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ABSTRACT 

The stability of gravity anchorages is critical to the safe operation of suspension bridges. 
The purpose of this paper is to study the stability of a gravity anchorage under the tension of main 
cables. Large-scale load tests and direct shear tests under the nature state and the saturated state 
were carried out in the adit at the bottom of the gravity anchorage, because the bottom surface of 
the gravity anchorage is below the design water level of a reservoir to be built. Representative rock 
samples in the anchorage area were selected for indoor tests. The basic parameters of the rock 
mass and the characteristic value of subsoil bearing capacity were obtained based on the field and 
indoor tests results. The static theory was used to calculate the anti-sliding stability coefficient, anti-
overturning stability coefficient and contact stress of the gravity anchorage. The finite element 
software was used to calculate the horizontal displacement, vertical settlement and contact stress 
of the gravity anchorage. The calculation results met the relevant requirements, and it can be 
considered that the gravity anchorage was stable under the tension of main cables. It would 
provide a reference for the stability study of the gravity anchorage of suspension bridges. 
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INTRODUCTION 

Suspension bridges have been widely used for its beautiful shape and huge span ability. 
With the progress of materials and construction technology, the span of suspension bridges is 
increasing. At present, suspension bridges have become one of the main options for long-span 
bridges. As the main load-bearing structure of suspension bridges, anchorages play a role of 
transferring the tension of main cables to the ground. Since the main cable tension is generally 
large, the anchorage is the key part to ensure the stability of the suspension bridge. Due to the 
strong adaptability to various geological conditions and simple force transmission mechanism, the 
gravity anchorage is currently used in most of the built suspension bridges [1]. The stability of the 
gravity anchorage is related to the safe use of the suspension bridge, and it is also one of the key 
issues in the design of the suspension bridge [2]. 

Before 1960s, the gravity anchorage of long-span suspension bridges was always set on 
hard ground such as rock, so as to prevent the anchorage from excessive displacement or 
instability. In the stability calculation, it is assumed that the anchorage will not noticeably slide, sink 
and rotate under load [3]. Since the Verrazano Bridge was built in the United States in 1964, 
gravity anchorages of the suspension bridge can be built on the soil ground, allowing sinking, 
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strictly restricting sliding, and minimizing the overturning angle [4,5]. Taylor proposed the concept 
and design idea of anchorages based on its own stability in 1982 and applied it to practical 
engineering [6]. Andersen et al. used the limit state formula based on the working principle to 
evaluate the structural safety of the gravity anchorage of the suspension bridge across the eastern 
channel of the Great Belt [7]. Carter introduced an innovative structural concept for the design of 
the gravity anchorage of the Izmit Bay Bridge in high seismic area [8]. 

Understanding the deformation law and failure mechanism of the gravity anchorage and 
ground is a prerequisite for evaluating its stability [9,10]. Yin et al. study the mechanical 
mechanisms and failure modes of the gravity anchorage and ground by using numerical simulation 
[11]. They believed that the joint deformation and bearing mechanisms of the gravity anchorage 
and ground are comprehensively performed by friction effect, clamping effect and backfilling effect. 
Soil creep has a long-term effect on the stability of gravity anchorages [12]. Notched sill effect, 
foundation pit support and foundation reinforcement are of great significance to improve the 
stability of gravity anchorages [13,14]. In addition, the surrounding soil has a significant effect on 
improving the stability of the gravity anchorage [15]. Guo et al. use FLAC 3D modeling technology 
to carry out detailed numerical simulation according to the construction steps of a gravity 
anchorage, and analyzed the stability of the anchorage [16]. Ya et al. analysis the stability of one 
gravity anchorage using standard methods, shear strength reduction methods and proportionally 
increasing main cable tension methods and obtained the anchorage stability coefficients 
corresponding to different calculation methods [17]. 

The previous researches mainly used model tests and numerical simulations and got many 
interesting conclusions. However, there are few large-scale field test studies on the stability of the 
gravity anchorage. This paper takes the gravity anchorage of the Hutiaoxia Jinsha River Bridge as 
the research object. The study carried out large-scale load tests and direct shear tests in the 
excavated adit at the bottom of the gravity anchorage and combined with the indoor test to obtain 
the rock mass parameters and the characteristic value of subsoil bearing capacity. The stability of 
the gravity anchorage is analyzed and calculated from three aspects of anti-sliding, anti-
overturning and contact stress using static theory and numerical simulation. 

 

PROJECT DESCRIPTION 

Hutiaoxia Jinsha River Bridge is a key project of Lijiang-Shangri-la expressway. The bridge 
spans the deep valley of Jinsha River, with a maximum height of 630.2 m. The bridge area belongs 
to the structurally eroded high mountain canyon landform, with a ground elevation of 1800-5600 m, 
a relative height difference greater than 2000 m, and a natural cross slope of 30°-60°. The total 
length of the bridge is 1017 m, and the main bridge is a 766 m steel truss suspension bridge. The 
bridge's south bank (Lijiang bank) adopts the spread foundation gravity anchorage. 

The terrain on the Lijiang bank of the bridge is wide and gentle, and the vegetation on the 
slope is relatively developed. The slope near the anchorage is about 33°. The dynamic 
metamorphism of the Lijiang bank is generally strong. Schistose basalt, cleaved slate, joints of 
carbon phyllite are well developed, and the rock is generally broken. The stability of shallow 
overburden and rock slope is generally poor. The topography and landform near the gravity 
anchorage are shown in Figure 1(a). The distribution of the main rock layers under the gravity 
anchor is shown in Figure 1(b). The design elevation of the bottom of the gravity anchorage is 
1998 m. The design elevation of the water level of Hutiaoxia reservoir to be built is 2010 m. 
Obviously, the bottom of the gravity anchorage is 12 m below the design water level. 
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Fig. 1 - Basic information of the gravity anchorage, (a) Topography near the gravity anchor, (b) 

Distribution of main rock layers 
 

The gravity anchorage adopts a frame structure. This frame type gravity anchorage 
effectively reduces its own gravity, reduces the stress on the ground, and reduces the amount of 
reinforced concrete. It has the advantages of time saving, labour saving, low cost, and beautiful 
appearance [18]. Therefore, most of the gravity anchorages adopt the triangular frame structure 
composed of a front anchor chamber, a buttress of splay saddle and anchor block.  

The main structure of the gravity anchorage is shown in Figure 2(a). The gravity anchorage 
adopts the prestressed anchorage system, and the anchorage method adopts the front anchor 
type. The buttresses of splay saddle mainly bear the pressure transmitted by the saddle. The 
anchor block mainly bears the main cable tension transmitted by the prestressed anchorage 
system. The front anchor chamber is composed of side walls, roof and front walls to form a closed 
space, which protects the main cable strands. Because the anchor block and the side wall of the 
front anchor chamber mainly bear the main cable tension transmitted by the prestressed 
anchorage system, the concrete grade used is C40. The force of other parts of the gravity 
anchorage is transferred from the anchor block, and C30 concrete with lower strength grade is 
used. 

The main dimensions of the gravity anchorage are shown in Figures 2(b) and 2(c). The total 
height of the gravity anchorage is 58 m, and the foundation height is 10 m. The bottom surface of 
gravity anchor foundation is 72 m long and 50 m wide. The design load of the main cable is 
202201 kN/cable, and the horizontal incident angle of the main cable strand is 30°. The length of 
the main cable strand incident to the front anchor chamber is 38m, the anchorage length of the 
anchorage system is 20m, and the refraction angle of the main cable tension is 47°. 
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Fig. 2 - Composition and size of the gravity anchorage, (a) The main structure of the gravity 

anchorage, (b) Elevation of the gravity anchorage, (c) Top view of the gravity anchorage 

 

LARGE-SCALE FIELD TEST 

In order to understand the natural bearing capacity and saturated bearing capacity of the 
foundation under the gravity anchorage, the friction coefficient between the bottom surface of the 
gravity anchorage and the foundation, and the shear strength of the rock, a 50 m long adit was 
excavated at the bottom surface of the gravity anchorage, as shown in Figure 3(a).  

 
Fig. 3 - The adit location and test areas setting, (a) The adit location, (b) Test areas setting 

 
The adit exploration reveals that the rock is a thin-thick slate, partly a cleavage dense zone, 

and the rock mass is relatively broken with thin phyllites. In view of the fact that the bottom of the 
anchorage is located 12 m below the water level of the reservoir to be built, combined with the 
geological conditions in the adit, a total of 9 test areas are set, as shown in Figure 3(b). Test area 1 
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is medium-thick layered slate. Test area 2 is thin-medium layered slate. The test areas 4, 5, 6, and 
7 are thin-medium layered slate, which is intermediary weathered. The test areas 3, 8 and 9 are 
thin-layer slate mixed with thin-layer phyllite, which is relatively broken and is intermediary-strong 
weathered. Different test points were set in each test area, and the setting of test points is listed in 
Tables 1 and 2. 

Tab. 1 - Test points of load test 

Test types Test point Test content 

Load test 

1-LN Load test in natural state 

1-LS Load test in saturation 

2-LN Load test in natural state 

2-LS Load test in saturation 

3-LN Load test in the natural state 

3-LS Load test in saturation 

 

Tab. 2 - Test points of direct shear test 

Test types Test point Test content 

Concrete-rock 

4-SN Shear test in natural state 

4-FN Friction test in natural state 

4-FS Friction test in saturation 

5-SS Shear test in saturation 

5-FS Friction test in saturation 

8-SS Shear test in saturation 

8-FS Friction test in saturation 

Rock 

6-SN Shear test in natural state 

6-FN Friction test in natural state 

7-SS Shear test in saturation 

7-FS Friction test in saturation 

9-SS Shear test in saturation 

9-FS Friction test in saturation 

Load Test 

Load tests were performed in representative and relatively weak positions in the adit. In 
order to compare the settlement deformation and consider the influence of changes of the water 
level, the tests were conducted in the natural state and saturated state. Load tests were carried out 
in accordance with the relevant specification [19]. The tests are shown in Figure 4. 

 

 
Fig. 4 - The load test, (a) Test schematic diagram, (b) Test photos 
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The deformation modulus of load test is calculated as follows: 

2

0 0
(1 )

pd
E I

s
                                                                    (1) 

where E0 represents the deformation modulus of rock mass in MPa, I0 represents the shape 
coefficient of the rigid bearing plate and the shape coefficient of the square bearing plate is 0.886, 
μ represents the Poisson's ratio of the rock mass, d is the diameter or side length of the bearing 
plate in m, p represents the pressure in the linear segment of the Load-Settlement curve in kPa, s 
is the settlement corresponding to p in mm. 

The test curves are shown in Figure 5, and the test results are summarized in Table 3. 

 
Fig. 5 - Load test curves, (a) Test curve of test area 1, (b) Test curve of test area 2, (c) Test curve 

of test area 3 

 

Tab. 3 - Summary of load test results 

Test point 

Characteristic value of 
subsoil bearing 

capacity 
(kPa) 

Deformation modulus Residual 
deformation  

(mm) 

Rock mass 
category 

0.8 MPa 3.2 MPa 

1-LN >2213 923 916 1.58 
Slate 

1-LS >2133 874 992 1.42 

2-LN >2666 358 476 3.38 
Slate 

2-LS >2666 346 450 3.57 

3-LN >1866 231 194 8.82 
Cleavage 

dense zone 
3-LS >1866 201 170 9.74 



 
  Article no. 21 

 
THE CIVIL ENGINEERING JOURNAL 1-2021 

 
--------------------------------------------------------------------------------------------------- 

 

              DOI 10.14311/CEJ.2021.01.0021 288 

 

The load test curves (Figure 5) are basically a linear segment with no inflection points and 
no obvious failure conditions. The characteristic value of the bearing capacity is obtained by 
dividing the maximum load by 3. In the natural state and the saturated state, the bearing capacity 
of the rock mass in the slate area is close, as shown in Figures 5(a) and 5(b). In the cleavage 
dense zone, the rock mass is broken, and the settlement deformation is larger than that in the slate 
area, and the settlement deformation in the saturated state is larger than that in the natural state, 
as shown in Figure 5 (c). It can be seen from Table 3 that the characteristic value of subsoil 
bearing capacity in slate area is not less than 2.133 MPa, and that in cleavage dense zone is not 
less than 1.866 MPa. The characteristic value of bearing capacity of rock mass of the anchorage is 
not less than 1.866 MPa. Under the design load (0.8 Mpa), the deformation modulus of the rock 
mass is 201~923 MPa. Considering that the bottom surface of the anchorage is 12m below the 
water level of the reservoir, the deformation modulus of the slate area in saturated state is 346 
MPa, and that of the cleavage dense zone is 201MPa. 

Direct Shear Test 

The direct shear test is divided into a shear test and a friction test. The friction test is a 
direct shear test in which a sample continues to be sheared along the shear plane after the sample 
is cut. The direct shear test is carried out according to relevant specifications [20]. The direct shear 
tests are shown in Figure 6. 

 
Fig. 6 - Direct shear tests, (a) The concrete-bedrock direct shear test, (b) The bedrock direct shear 

test 

The normal pressure was applied to the sample, and the horizontal shear force was applied 
to the sample until it was destroyed after it was consolidated and stable. Recording the value of the 
shear force when the sample was destroyed and drawing the curve of shear stress τ and normal 
stress σ. The shear strength parameters of the rock mass can be obtained from the τ-σ curve. 

The τ-σ curve follows Coulomb's law, 

= tan +C                                                                         (2) 

where τ is the shear stress acting on the shear plane in kPa, σ is the normal stress acting on the 
shear plane in kPa, C is the cohesion of the rock mass in kPa, φ is the internal friction angle of the 
rock mass in ˚, τ and σ can be calculated according to the following equations: 

P

F
                                                                         (3) 

Q

F
                                                                             (4) 

tanf                                                                          (5) 
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where P is the total normal load acting on the shear plane in kN, Q is the total shear load acting on 
the shear plane in kN, F is the area of the shear plane in m2, f is the friction coefficient.  

The maximum stable shear load obtained under each level of normal load was regressed to 
obtain the shear strength expression [21,22]. The concrete-bedrock direct shear test curves are 
shown in Figure 7, and the bedrock direct shear test curves are shown in Figure 8. The test results 
are summarized in Tables 4 and 5. 

 
Fig. 7 - The concrete-bedrock direct shear test curves, (a) Test curve of test area 4, (b) Test curve 

of test area 5, (c) Test curve of test area 8 
 

 
Fig. 8 - The bedrock direct shear test curves, (a) Test curve of test area 6, (b) Test curve of test 

area 7, (c) Test curve of test area 9 
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Tab. 4 - Summary of concrete-bedrock direct shear test results 

Test point Friction coefficient Cohesion (kPa) 
Rock mass 

category 

4-SN 0.715 468 

Slate 

4-FN 0.62 496 

4-FS 0.59 536 

5-SS 0.62 368 

5-FS 0.59 256 

8-SS 0.489 69 Cleavage dense 
zone 

8-FS 0.433 52 

 

Tab. 5 - Summary of bedrock direct shear test results 

Test point Friction coefficient  Cohesion (kPa) 
Rock mass 

category 

6-SN 1.34 1384 

Slate 
6-FN 1.26 960 

7-SS  1.32 1352 

7-FS 1.2 640 

9-SS 1.01 600 Cleavage dense 
zone 

9-FS 0.955 420 

 
Some conclusions of the concrete-bedrock direct shear test can be obtained from Figure 7 

and Table 4. The minimum friction coefficient of the test points in slate area is 0.59, which is about 
26% higher than that in cleavage dense zone. The minimum cohesion of the test points in slate 
area is 256 kPa, which is about 5 times higher than that in cleavage dense zone. Compared with 
the saturated state and the natural state, the friction coefficient in the slate area decreases by 
about 5%, and the cohesion in the slate area increases by about 5%. The friction coefficient and 
cohesion of rock mass in slate area are very little affected by the water. The friction coefficient and 
cohesion of shear tests are larger than those of friction tests. The friction coefficients of test areas 
4 and 5 are relatively small. It can be seen from the contact surface after shearing that there is 
residual slag on the contact surface. The friction coefficient and cohesion of the test area 8 are 
relatively low, because the rock mass in the cleavage dense zone is broken, and there is a lot of 
rock slag at the interface between the concrete and the rock mass. 

Some conclusions of the bedrock direct shear test can be obtained from Figure 8 and Table 
5. The minimum friction coefficient of test points in slate area is 1.2, which is about 25% higher 
than that in cleavage dense zone. The minimum cohesion of the test points in slate area is 640 
kPa, which is about 50% higher than that in cleavage dense zone. Compared with the saturated 
state and the natural state, the friction coefficient of the slate area is reduced by about 4%, and the 
cohesion of the slate area is reduced by about 33%. The friction coefficient and cohesion in the 
test areas 6 and 7 are relatively high, mainly due to the steep slope of the slate layer, which 
intersects the shear plane at a large angle. The rock mass parameters of test area 9 are 
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significantly lower than those of test areas 6 and 7, mainly because the test area is in a dense 
cleavage and the rock mass is relatively broken. 

