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ABSTRACT 

Research is ongoing to find theoretical solution to three-dimensional piling compaction. 
Considering the spacial-axis-symmetric characteristics, the boundary surface of pile-soil interaction 
is expressed by polynomials of different orders. First, the curve family parameter is introduced to 
construct the displacement and integral function. Then, the solution of pile-soil interaction is 
derived by combining the constitutive relation model of Duncan-Chang and the variational theory. 
Results of engineering computing show that the theoretical solution converges to the classical 
CEM and the limit equilibrium theory well at the corresponding computing area. Moreover, the 
effects of polynomial of different orders on the calculation results are not obvious. The conclusion 
in this paper can be used for reference in the derivation and application for other interaction of 
structure and soil problems. 
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INTRODUCTION 

For cavity expansion, a source-sink [1,2] method is proposed to solve the displacement 

field caused by pile-soil interaction. Displacement method [3,4]is also applied to solve the problem 

of cavity expansion in semi-infinite space. With the truth that the ground must be free or zero stress 

surface for semi-infinite space, the stress superposition [5] is adopted to correct the source-sink 

method.  The above studies should have the following limitations:  

(1) Assumption of linear elasticity constitutive model of nonlinear material. 

(2) The superposition principle is used to solve the nonlinear displacement field. 

 

METHODS 

In this paper, three-dimensional piling compaction in half-space is researched to solve finite 

length pile-jacked problem. Firstly, quadratic and quartic polynomial functions are used to simulate 

the boundary curve respectively. Secondly, combining Duncan-Chang constitutive relation and 

variational theory, solution is derived for pile-soil interaction in semi-infinite space. Finally, the 

theoretical result is verified by analyzing the influence of initial boundary curve setting. 

The computing workloads of functional integration under two kinds of boundary conditions 
are compared, and the influence of order of boundary curve on the calculation accuracy and 
convergence rate is also analyzed.  
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MATHEMATICAL MODELS 

Pile-soil interaction is characterized by three-dimensional and strong nonlinearity. Based on 
the variational theory, the integral functional [6,7] is given as Equation (1).  

When the displacement function satisfies all displacement constraints and Equation (1) takes 

the extreme value, i
u  will be the theoretical displacement solutions. 

 
1

d dij i i i i

V S

A Fu V Pu S    
                                                       (1) 

In the above equation, i
F  is the volume force, 1

S  is the boundary of the known force, and i
P  

is the known force on the boundary;  ijA   is the potential energy density. 

The density of the pile-soil interaction can be given as Equation (2) 

         
0 0 0 0

d d d d
r z zr

ij r ij r ij z ij z zr ij zr
A

   

                                       (2) 

where ij
  refers to four strain components , , ,

r z zr    . 

Displacement boundary condition is given as 
 

 
, 0

,
g z r

u u r z

 . 

where  ,u r z  is the displacement value on the known displacement boundary, and  , 0g z r  is 

the boundary curve equation of the known displacement expressed as Equation (3). 

SETTING DISPLACEMENT FUNCTION 

The interaction between pile and the soil around it in semi-infinite space can be regarded as a 

spatial axisymmetric problem. The mechanical components are independent of the coordinates   

and functions of the coordinates  ,r z . The equation of boundary curve is given as Equation (3) 

and depicted in Figures 1-2. 

Boundary curve of Equation (3) should satisfy, if 0z  , 0
r r  and if ,z H  0r  , where H  

is the pile length and 0r  is the radius of the pile hole at the ground surface. 

   , , , 0g z r f z r H                                                                (3) 

In order to set the displacement function ,ru w  to satisfy the known displacement boundary 

condition, the curve family parameter 0
z  is introduced, as shown in Figures 1-2.  

The equation of the curves family with 0
z  is established as shown in Equation (4). The soil 

around the pile is covered by a series of curves with different values of 0
z  . When 0z H , Eq. (4) 

can cover any spatial point in the calculation range. 

 0
, , 0f z r z                                                                        (4) 

Equation (4) satisfies    
0

0
, , , 0

z H
f z r z g z r


  . 

0,
0

r z H
f r

 
    
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Fig. 1 - Quadratic polynomial piling compaction          Fig. 2 - Quartic polynomial piling compaction 

 

According to the above analysis, the displacement function is set as Equation (5)  

0 0,r r m rm m m

m m

u u A u w w B w                                                      (5) 

where 0 0 0 sinru u M  ， 0 0 0 cos ,w u M   0 0 0 0
M r z H r   ,    0 0 0

sin 1
m

rm
u u M H z  , 

  0 0 0
cos 1

m

m
w u M H z  ,  1,2,3,m  L .    

 is the angle between outward normal and coordinate line z  for the points on the curve 0
z . 

cos ,sin  can be expressed as Equation (6) 

2 2 2 2
cos ,sinz r

z r z r

f f

f f f f
  

 
                                                 (6) 

where 
 0, ,

,
z

f z r z
f

z






 0, ,
r

f z r z
f

r





. ,

m m
A B   are 2m  undetermined coefficients.  

0z H  represents the boundary curve of the hole wall. When 0z H ， 0
1 0H z  , the 

displacement function satisfies the boundary condition of the hole wall. 
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GEOMETRIC AND CONSTITUTIVE EQUATIONS 

Since the parameters 0
z  are introduced into the displacement function, the Strain-

displacement relationship are given as Equation (7) 

0 0

0 0

0 0

0 0

,r r
r z

r r r
zr

z zu u w w

r z r z z z

z zu u uw w

z z z r z r r


 
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        
        

         


          
      

＋

，

                                       (7) 

where 
 

 
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0

, ,

, ,

r
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f z r zz

r f z r z


 


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0

, ,

, ,

z

z

f z r zz

z f z r z


 


, 

 0

0

0

, ,
z

f z r z
f

z





. 

Duncan-Chang model is adopted [8,9], as shown in Equation (8) and (9). The relationship 
curve between stress and primary strain of the constitutive model is shown in Figure 3. 

 

Fig. 3 - Duncan - Chang curve
1~d   

 

 
1

1

1
d f

i d f

R
E


 



 
  

  

                                                             (8) 

Modulus of elasticity is given as 

 3

n

i a a
E Kp p                                                                     (9) 

where,      3
2 cos 2 sin 1 sin

d f
c          f d df ult

R    is failure ratio. ,c  is 

cohesion and internal friction angle of the soil, ap is the normal atmospheric pressure, 3 is pre-

consolidation pressure, and ,K n are the experimental constant. 

Equation (8) can be used to derive nonlinear secant modulus by Equation (10) 
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 

1sec
1

1

1
d

f

i d f

E

R
E



 



 



                                                            (10) 

where 1
  is the first main strain [10], determined by Equation (11). 

 
2 2

1

3 2 4 4

r zr z zr
    




                                                         (11) 

The volume deformation modulus of Duncan-Chang model is expressed as Equation (12) 

  0

3

m

t b a a
K K p p                                                                 (12) 

where, 0
,

b
K m  is the experimental constant. 

POTENTIAL ENERGY DENSITY 

The increment of stress components [11] can be expressed as Equation (13) 

   

 

1 2 1 2

1 2 1

,

, 2

r r z r r z

z r z z zr zr

T T T T

T T T

   



         

      

                

         

                        (13) 

where  1 sec 0
1 ,T E    2 0 0

1 2T    , 

, , ,r z rz     is determined by Equation (7), 0
 is Poisson ratio. According to Equation (13), 

the total stress can be expressed as 

0

0

,
1

r r z


  


  


0

0

,
1

z 


  


  


,z z z    

zr zr
    

where  is the buoyant unit weight, z is the consolidation stress. Therefore, the potential energy 

density can be expressed as: 

  0
0

0 0 0 0

d
u

r z zr
ij r z zr

A u
u u u u




  
    

    
    

    
  

Since the curve parameter 0
z  is introduced, the potential energy density can be written as 

Equation (14), which is a function of 0, ,z r z  as 

  0 0 0
0

( , , , , , )d
u

ij
A D z r z u A B u



                                                      (14) 

where 0, ,z r z  meet the constraint conditions of  0
, , 0f z r z  ,  1 2

, ,..., ,mA A A A  

 1 2
, ,..., mB B B B , and 



 

  Article no. 20 
 

THE CIVIL ENGINEERING JOURNAL 1-2021 
 

--------------------------------------------------------------------------------------------------- 

 

           DOI 10.14311/CEJ.2021.01.0020 273 

 

       0 0

0 0 0 0

( , , , , , ) r z zr
r ij ij z ij zr ijD z r z u A B

u u u u




  
       

  
   

   
 

FUNCTIONAL CONSTRUCTION AND COEFFICIENTS DETERMINATION 

According to energy density of Equation (14), Equation (1) can be written as Equation (15) 

   0 0 0
0

d 2 , , , , , d d
u

ij
S

V

A V D z r z u A B r u S 


                                     (15) 

where:  ijA   is represented by Equation (14).  

The coefficient ,A B  can be solved by the extreme calculation of Equation (16), and the 

theoretical solution of displacement and stress field can be obtained then.  

0, 0
i i

A B

 
 

 
                                                                 (16) 

PROJECT CASES 

Equation (3) is set as the polynomial function as shown in Equation (17) - (18) 

 2 2

0= 1z H r r                                                                    (17) 

 4 4

01z H r r                                                                    (18) 

where H is the pile length, 0r  is the equivalent radius [12,13] of the pile hole on the ground 

surface. The equivalent condition of pile hole expansion is established as follows 

   2 2 2

0 0 0 0 0
[ 2 ] 3 2 3r r R r R d       

with regard to the pile of 6mH  , 02 0.5md R  ,  0
2 3 0.14mr d  . 

Soil parameters are shown in Table 1. Considering the consolidation stress of shallow soil is 
small and it is relatively loose and has less influence on the calculation result, mean values of 

muddy clay and clay are calculated and we get 14kPa, 13.25
o

c   , where ,c   are consolidated 

undrained (CU) parameters. 

The constitutive parameters of clay for example 4.1 and 4.2 are [9] 0.8
f

R  , 200,K   

0.5n  , 50,bK   0
0.5m  . 
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Tab. 1 - Soil parameters 

Soil 
Depth 

m 

sE  

MPa 
0

  
  

KN/m3 

c  

kP 
  

Silty clay 0 ~ 2 34 0.29 18.5 12 18.0o 

Muddy clay 2 ~ 4 29 0.46 17.0 13 12.0o 

clay 4~ 32 0.42 17.5 15 14.5o 

 

Example 1 

Family curves can be written as Equation (19), as shown in Figure 1,  

 
 

2

0
0 0 2

0 0

, , 0
z r

f z r z z z
z H r

   
 

                                                 (19) 

when 0z H ，    2 2

0 0, , = 1f z r z z H r r   

Equation (20) are given for calculating the stress in the plastic and elastic zone around the 
pile by the cavity expansion method (CEM) [14,15].  

Figure 4 shows a comparative analysis of the calculated results of Equation (20), numerical 
simulation results [16] and the theoretical solution derived in this paper based on Equation (19). 

2 ln 2 ln
p p

r u u z u

R R
c c c

r r
      ，                                               (20a) 

2

0
p

r u z

R
c

r
 

 
    

 
，                                                           (20b) 

 

In the above equation,  0
2(1 )

p u
R R E c  is the radius of the plastic zone, u

c ( u
c c ) is 

the index of unconsolidated undrained (UU), and this article takes u
c c . 0R  is the radius of pile 

hole. 

Equation (21) is given for calculating the stress in the r  direction based on the limit 
equilibrium theory [17]. Figure 5 shows a comparative analysis of the lateral pressure results based 
on the limit equilibrium theory and the theoretical solution derived in this paper based on Equation 
(19).  

  
2

tan 2 tan
4 2 4 2

r z c
   

 
    

       
    

                                             (21) 

Figure 4 shows that calculated results of the theoretical solution are basically matching with 

those of the cavity expansion method at the zone located in the region of 1  &r d 6mz  . Since 

the cavity expansion method (CEM) assumes that the expansion model satisfies the plane strain 
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condition, it is only suitable for solving the plane strain problem. For finite-length pile three-
dimensional expansion, the region below or around the pile tip is obviously inconsistent with the 
assumption of the plane strain. Compared with the CEM results, the theoretical solution of this 
paper is more reasonable with the rapidly decreasing of radial pressure around or below the pile 
tip. 

Figure 5 shows that the results of theoretical solution are basically matching with the results 

of limit equilibrium theory at plastic line located in the range of 0m 6m & z  0.25mr  . 

Compared with the limit equilibrium results, the theoretical solution of this paper is more 
reasonable, with the rapidly decreasing of radial pressure around or below the pile tip. In addition, 
because the limit equilibrium results are directly related to the volume-weight of the soil, the curve 
of passive earth pressure shown in Figure 5 has inflection points at the interface of the soil layer. 

