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ABSTRACT 

This research investigated the capability of machine learning approaches using computer 
programming to evaluate the fundamental time period (FTP) of precast concrete structures. A data 
set consisting of 288 models with configuration including shear wall and beam-column frame were 
used in the present study. The 288 models were analysed using Etabs software and Rstudio.  
Input parameters for the present study consisted of the height of the building, number of bays, 
length and breadth of the building, cracked or uncracked section, number of storeys and frame 
type on the FTP of precast concrete structures. Out of the 288 models, 108 arbitrary selected 
models were used for testing and the remaining 180 models were used for training. Linear (LRF), 
polynomial (PLF) and radial basis (RBF) kernel functions were used for machine learning approach 
i.e support vector machines (SVM) and gaussian process (GPR). A correlation coefficient of 
0.9832 was achieved by linear function-based support vector machines (SVM-LRF) as compared 
to 0.9284  by gaussian process regression, indicating that SVM-LRF has improved efficiency in 
predicting the FTP. The accuracy of the machine learning approaches was verified through 
comparison with the available equations to evaluate the FTP in literature.   
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INTRODUCTION 

A pre-cast concrete structure is a complex assembly of the shear wall, beams, column, 
slab, vertical and horizontal connections. The FTP is a crucial variable for the analysis of precast 
concrete structures. The majority of proposal available in the literature are based on codal 
equations which do not take into consideration the cracking of members, storey height variation 
and material property. This leads to a change in the FTP of a building. 

Apart from the height, the two-elements on which the FTP of precast concrete structures rely 
on are the distribution of mass and stiffness. Thus, any component with rigidity/mass or perhaps 
both has an impact on the FTP of a pre-cast concrete structure. Mostly due to earthquake amplitude 
and location of dynamic forces there is a considerable variability with respect to time that causing 
significant inertia effects on buildings. Under the dynamic characteristics of a building, a building 
behaves under the influence of dynamic forces which is controlled by its mass and stiffness 
properties. Furthermore, the sturdiness along with deformability of constituent members are the 
factors affecting the performance of a building. 



 
 

  Article no. 41 
 

THE CIVIL ENGINEERING JOURNAL 2-2021 
 

 

  DOI 10.14311/CEJ.2021.02.0041     548 

With ever-evolving technology and with high-speed precision computers, the FTP of the 
structure can be analysed either by an exact eigenvalue analysis or by a logical approach. 
However, during an earthquake, the codal guidelines offer imperial equation based on the 
inspection of the FTP of original structures. However, the codal equation is used to determine the 
dissimilarities in the FTP of structures. Codes and research work provide various formulae and 
results. In many cases, the analytical approaches and formulae depend on one parameter, i.e 
height of the building. Probably the most typical expression for the computation of the FTP is [2]: 

𝑇 = 𝐶𝑡. ℎ3/4               (1) 

where, h is the height and Ct is the coefficient, which is determined by the typology of a structure. 
Equation 1 was first adopted in 1978 by the ATC [2] for RC frames. The Ct coefficient was 
determined based on the measurement of the fundamental time period during the San Fernando 
earthquake (1971). A regression analysis of the data gives a Ct value of 0.075. IS 1893[20], 
Eurocode 8[14] and UBC [28] adopt a similar expression assigning the different value of Ct. 

The UBC proposed formulation has been updated in FEMA-450 [17] based on the research 
carried out by Goel and Chopra [18]. On the basis of the data presented by Goel and Chopra [18], 
FEMA proposed an expression: 