Indoor Test 

In order to accurately obtain the rock mass parameters of the gravity anchorage area, it is 
necessary to combine the results of field tests and indoor tests. In addition, the measured rock 
mass parameters also need to consider certain safety reserves. The sandy slate in the anchorage 
area was selected as the representative rock mass for indoor tests. The sandy slate samples are 
selected from weakly weathered rock layers, and there are weak layers in the interlayer structure 
surface, and the rock mass properties are relatively poor. 

The physical and mechanical properties of the sandy slate can be obtained from indoor 
triaxial test, direct shear test and some basic density and water content tests. Based on the 
comprehensive analysis of indoor and outdoor test results, the density of the sandy slate is 2.4 
g/cm3, the poisson ratio is 0.2, the internal friction angle is 26°, and cohesion is 640 kPa. 

 

STATIC ANALYSIS 

Simplified Force Model of the Gravity Anchorage 

The simplified force model of the gravity anchorage is shown in Figure 9. The design load 
of the main cable of the gravity anchorage is 202201 kN/cable. In Figure 9, G1 represents the 
weight of the pier of splay saddle, G2 represents the weight of the foundation, G3 represents the 
weight of the anchor block, G4 represents the weight of the front anchor chamber, Th is the 
horizontal component of the main cable tension, Tv is the vertical component of the main cable 
tension, Fr is the subgrade reaction, Fw represents the buoyancy of water, Ff represents the friction 
resistance and cohesion of bedrock. The forces on the anchorage are summarized in Table 6. 

 
Fig. 9 - Force diagram of the gravity anchorage 
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Tab. 6 - Forces summary of the gravity anchorage 

Force 
name 

Force value 
(kN) 

Arm of force to overturning axis* 
di (m) 

Arm of force to center of gravity 
axis li (m) 

G1 0.804×105 23 (d1) 11 (l1) 

G2 5.055×105 20 (d2) 16 (l2) 

G3 8.99×105 56 (d3) 21 (l3) 

G4 1.98×105 38 (d4) 4 (l4) 

wF
 

0.36×105 36 (d5) 0 (l5) 

h
T

 
2.758×105 12 (d6) 12 (l6) 

v
T

 
2.958×105 62.5 (d7) 28 (l7) 

* This paper takes the intersection of the bottom of the foundation and the front wall as the 
overturning axis. 

Calculation of Anti-sliding Stability Coefficient 

For the gravity anchorage with rigid enlarged foundation, the anti-sliding stability is 
generally calculated according to the rigid body model using the equilibrium condition. The gravity 
anchorage is simplified as a rigid body acting on a homogeneous ground, and only the frictional 
resistance between the anchorage and the ground is considered. The friction between the 
anchorage and the surrounding rock, as well as the rock mass resistance in the front side, are 
ignored as safety reserves. 

The anti-sliding stability coefficient of the gravity anchor is calculated according to the 
following formula [19]: 

i ip

a

ia

P H
K

H

 

 


                                                           (6) 

where Ka represents the anti-sliding stability coefficient of the gravity anchorage, μ represents the 
friction coefficient between the bottom surface of the gravity anchorage and the ground, ƩPi is the 
sum of vertical forces in kN, ƩHip is the sum of anti-sliding stability horizontal forces in kN, ƩHia is 
the sum of sliding horizontal forces in kN. Substituting the relevant data into the above formula 

1 2 3 4
( )

=2.12 2w v
a

h

G G G G F T
K

T

     
                                        (7) 

The calculated anti-sliding stability coefficient of the gravity anchorage is 2.12, which is 
larger than the value required by the code [23]. Therefore, the anti-sliding stability of the gravity 
anchorage under the tension of the main cable meets the requirement. 

Calculation of Anti-overturning Stability Coefficient 

The overturning mechanism of the gravity anchorage is that the anchorage will rotate with 
the increase of cable tension after the tension was transmitted by the cables. Moreover, the 
rotation direction is consistent with the cable tension direction. The rotation will eventually increase 
the stress in the front rock layer, and the rock layer at the posterior toe point will enter a plastic 
yield state, so that the ground under the anchorage will form a circular funnel-shaped sliding 
surface. 