Figure 5 also shows that the results of theoretical solution are basically matching with the 

results of numerical simulation results at 0.75mr  . 

 

Example 2 

Family curves can be written as Equation (22), as shown in Figure 2 

 
 

4

0
0 0 4

0 0

, , 0
z r

f z r z z z
z H r

   
 

                                               (22) 

when 0z H ，    4 4

0 0, , = 1f z r z z H r r   

Figures 6-7 can be obtained, in combination with the theoretical solution derived in this paper 
based on Equation (22), the results of numerical simulation results, CEM and limit equilibrium 
theory. 

The stress regularities of distribution in Figures 6-7 are basically the same as those in Figures 
4-5. They explain that the quadratic or quartic polynomial of the boundary curve has little effect on 
the calculation results, because the soil near the pile-soil interaction boundary has been in the 
plastic yield state already.  

To sum up, with the increase of undetermined coefficients from 0 to 4, the additional stress 
generated by pile compaction rapidly converges to the reasonable value and polynomial with lower 
order can also be used to simulate the initial hole wall boundary to reduce the computational 
workload. 

 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


 

  Article no. 20 
 

THE CIVIL ENGINEERING JOURNAL 1-2021 
 

--------------------------------------------------------------------------------------------------- 

 

           DOI 10.14311/CEJ.2021.01.0020 276 

 

0 2 4 6 8 10 12

60

80

100

120

140

160

Ratio of radial distance to pile diameter

(a) Displacement function with 0 undetermined coefficient

R
a
d
ia

l 
p
re

s
s
u
re

 /
k
P

a

 

 

z=5.5m   Theoretical solution

z=5.5m  Cavity expansion solution

z=6m   Theoretical solution

z=6m  Cavity expansion solution

z=6.5m   Theoretical solution

z=6.5m  Cavity expansion solution

z=6m Numerical solution

0 2 4 6 8 10 12

60

80

100

120

140

160

Ratio of radial distance to pile diameter

(b) Displacement function with 2 undetermined coefficient

R
a
d
ia

l 
p
re

s
s
u
re

 /
k
P

a

 

 

z=5.5m   Theoretical solution

z=5.5m  Cavity expansion solution

z=6m   Theoretical solution

z=6m  Cavity expansion solution

z=6.5m   Theoretical solution

z=6.5m  Cavity expansion solution

z=6m Numerical solution

0 2 4 6 8 10 12

60

80

100

120

140

160

Ratio of radial distance to pile diameter

(c) Displacement function with 4 undetermined coefficient

R
a
d
ia

l 
p
re

s
s
u
re

 /
k
P

a

 

 

z=5.5m   Theoretical solution

z=5.5m  Cavity expansion solution

z=6m   Theoretical solution

z=6m  Cavity expansion solution

z=6.5m   Theoretical solution

z=6.5m  Cavity expansion solution

z=6m Numerical solution

      

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Radial pressure /kPa

D
e
p
th

 /
m

(a) Displacement function with 0 undetermined coefficient

 

 

r=0.25m Theoretical solution

r=0.75m Theoretical solution

r=1.25m Theoretical solution

r=0.25m Ultimate equilibrium

r=0.75m Numerical solution

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Radial pressure /kPa

D
e
p
th

 /
m

(b) Displacement function with 2 undetermined coefficients

 

 

r=0.25m Theoretical solution

r=0.75m Theoretical solution

r=1.25m Theoretical solution

r=0.25m Ultimate equilibrium

r=0.75m Numerical solution

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Radial pressure /kPa

D
e
p
th

 /
m

(c) Displacement function with 4 undetermined coefficients

 

 

r=0.25m Theoretical solution

r=0.75m Theoretical solution

r=1.25m Theoretical solution

r=0.25m Ultimate equilibrium

r=0.75m Numerical solution

 

Fig. 4 - The radial pressure along radial direction               Fig. 5 - The radial pressure along depth 
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Fig. 6 - The radial pressure along radial direction          Fig. 7 - The radial pressure along depth 
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Example 3 

The test site is located in a section of Taiwan high-speed railway project [18]. The precast 
concrete pile length is 34m, and diameter is 80 cm. The distribution of the test pile and measuring 

pipes are shown in Figure 8. Burial depth of survey tubes are 40m. The soil layers in the site are 

inter-bedded sandy soil and cohesive soil, and the critical values of sandy and clay are taken as 
parameters for calculating. Parameters of soil layer [9,18] are shown in Table 2. The equivalent 

pile-hole-expansion radius is 
0

0.4 3 0.23mr   , and the normal displacement of the hole wall is 

0 0.23mu r   . 