𝑇 =  𝐶𝑟 𝐻𝑛
𝑥               (2) 

where Hn is the height, Cr is 0.0466 and x is 0.9. 
Numerous investigators have suggested expression for FTP of RC frame structures based 

on the height of the structure (Table 1). Crowley and Pinho [11] proposed an equation for the 
fundamental time period based on displacement design. Various old buildings were analysed in 
accordance with previous codes. Crowley and Pinho [12] in 2006 studied the elastic period of 
various RC frame building and proposed a simplified expression for the fundamental time period 
using eigenvalue analysis. The analytical results depicted that the presence of shear walls and 
partition walls reduces the fundamental time period of a building. Guler et al. [19] proposed an 
equation for the fundamental period of vibration derived from elastic numerical analysis.  Asteris et 
al. [3]  in 2015 studied the parameters affecting the fundamental period of frame structures that 
include the numbers of span, infill wall panels, location of soft storey and soil structure interaction. 
Asteris et al. [5] in 2016 proposed a equation using  statistical regression for fundamental period. 
Again in 2016, Asteris et al. [4]  predicted the fundamental time period using artificial neural 
networks using two hidden layer back propogation neural network (BPNN). The results showed 
that the BPNN model was accurate and reliable. In 2019, Asteris et al.[7] predicted the 
fundamental period using metaheuristic algorithm based neural network. They used artificial bee 
colony algorithm for the optimization of neural network. The results show that the ABC algorithm 
was a powerful tool for optimization. 

The lack of dependable and robust  computer programming modelling for predicting the 
fundamental time period of precast concrete systems can be attributed to an ‘n’ numbers of input 
parameters affecting the behaviour of the structure. The available literature depict variation 
[5,6,9,11] in predicting the fundamental time period. As the deterministic techniques did not provide 
reliable estimates of output parameters as visible from the literature from last two decades, 
machine learning techniques such as SVM, ANN have significantly gained populairity and helped 
in the estimation of various output parameters. Pal and Deswal [20] used SVR on deep beams to 
predict the shear strength. Omran et al. [1] used SVM and GP to predict the compressive strength 
of concrete. Asteris et al.[7] used artificial bee colony algorithm for the optimization of neural 
network for predicting the fundamental period. In the present study, computer programming based 
on Rstudio [25] was developed for SVM and GP regression modelling to predict the FTP of precast 
building.  

 



 
 

  Article no. 41 
 

THE CIVIL ENGINEERING JOURNAL 2-2021 
 

 

  DOI 10.14311/CEJ.2021.02.0041     549 

Support Vector Machines 

Support Vector machines (SVM) is out of the box classifier used for non linear class 
boundaries. SVM is an extension of support vector classifier which uses kernels to create non 
linear boundaries.  Support vector classifier is a soft margin classifier. 

 
Tab. 1 - Fundamental time period equation for various codes and research 

Fundamental time period Expression  Code/Author 

T = 0.09 h / D0.5 IS 1893:2016 

T = 0.075 h0.75 EC 8 

T = 0.01 N NBCC 2005 

T = 0.075 h0.75 UBC 97 

T = 0.053 h0.9 Goel and Chopra [17] 

T = 0.1 h Crowley and Pinho [10] 

T = 0.055 h Crowley and Pinho [11] 

T = 0.026 h0.9 Guler et al. [18] 

 

Vapnik in 1995 proposed 𝜀 SVR by applying a 𝜀 - insensitive loss function [29] which allows 
the problem to be solved using the concept of margin. For training data with k number of models 
defined as {xi, yi}, i = 1, ……, k, where xi is input vector and yi is the target value, a linear decision 
function can be given by: 

𝑓(𝑥) = (𝑤, 𝑥) + 𝑏                 (3) 
where vector w regulates the direction of a perceptive plane, while scalar b regulates the offset of 
the perceptive plane from the origin. A miniature value of w designates the flatness of Eq (3), which 

can be attained by reducing the Euclidean norm defined by ‖𝑤‖2. Consequently, a problem of 
regression was written for optimisation. 

Minimise    
1

2
‖𝑤‖2                 (4) 

Subject to {
𝑦𝑖 − (𝑤, 𝑥𝑖) − 𝑏 ≤ 𝜀
(𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖  ≤  𝜀

 

The problem in Eq. (3) can be expressed in the form of: 

𝑓 (𝑥) =  ∑ (𝜆′
𝑖 − 𝜆𝑖)(𝑥𝑖. 𝑥) + 𝑏𝑘

𝑖=1                (5) 

The approach analysed above can be expanded to allow for non-linear support regression by 
introducing the concept of the kernel function [30]. 

Support vector machines function in Eq. (5) are now written as: 

𝑓 (𝑥) =  ∑ (𝜆′
𝑖 − 𝜆𝑖)𝑲(𝒙𝒊. 𝒙𝒋) + 𝑏𝑘

𝑖=1                (6) 

Where: 

𝑲(𝒙𝒊. 𝒙) ≡  𝚽 (𝒙𝒊). 𝚽 (𝒙𝒋)                (7) 

This relation is known as kernel function since 𝚽 (𝒙) cannot be mapped in the featured space. 
Support vector machines function in Eq. (5) are now optimised as: 

𝑓 (𝑥) =  ∑ (𝜆′
𝑖 − 𝜆𝑖)𝑲(𝒙𝒊. 𝒙) + 𝑏𝑘

𝑖=1                (8) 

In the optimization problem, the functions used are for the computational price of working 
with a higher-dimensional space alternative. A reference “ Nature of statistical learning theory” [30] 
is made for an extensive analysis of SVM and gaussian process regression has been described in 
detail in a journal article “gaussian process regression” [8].              
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METHODOLOGY AND DATABASE 

Descriptions of analytical models 

In the present research, the 288 models of the pre-cast building were analysed with 

different Ground floor height, material property, the number of bays and section cracking were 

considered (table 2). The preferred input parameters were fed in the machine learning model that 

include the building height, building length, building width, number of bays, number of storeys, type 

of sections and type of frames. 

 

Fig. 1 - Typical Plan & 3D view of a computer model of 6 storey building 

  To assess the impact of input parameters on the FTP of structures, 288 number of computer 

models were prepared. The storey height was assumed as 3 m for all storeys and for some models 

4 m storey height was considered for the ground floor. The dimensions of slabs were 4 m x 3 m x 

0.15 m, 4 m x 4 m x 0.15 m and cross-section of shear walls were 3 m x 0.15 m, 4 m x 0.15 m and 

4 m x 0.20 m.  The dimensions of the longitudinal and transverse beams were 450 mm deep and 

300 mm wide. The size of the columns adopted was 300 mm wide and 600 mm deep.  A live load 

of 3 kN/m2 and SDL of 1 kN/m2 was considered for analysis. M30/M40 grade concrete and also Fe 

500 grade steel was utilised for design. The structure was modelled and analysed in ETABS 2015 

[13] software. The ETABS software was used to analyse the burj khalifa [32]. Hence, the ETABS 

software is a reliable tool  to be used for structural analysis and design. Seismic analysis is 

performed using the equivalent static and dynamic method given in IS 1893:2016. The plan and 3D 

modelling of the typical 6 storey structure are shown in Figure 1. To explore the outcome of each 

input parameters on the FTP of structure, a sensitivity analysis was also carried out. 

PERFORMANCE AND ANALYSIS OF SVM AND GPR 

Out of a total of 288 models, 67 per cent of the arbitrarily split data have been utilized in 

training data set using Rstudio [25]. In the current research, 180 randomly split data were used as 

training data set and 108 random samples were utilized as testing data. Input variable was the 
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building height, building length, building width, number of bays, number of storeys, type of sections 

and type of frames for both SVM and GPR. The summary of training and testing data is provided in 

table 3 with different analytical approaches. 

In SVM and GPR, various kernel functions are used for regression. Linear kernel, RBF 

kernel and polynomial kernel function have positive performance as suggested by numerous 

studies. In the present study, three kernel functions were considered - LRF (𝐾(𝑥, 𝑥′ ) = (𝑥. 𝑥′), 

PLF (𝐾(𝑥, 𝑥′) = ((𝑥. 𝑥′) + 1)
𝑑
) and RBF (𝐾(𝑥, 𝑥′) =  𝑒−𝛾|𝑥−𝑥′|2

), where d and 𝛾 are the hyper tuning 

parameters of PLF and RBF respectively. Size of error-insensitive zone 𝜀 and regularisation 

parameter C (Cost) optimum value and setting up of kernel function where required. Noise 

parameter is required in GPR and a trial-and-error was carried out to find the optimum value. 

To select optimum values of hyper tuning parameters of SVM and GPR, a number of trails 

were conducted and grid search was performed. The hyper tuning parameter for SVM and GPR is 

given in Table 4 for which the data is working well. LRF, PLF and RBF with same hyper tuning 

parameters were used in the regression. The performance of regression approaches and their 

function was verified by correlation coefficient (CC) and root mean square error (RMSE). 

Tab. 2 - Building input parameters 

Model Parameters Parameters Values 

Base Model 

No of storeys (Ns) 3 m,6 m,9 m,12 m,15 m,18 m 

No of bays (Nb) 2 bay,3 bay,4 bay,5 bay 

Frame Type (Ft) Shear wall with and without opening 

Building Length (L) 8 m,12 m,16 m,20 m 

Building Breadth (B) 8 m,12 m,16 m,20 m,3 m,6 m,         9 
m,12 m 

Building Height (H) 9 m, 18 m, 27 m, 36 m, 45 m, 54 m,  

Section Cracking (Sc) Uncracked and Cracked 

Column Size  300 mm x 600 mm 

Beam Size 300 mm x 450 mm 

Shear Wall thickness  200 mm and 150 mm 

Concrete Grade M 40 

Base Model with 
ground floor height 
changed 

Building Height changed 10 m, 19 m, 28 m, 37 m, 46m, 55 m 

Base Model with 
concrete grade 
changed 

Concrete Grade M 30 

Tab. 3 - Summary of the training and testing data 

Input 
parameters 

Training Data  Testing Data  

Min. Max. Mean Median SDV Min. Max. Mean Median SDV 

No of 
storeys  

3 18 10.8 12 5.12 3 18 10 9 5.12 

No of bays 2 5 3.26 3 1.12 2 5 3.89 4 0.99 

Frame Type 0 1 0.5 0.5 0.50 0 1 0.5 0.5 0.50 

Building 
Length 

8 20 13.07 12 4.51 8 20 15.56 16 3.99 

Building 
Breadth 

6 20 11.43 12 4.31 6 20 13.61 13.5 4.03 

Building 
Height 

9 55 32.73 36 15.39 9 55 30.33 28 15.37 

Section 
Cracking 

0 1 0.5 0.5 0.50 0 1 0.5 0.5 0.50 
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Tab. 4 - Hyper tuning parameters used in SVM and GP 

Machine 
learning 
Function 

LRF RBF PLF 

SVM Cost =20 Cost =20, Sigma = 0.1 Cost = 20, Degree = 1 

GPR Initial Noise = 1 Initial Noise = 1, Sigma = 0.1 Initial Noise = 1, 
Degree= 1 

RESULTS AND DISCUSSION 

Figure 2 and Figure 3 provide the plot between the actual and predicted fundamental time 

period by LRF, PLF as well as RBF according to GPR and SVM utilizing test data set. Outcomes 

from both SVM and GPR are within line with analysis. The optimum value of cost =20 for SVM and 

intitail noise=1 for GPR, a hyper-parameter was obtained by trial-and-error method. Table 5 

suggests that the SVM linear kernel function perform much better compared to any kernel function 

in both SVM and GPR. SVM linear kernel function has a correlation coefficient of 0.9832 and 

RMSE of 0.0530 seconds in comparison to GPR linear kernel function which has a correlation 

coefficient of 0.9284 and RMSE of 0.1084 seconds.  A graph between fundamental time period 

obtained from analysis and predicted fundamental time period by SVM and GPR versus the 

number of test data on the x-axis was plotted; from this plotted graph, the SVM linear kernel 

function predicted value is in close immediacy of fundamental time period obtained from the 

analysis. As linear kernel function works well with both modelling techniques, another line chart 

between 108 test samples and fundamental time period is plotted (Figure 4) to check whether the 

SVM linear kernel function works well in predicting the time period. 