This paper takes the intersection of the bottom of the anchorage and the front wall as the 
overturning axis. The anti-overturning stability coefficient of the gravity anchorage is calculated by 
the following formula 
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1 1 2 2 3 3 4 4
0

5 6 7

3.02 2a

c w h v

M G d G d G d G d
K

M F d T d T d

  
   

 
                                   (8) 

where K0 is the anti-overturning stability coefficient of the gravity anchorage, Ma is the anti-
overturning moment of force in kN·m, Mc is the overturning moment of force. 

The calculated anti-overturning stability coefficient of the gravity anchor is 3.02, which is 
greater than the value required by the specification [23]. Therefore, the anti-overturning stability of 
the gravity anchorage meets the requirement. 

Calculation of Subgrade Bearing Capacity 

The calculation of subgrade bearing capacity requires that the contact stress does not 
exceed the characteristic value of subsoil bearing capacity of the bearing stratum. In the 
calculation, the effects of friction resistance and elastic resistance of the rock mass around the 
anchorage can be ignored [19]. 

The bearing capacity of the rock mass at the bottom of the anchorage is calculated as 
follows: 

max R a

N M
p f

A W
                                                           (9) 

where pmax represents the maximum compressive stress on the bottom surface of the anchorage in 
kPa, N represents the vertical force of the bottom surface of the foundation under the action 
combination in kN, A is the area of the bottom of the foundation and its value is 3600 m2, M is the 
bending moment of the external force on the anchorage to the centre of gravity axis of the 
anchorage in kN·m, W represents the area resistance moment in the eccentric direction of the 
bottom surface of the anchorage and its value is 43200 m3, γR represents the resistance coefficient 
of bearing capacity of foundation soils and its value is 1.25, and fa represents the characteristic 
value of subsoil bearing capacity which is 1866 kPa from the load tests. 

When the effect of water buoyancy is not considered, 
6

1 2 3 4
1.387 10 kN

v
N G G G G T                                          (10) 

5

1 1 2 2 6 7 3 3 4 4
8.934 10

h v
W G l G l T l T l G l G l                                    (11) 

Substituting the relevant values into Equation (9), 
6 5

max R

1.387 10 8.934 10
405.96kPa

3600 43200
a

p f
 

                                (12) 

When the effect of water buoyancy is considered, 
6

1 2 3 4
1.351 10 kN

v w
N G G G G T F                                        (13) 

5

1 1 2 2 6 7 3 3 4 4
8.934 10

h v
W G l G l T l T l G l G l                                   (14) 

Substituting the relevant values into Equation (9), 
6 5

max R

1.351 10 8.934 10
395.96kPa

3600 43200
a

p f
 

                              (15) 

The calculated maximum contact stress on the bottom of the anchorage is 405.96 kPa, 
which is less than the characteristic value of subsoil bearing capacity. Therefore, the subgrade 
bearing capacity under the pulling force of the main cable meets the requirement. 

 

NUMERICAL SIMULATION 
The contact stress, anti-sliding stability coefficient and anti-overturning stability coefficient of 

the gravity anchorage can be obtained through static analysis, but the horizontal displacement and 
vertical settlement of the gravity anchorage under the pulling force of the main cable cannot be 
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obtained. Therefore, this paper also uses finite element software Abaqus to establish a three-
dimensional model of the gravity anchorage, which is used to analyze the displacement of the 
gravity anchorage and the contact stress under the action of main cable tension. The purpose is to 
further verify the stability of the gravity anchorage using finite element method based on the static 
analysis. 

Model Establishment 

Three-dimensional finite element models of the gravity anchorage and the rock mass are 
established. The gravity anchorage adopts the isotropic linear elastic model, and the rock mass 
adopts the Mohr-Coulomb model. The foundation model is set to be 288 m long, 140 m wide and 
80 m high, and an excavation with a length of 72 m, a width of 50 m and a depth of 10 m is cut in 
the middle of it. The mesh generation of the gravity anchorage and ground is shown in Figure 10. 