3d 3d 3d

 d=80cm

Borehole

incline-tube 1

Borehole

incline-tube 2

Borehole

incline-tube 3

 

Fig.8 - Test pile and plane layout of incline-tubes 

 

Tab. 2 - Geotechnical parameters of test site 

Cohesion 

/ kPac  

Friction Angle 

/  

Poisson's ratio 

  

Soil bulk density 

/ kPa  

Destructive ratio 

f
R  

Constant 

K  

Constant 

n  

3 20 0.3 18 0.9 300 0.5 

Displacement Equation (23~26) can be deduced based on Equation (16~17, 19), and Figure 
9-10 can be obtained in combination with the theoretical solution derived in this paper and field test 
data in reference [18]. Figure 9 shows distribution-regularities comparison between theoretical 
computing radial displacement and the in-situ measured data at different penetration depth. Figure 
10 shows comparison between theoretical displacement results and the in-situ measured data at 
different coordinate r . Figure 9 shows that for different penetration depth, the calculated value of 
displacement is basically agreement with the in-situ measured value, although the theoretical 
calculation cannot accurately reflect the characteristics due to injection interval. Figure 10 shows 
that for different radial coordinates, the calculated value is basically agreement with the measured 
value. 

When Penetration depth: 9mH  , displacement function due to pile compaction can be 

written as Equation (23) 

0

0 0 0

0

0 0 0

sin 1 1.0 1

cos 1 5.0 1

r

r H
u u

z H r z

r H
w u

z H r z





     
        

      


    
             

                                        (23) 
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When Penetration depth: 17mH  , displacement function due to pile compaction can be 

written as Equation (24) 

0

0 0 0

0

0 0 0

sin 1 1.0 1

cos 1 1.7 1

r

r H
u u

z H r z

r H
w u

z H r z





     
        

      


    
             

                                       (24) 

-10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

  Penetration

 depth: H=9m

  Penetration

 depth: H=17m

  Penetration

 depth: H=25m

  Penetration

 depth: H=34m

Radial displacement /mm

D
e
p
th

 /
m

 

 

H=9.m Values of calculation

H=17.m Values of calculation

H=25.m Values of calculation

H=34.m Values of calculation

H=9.m  measured values

H=17.m  measured values

H=25.m  measured values

H=34.m  measured values

   

-10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

  Penetration

 depth: H=34m

Radial displacement /mm

D
e
p
th

 /
m

 

 

 r=3.×d  Values of calculation

 r=6.×d  Values of calculation

 r=9.×d  Values of calculation

 r=3.×d  measured values

 r=6.×d  measured values

 r=9.×d  measured values

 

Fig.9 - Displacement at different penetration depth           Fig.10 - Displacement at different r  

 

When Penetration depth: 25mH  , displacement function due to pile compaction can be 

written as Equation (25) 
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0

0 0 0

0

0 0 0

sin 1 1.0 1

cos 1 1.1 1

r

r H
u u

z H r z

r H
w u

z H r z





     
        

      


    
             

                                      (25) 

When Penetration depth: 34mH  , displacement function due to pile compaction can be 

written as Equation (26) 

0

0 0 0

0

0 0 0

sin 1 1.0 1

cos 1 1.1 1

r

r H
u u

z H r z

r H
w u

z H r z





     
        

      


    
             

                                     (26) 

CONCLUSIONS 

Theoretical solutions of the piling compaction are derived by combining the constitutive 
relation model of Duncan-Chang and the variational theory. Boundary surface could be expressed 
by polynomials of different orders for piling compaction, considering the characteristics of pile-soil 
interaction such as three-dimension and strong nonlinearity. 

Computing of the project cases shows that the solutions of variational theory converges to 
results of cavity expansion and limit equilibrium theory well in the corresponding region. The 
influences of pile-soil boundary curve on the calculation accuracy and convergence rate are not 
obvious. Numerical and in-situ test results are also used to verify the reasonable and validity of the 
deduced theoretical solutions. 

Researches in this paper show that the polynomial with lower order can be used to simulate 
the initial hole wall boundary to reduce the computational workload. 
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