Tab. 5 - Evaluation of SVM and GP performance on training and testing data 

Machine 
Learning 
Technique 

Training Data Testing Data 

CC RMSE (Second) CC RMSE (Second) 

SVM - LRF 0.9804 0.0619 0.9832 0.0530 

SVM - PLF 0.9577 0.0905 0.9632 0.0778 

SVM - RBF  0.9300 0.1148 0.9452 0.1008 

GPR - LRF 0.8862 0.1296 0.9284 0.1084 

GPR - PLF 0.8862 0.1295 0.9284 0.1084 

GPR - RBF 0.8708 0.1407 0.9090 0.1241 
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Fig. 2 - Actual time period vs predicted time period on testing data for SVM 

 

Fig. 3 - Actual time period vs predicted time period on testing data for GPR 

SENSITIVITY ANALYSIS 

Sensitivity analysis was performed to identify the significance of all the input variables in 

predicting the fundamental time period. The best kernel function is used with the training data for 

the analysis. SVM-LRF is used on a different set of training data by removing  each input 

parameter: 

 In first iteration all input parameters were used;  

 In second iteration, frame type (Ft) was removed,  

 In third iteration, building height (H) and frame type (Ft)  is removed,  

 In fourth iteration, number of storeys (Ns) and frame type (Ft)  is removed, 

 In fifth iteration, number of bays (Nb) and frame type (Ft)  is removed,  

 In sixth iteration, building length (L) and frame type (Ft)  is removed,  

 In seventh iteration, building breadth (B) and frame type (Ft)  is removed,  

 In eighth iteration, section cracking (Sc) and frame type (Ft)  is removed and  
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 In the ninth iteration number of bays (Nb), building length (L) and frame type (Ft) is 

removed and results were obtained and analysed in form of CC and RMSE with the test 

data set for all the nine iterations as shown in Table 6.    

Table 6 implies that  number of bays (Nb), building length (L) and frame type (Ft) has least 

impact in predicting the FTP, while building height (H), number of storeys (Ns), building breadth (B) 

and section cracking (Sc) have a major role in predicting the FTP. 

Tab. 6 - Sensitivity analysis 

Input Parameter CC RMSE (Seconds) 

Ns, Nb, Ft, L, B, H, Sc 0.9832 0.0530 

Ns, Nb, L, B, H, Sc 0.9831 0.0532 

Ns, Nb, L, B, Sc 0.9110 0.1247 

Nb, L, B, H, Sc 0.9219 0.1157 

Ns, L, B, H, Sc 0.9830 0.0532 

Ns, Nb, B, H, Sc 0.9830 0.0532 

Ns, Nb, L, H, Sc 0.9807 0.0568 

Ns, Nb, L, B, H 0.9588 0.0823 

Ns, B, H, Sc 0.9814 0.0557 

 

 

Fig. 4 - Variation in predicted values of Time period using SVM-linear and GPR-linear to the actual 

time period. 

MODEL VALIDATION 

The correlation coefficient (CC) and root mean square error (RMSE) were calculated for the 
machine learning technique SVM-LRF as well as for the formulae available in the literature as 
shown in Table 7. The lower value of RMSE indicates the more accurate predicting result and 
higher value of correlation coefficient indicating a heightened match in between analytical and 
machine learning approach values. 