 
Fig. 10 - Model mesh generation, (a) Mesh generation of the gravity anchor, (b) Mesh generation 

of the ground 

Calculation Results 

Displacement Results 

The gravity anchorage will be displaced horizontally under the action of the horizontal 
component of the main cable tension. Moreover, the oblique main cable tension will cause different 
settlements at the front and rear ends of the gravity anchorage, and further cause the anchorage to 
overturn. The horizontal sliding and the overall overturning are very detrimental to the stability of 
the gravity anchorage, so they must be limited in a certain range. The horizontal and vertical 
displacement of the gravity anchorage are shown in Figure 11. 

 
Fig. 11 - The horizontal and vertical displacements of the gravity anchorage (unit: m), (a) 
Horizontal displacement of the gravity anchorage, (b) Vertical displacement of the gravity 

anchorage 



 
  Article no. 21 

 
THE CIVIL ENGINEERING JOURNAL 1-2021 

 
--------------------------------------------------------------------------------------------------- 

 

              DOI 10.14311/CEJ.2021.01.0021 295 

 

It can be seen from Figure 11(a) that the maximum horizontal displacement of the gravity 
anchorage is 18.79 mm, which occurs at the top of the side wall of the front anchor chamber. 
Moreover, the horizontal displacement gradually decreases from top to bottom. According to the 
Specification for Design of Highway Suspension Bridges [23], the allowable horizontal 
displacement of the gravity anchorage during the operation stage should not be greater than 
0.0001 times of the main span. The calculated maximum value of 18.79 mm is smaller than the 
allowable value of 76.6 mm, so it meets the requirements. 

As can be seen from Figure 11(b), the maximum settlement of the front end of the gravity 
anchorage is 5.84 mm, and the rear end is pulled up by 0.12 mm. The inclined tension of the main 
cable will cause the gravity anchorage to incline forward to a certain extent, resulting in uneven 
settlement at the front and rear ends. Therefore, the front end of the gravity anchorage may settle 
and the rear end may be pulled up. The specification requires that the vertical displacement of the 
gravity anchorage should not be greater than 0.0002 times of the main span. The calculated 
maximum value of 5.84 mm is less than 153.2 mm required by the specification. The overturning 
angle of the gravity anchor is 0.0047°, it is very small and almost negligible. 

Stress Results 

Because the weight of the gravity anchor is very large, it will cause very large stress on the 
ground. The contact stress obtained by finite element analysis is shown in Figure 12. It can be 
seen that the maximum compressive stress at the bottom of the anchorage is 497.6 kPa. This 
value is smaller than the characteristic value of subsoil bearing capacity (1866 kPa). Therefore, the 
contact stress under the action of the gravity anchorage meets the requirement. 

 
Fig. 12 - Ground stress (unit: Pa) 

 

CONCLUSION 

(1)  The basic physical parameters of the bedrock in the anchorage area can be obtained 
through field tests and indoor tests, including density, elastic modulus, cohesion, internal friction 
angle, and poisson ratio. In addition, the cohesion and friction coefficient of the contact surface 
between the bottom of the gravity anchorage and the bedrock, as well as the characteristic value of 
subsoil bearing capacity in the anchorage area are obtained. It can be concluded that the 
characteristic value of the subsoil bearing capacity is 1866 kPa. The deformation modulus of 
saturated rock mass is less than that of natural state, with a reduction of 10% ~ 20%. 

(2)  The static method is used to analyze the stability of the gravity anchorage. Calculation 
results show that the anti-sliding stability coefficient is 2.12, the anti-overturning stability coefficient 
is 3.02, and the foundation stress is 405.96 kPa. The calculation results meet the relevant 
requirements. The anti-sliding, anti-overturning and subsoil bearing capacity of a gravity anchorage 
are three important aspects for checking its stability. 
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(3)  The stability of the gravity anchorage is analyzed by numerical simulation. The results show 
that the maximum horizontal displacement is 18.79 mm, the maximum vertical settlement is 5.84 
mm, the maximum contact stress is 497.6 kPa, and the maximum overturning angle is 0.0047°. 
The calculation results meet the relevant requirements. 

(4)  The gravity anchorage has a very large dead weight. In the calculation and analysis, the 
interaction between the bottom surface of the gravity anchorage and the ground is considered, and 
the shear failure of the deep rock mass is not considered. It is recommended that the shear failure 
of the gravity anchorage on the deep ground can be considered on the basis of meeting the 
stability requirements. 
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