L2 were considered because if we know 
the values of L1 and L2 the values of L3 becomes defined and can be obtained from subtracting L1 
and L2 from the total length of the beam. We first observe that each of the curves tend to have a U 
shape. This shows that for almost all values of L1/L there are for each two possible values of L2/L 
that will give a fundamental frequency value of the beam to a good precision. The curves are not 
parallel and this shows that there is some level of interaction between the values of L1 and L2 on the 
natural frequency values obtained. The curves all appear to converge between the values of L2/L = 
1/3 and L2/L = 5/12. At this value the value of L1/L tend to have minimal effects on the calculated 
natural frequency. 
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Fig. 7 - Interaction plots of calculated fundamental frequency against L2/L at different values of L1/L 
using the finite element model 

Unlike that obtained in Figure 6 the plots in Figure 7 are like exponential plots. The values of 
calculated frequency decreases with increases in the values of L2/L at constant L1/L. Likewise the 
values of calculated frequency also decreases with increase in the values of L1/L at constant L2/L. 
For every value of L1/L there is one possible value of L2/L that will give a good approximation of the 
exact fundamental frequency. By zooming into the graph (see Figure 8) we observe that the lines of 
equal values of L1/L are near parallel in the neighborhood of ω = 15Hz. 

 

Fig. 8 - Enlarged Interaction plots of calculated fundamental frequency against L2/L at different 
values of L1/L using the finite element model 
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From Figure 8 it would be observed that there seems to be not interaction between L1/L and 
L2/L between values of L2/L= 1/3 and ½. At these values any change in the values of L1/L does not 
have significant effects on the calculated values of the fundamental frequency. This is evident in the 
near parallel nature of the lines of points of equal L1/L in Figure 8. 

From the Tables 2 and 3 it would be observed that the natural frequencies obtained from the 
use of Lagrange’s equations on the propped cantilever that had its mass lumped had some measure 
of errors. When the stiffness of the system was however modified using the stiffness modification 
factors, the use of Lagrange’s equations was able to predict accurately the fundamental frequencies 
irrespective of the position of lumped mass.  

CONCLUSION 

This work improved the values of fundamental frequencies obtained in the analysis of continuous 
systems as having discrete masses connected by mass-less elements using a propped cantilever 
as a case study. Even though the stiffness modification factors is a product of some rigorous 
mathematical manipulation, its implementation is largely simplified by the use of Matlab software. 
Hence the calculation of the stiffness modification can be automated. From this work we can infer 
that  

1) To obtain an accurate dynamic response from a lumped mass beam there may be need to 
modify the stiffness composition/distribution of the system. 

2) There is no linear modification of the stiffness distribution of a lumped mass beam under 
lateral vibration that can cause it to be dynamically equivalent to the continuous beam. This 

is so because the values of  𝜙1 , 𝜙2, 𝜙3and 𝜙4 obtained for each segment as shown in Table 
1 are not equal. 

3) A careful selection of the relative positions of the lumped masses can lead to results with 
very good accuracy. 

4) Having more lumps will lead to a better results just as breaking a structure into more elements 
in finite element analysis will give a better result. 

This work lays the foundations for precise analysis of structures by lumping its distributed mass 
at select nodes. The mass lumping is an idealization that simplifies the analysis of the structure while 
the stiffness modification factors helps in keeping the results of the analysis accurate.  

In the formulation of the equations of end forces only the deformation due to bending moments 
were considered. The effects of shearing and axial stresses on deformation were ignored in order to 
simplify the analysis. Further work including their effects is recommended.  
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