The advantage of SVM-LRF compared to codal equations and other literature formulae for 
288 model data are given in Table 7. The highest CC value obtained is 0.9829 using SVM-LRF, 
whereas the lowest value obtained is 0.8609 for IS 1893. It is certainly apparent from the Table 7 
that the SVM-LRF has a high correlation coefficient and low RMSE in comparison to the predicted  
FTP  and the actual FTP (periods obtained from analysis).The CC and RMSE value of SVM-LRF 
model has the best fit of values than the formulae given in the literature. 
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In Figure 5, the result of actual FTP (time period calculated from analysis) has been compared with 
the predicted result from SVM linear kernel function. In Figure 6, 7, 8 and 9 the result of the actual 
fundamental time period has been compared with the empirical formula of IS 1893:2016, NBCC 
2005, EC 8 and Goel and Chopra.  These outcomes demonstrate that the value of the FTP 
predicted from SVM linear kernel function offers a better fit than the values of FTP from empirical 
formulae. 

Tab. 7 - Statistical results of SVM-Linear Kernel and literature formulae for all data 

Method Mean Std Dev CC RMSE 
(seconds) 

SVM-LRF 0.7344 0.2876 0.9829 0.0561 

IS 1893:2016 0.7992 0.4162 0.8609 0.2272 

NBCC 2005 0.105 0.0512 0.8957 0.6847 

EC8 0.9804 0.3743 0.9031 0.2914 

Goel and Chopra 1.179 0.5237 0.9053 0.5223 

 

 

Fig. 5 - Actual Time period vs predicted time period on all data for SVM-LRF 
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Fig. 6 - Actual Time period vs predicted time period on all data for IS 1893:2016 

 

 

 

 

 

 

 

 

 

 

Fig. 7 - Actual Time period vs predicted time period on all data for NBCC 2005  
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Fig. 8 - Actual Time period vs predicted time period on all data for EC 8 

 

 

 

 

 

 

 

 

 

 

Fig 9 - Actual Time period vs predicted time period on all data for Geol & Chopra 

PRACTICAL APPLICABILITY OF THE PROPOSED METHOD 

In this study, the FTP of precast concrete structures is predicted using computer 

programming. In research, practical application of proposed method is vital and important. 

To check the efficiency and limitation of proposed method, two models of 9 storey (total 

height = 27 m) with slab size of 4 m x 3 m x 0.15 m, beam size of 450 mm deep and 300 mm 

wide and column size of 300 mm wide and 600 mm deep were used.  A LL of 3 kN/m2 and SDL of 

1 kN/m2 was considered for analysis. M40 grade concrete and also Fe 500 grade steel was utilised 

for design. The FTP is calculated based on proposed method and IS 1893: 2016 is shown in Table 

8.  
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Tab. 8 - Fundamental time period of proposed method and IS code method 

Fundamental Time Period 
Proposed Method IS 1893:2016 

0.511 second 0.888 second 

          Column forces and beam forces for various load combinations were calculated and 

compared for both the models. Column forces (Axial, shear and moment) for the proposed method 

was around 20% lesser than the IS code and 15 % lesser in case of beam forces. The reduction in 

forces suggest that while designing the members using proposed method will be economical, but it 

has a limitation – the proposed method can be used only for buildings up to 60 metres in height.  

CONCLUSION 

In this study, computer programming based on Rstudio was developed for support vector 

machines and gaussian processes regression to predict the FTP of precast concrete structures. The 

obtained result shows that SVM works good in comparison to GPR for the data set, specifically the 

SVM linear kernel function provides the very best outcomes in term of CC and RMSE (CC = 

0.9832 and RMSE = 0.0530 seconds) for predicting the FTP of precast concrete structures. 

Moreover, the SVM linear kernel function appeared to fit the data better than the codal equations 

and other literature formulae on all data set by providing high CC and minimal RMSE. The present 

study also concludes that the number of bays do not have significant effect on the FTP. There is a 

linear relationship between the length/ breadth with the FTP. Cracked section is having about 13.4 

% more  FTP as compared to uncracked section. The height of the building has significant influence 

of the FTP. It can also be concluded from this study that SVM is a robust and accurate modelling 

approach and need to be used further in structural and civil engineering problems. Present study 

explored the use of cost as a hyper tuning parameter to create the model, but metaheuristic 

algorithm can also be used for optimization of hyper tuning parameter SVM. 
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