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ABSTRACT 

To calculate the compressive strength (𝐶𝑆) of concrete, it is necessary to investigate Ultra-

High-Performance Concrete (𝑈𝐻𝑃𝐶)  in terms of its components and their quantities. Empirical 

analysis of relationships between constituents can be more time- and money-consuming. The 𝐶𝑆 
can now be evaluated based on the composition of the ingredients thanks to intelligent systems. 
Additionally, it is advisable to promote the use of eco-friendly materials in concrete, one of the most 
commonly used materials in the world. The 𝐶𝑆 of 𝑈𝐻𝑃𝐶 was attempted to model in this study. The 

𝐶𝑆 of concrete has been simulated using Support Vector Regression (𝑆𝑉𝑅), a Machine Learning 

(𝑀𝐿)  technique that is compatible with Particle Swarm Optimisation (𝑃𝑆𝑂)  and Henry's Gas 

Solubility Optimisation (𝐻𝐺𝑆𝑂), based on various materials used in the construction present article. 

The 𝐶𝑆 values were determined through the testing of eight components. The modeling process was 
evaluated using a variety of metrics. In this regard, the test phase modeling's root-mean-square error 
(𝑅𝑀𝑆𝐸) for 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 was 8.45, while it was 9.23 for 𝑆𝑉𝑅 − 𝑃𝑆𝑂. 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂′𝑠 𝑅𝑀𝑆𝐸 rate for 

the training phase was calculated at 10.15, which is 3.3 percent higher than 𝑆𝑉𝑅 − 𝑃𝑆𝑂′𝑠 𝑅𝑀𝑆𝐸 of 

10.49. 
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INTRODUCTION 

Superior mechanisms and persistence capabilities, like self-compactness, in constructions, 
compressive strength (𝐶𝑆) of more than 150 𝑀𝑝𝑎, and exceptional durability in any challenging 

environments, use Ultra-High-Performance Concrete (𝑈𝐻𝑃𝐶)  as a suitable material [1]–[4]. 

Reducing the cement and micro-silica content significantly lowers costs and 𝐶𝑂2 emissions, even 
despite the high initial cost and negative environmental impact, the practical qualities and extended 
service life compared to conventional or high-strength concrete are justifiable. Cement reduction, 
which is crucial in this regard, can boost the construction industry's sustainability by resulting in more 
environmentally friendly structures [5]. