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ABSTRACT 

To improve the accuracy of predicting the bearing capacity of offshore large-diameter 
monopiles, the initial high strain detection and repeated high strain detection with an interval of 
10-84 days were carried out on 6 large-diameter monopiles with a diameter of 7.2m-7.4m in the 
offshore wind field dominated by clay soil layer. The results show that the time-dependent 
increment of tip resistance, side resistance and the total resistance of large-diameter monopiles in 
the same offshore wind farm has great discreteness, and the axial force increment of monopiles has 
a consistent change trend. This paper puts forward the prediction interval of 95% guarantee rate of 
bearing capacity increment of the offshore large-diameter monopiles based on depth, which 
provides a basis for the design of large-diameter monopiles. 
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INTRODUCTION 

As the most common foundation type of offshore wind turbine [1], large-diameter monopiles are 
widely used in sea areas where the sea depth does not exceed 35m. Large-diameter monopiles can 
only be driven by a hammer with high strike energy. The process of driving monopiles by hammer 
with high strike energy will weaken the soil around the pile. The high strain detection after the 
monopiles reach the design elevation can only obtain a small bearing capacity, and there is often no 
effective bearing capacity near the pile head. Offshore strata often have thick weak layers, and 
offshore monopiles need to be embedded at great depth in the mud to meet the requirements of 
bearing capacity. They often cross several soil layers, and the calculation of bearing capacity is 
cumbersome. After the rest period, the high strain detection of monopiles requires the ship to be 
stationed again, which is difficult and costly. The mechanical properties of offshore monopiles from 
driving to using are different from those of onshore small-size piles, and their time effect also shows 
great differences [3]. Existing research results [4-8] are difficult to meet the needs of engineering 
practice. In particular, the design basis for monopile bearing capacity in API and DNV 
specifications[9, 10] are derived from the test data of small-diameter pile foundation [11, 12], and 
the size effect significantly affects the bearing capacity of pile foundation [13], which is not well 
applicable to large-diameter monopiles. 

TEST OVERVIEW 

The test site is the No. 4 offshore wind farm in the south of the Shandong Peninsula, located in 
the sea area in the south of Haiyang City, Shandong Province, with an offshore distance of about 
30km. The seabed terrain changes gently with a water depth of 29-31m. The surface layer of 
foundation soil in the site area is mainly muddy silty clay, silty clay and silty soil. The survey 
conditions and static cone penetration parameters of the test pile base are shown in Table 1. 
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High strain detections were carried out immediately after 6 large-diameter monopiles were 
hammered and sunk, and high strain detections were carried out after a certain rest period, as 
shown in Figure 1. Among them, 4 large-diameter monopiles obtained a relatively complete pile 
shaft force distribution curve, and the pile shaft parameters are shown in Table 2. 
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Fig. 1 – High strain detection of large-diameter monopile 

 
Tab. 2: Monopile parameters 

Monopile No. Length/m 
Mud 

elevation/m 
Pile tip 

elevation/m 
Penetration 

depth/m 
Pile diameter 

/m 

Pile tip 
thickness 

/mm 

Pile tip area / 

㎡ 

1 84 -28.65 -72 43.35 7.2 70 1.57 

2 81 -29.8 -69 39.2 7.2 70 1.57 

3 88 -30.5 -76 45.5 7.4 72 1.66 

4 88 -30.8 -76 45.2 7.2 70 1.57 

5 92 -29.9 -80 50.1 7.4 70 1.61 

6 86.5 -30.5 -74.5 44 7.2 70 1.57 

TEST RESULTS AND ANALYSIS 

After the initial driving high strain detections of No. 1-6 piles were completed, the repeated driving 
high strain detections were carried out at an interval of 10d-84d. The change of monopiles bearing 
capacity is shown in Table 3. The results of the literature [14] show that most of the bearing capacity 
of offshore monopiles can be recovered within 24h. The bearing capacity data in Table 3 shows that 
when the rest period exceeds 10d, the increase of pile tip resistance, pile side resistance and total 
bearing capacity does not increase with time, which is consistent with the research results in the 
literature [14].  



  Article no. 37 

 

THE CIVIL ENGINEERING JOURNAL 3-2022 

 

  DOI 10.14311/CEJ.2022.03.0037         497 

 
Tab. 3: Bearing capacity of monopiles 
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Time-dependent tip resistance  

When the pile tip is in the silty fine sand layer, the growth rate of pile tip resistance is relatively 
consistent. Table 3 shows that the pile tip resistance increases by 63%-68% after the 10d-31d rest 
period. 

Similarly, the growth rate of pile tip resistance also shows a similar law when the pile tip is in 
silty clay mixed with silty, and the pile tip resistance increases by 52%-60% after the 18-34 day rest 
period. 

From the perspective of soil bearing capacity, silty clay, silty clay mixed with silt, and silty soil 
mixed with silt are enhanced in turn. The soil layer at the pile tip of the No. 6 pile is silty soil mixed 
with silt, but the pile tip resistance is only increased by 15% after the 84-day rest period, which is far 
lower than the 52% increase in the 18-day rest period of No. 4 pile. According to the bearing 
capacity of the soil, the restoring capacity of soil can not be well judged. 

Time-dependent side resistance  

It can be seen from Table 1 that more than 75% of the stratum where the test pile is located is 
the clay soil layer, the side resistance of the No. 3 pile increases by 74% in 10d, and the total friction 
of No. 1 pile increases by 297% in 34d. This difference in increase is not caused by time 
accumulation, but due to the weakening of soil around the pile caused by heavy blows, or even the 
occurrence of liquefaction. Whether the weakening range of soil around the pile is concentrated at 
the pile tip, there is no definite answer for large diameter monopiles. The recovery value of the pile 
side resistance can quantify the degree of weakening of the soil around the pile. The recovery value 
of the side resistance of each section is shown in Table 4. 
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Tab. 4: Recovery value of side resistance of each section of piles 

Pile shaft 
section 

No. 1 pile/kN No. 2 pile/kN No. 3 pile/kN No. 4 pile/kN 

1/4 7978  3005  3834  3653  

2/4 7667  2135  2713  2363  

3/4 4994  2819  4608  4612  

4/4 2167  4820  5919  7550  

It can be seen from Table 4 that the peak value of side resistance recovery is uncertain in a 
certain section, indicating that the impact energy during pile sinking can be dispersed in the soil 
around the whole pile. 

Time-dependent total resistance 

It can be seen from Table 3 that the increase of total resistance after 10d-84d rest period is 
65%-162%, and the soil layer in the same wind farm is relatively uniform, but the increase of total 
resistance of large-diameter monopiles fluctuates greatly, which is due to the large difference in 
residual bearing capacity of each pile position after initial driving. The axial force of No. 1-4 piles 
during initial driving and repeated driving is shown in Figure 2. According to Table 3, the total 
resistance of No. 1 pile after initial driving is 17749kN, while the total resistance of No. 3 pile is 
30945kN, with a large difference. The number of hammers and the hammering energy used in the 
process of pile sinking are mainly determined by factors such as the nature of the stratum, the 
self-weight of the pile body, hammering equipment, etc. even if the same wind farm and different 
pile positions will have the phenomenon of pile sliding and hammer refusal, which also makes it 
difficult to quantify the weakening of the soil around the pile. 
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（1）No. 1 pile 

Fig. 2 – Initial driving and repeated driving of axial force 
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（4）No. 4 pile 

Fig. 2 – Initial driving and repeated driving of axial force 
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Comparison of bearing capacity 

The bearing capacity of large-diameter monopiles can be calculated by Equation (1) according to 
the side resistance per unit area and pile tip resistance per unit area in Table 1. 

    𝑄𝑢 = 𝑄𝑠𝑢 + 𝑄𝑝𝑢 = 𝑢𝑖 ∑ 𝑙𝑖𝑞𝑠𝑢𝑖 + 𝐴𝑝𝑞𝑝𝑢         (1) 

Where 𝑄𝑢 is the bearing capacity of monopile, 𝑄𝑠𝑢 is the total side resistance, 𝑄𝑝𝑢 is the total tip 

resistance, 𝑢𝑖 is the circumference of pile in layer i, 𝑙𝑖 is the thickness of layer i, 𝑞𝑠𝑢𝑖 is unit side 
resistance of layer i, 𝑞𝑝𝑢 is unit tip resistance of layer i, and 𝐴𝑝 is pile tip area. 

The calculation results of No. 1-4 piles are compared with the measured values as shown in Figure 
3. 
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Fig. 3 – Repeated driving and theoretical value of axial force 
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（4）No. 4 pile 

Fig. 3 – Repeated driving and theoretical value of axial force 

According to literature [15], the axial force of the pile can be recovered by more than 90% after 
being driven for 6d. The rest period of this test is far beyond 6d, and the soil shear test parameters 
obtained from the indoor test cannot accurately calculate the axial force. It can be seen from Figure 
3 that there is a huge difference between the measured value and the calculated value. Therefore, a 
more effective way is needed to predict the axial force. 

Depth fitting method 

Since the time-dependent increase of side resistance and tip resistance is relatively discrete, it 
cannot be calculated based on the stressed area and the strength per unit area. However, the 
change of the axial force increment shows a good linear relationship with the depth, as shown in 
Figure 4, and the axial force increment has a relatively consistent change trend, which can be 
predicted according to formula (2), with a good assurance rate.   

∆𝑄 = −415h+ 36315 ± 𝑙       (2) 

Where, ΔQ is the axial force increment (kN), h is the depth (m), and l is the upper and lower limit 
adjustment coefficient of 95% prediction band (5460kN in this example). 
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The existing large-diameter monopiles have high strain detection after the pile penetration process. 
The pile shaft axial force lower limit value with a 95% assurance rate can be superimposed on the 
initial driving bearing capacity to provide a good basis for the design. 
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Fig. 4 –Variation trend of axial force increment 

CONCLUSION 

Due to the disturbance of the soil around the pile during the driving process, the bearing 
capacity of the driven pile is difficult to be calculated by the existing formula. Based on the initial 
high strain detection and repeated high strain detection, this paper explores the time-dependent 
increments in tip resistance, side resistance and total resistance, and believes that the bearing 
capacity of monopiles cannot be accurately predicted by soil shear and compression parameters, 
and the axial force increment of monopiles is closely related to depth, which can be accurately 
predicted by formulas. The main conclusions are as follows: 

(1)  The total resistance of offshore large diameter monopiles increases by 65%-162% after the 
10d-84d rest period. 
(2)  A method for predicting the time-dependent increment of bearing capacity of offshore 
large-diameter monopiles is proposed; 
(3)  In this paper, the prediction is only based on 7.2m-7.4m large diameter monopiles, and the 
time-dependent of another diameter monopiles still needs to be further verified. 
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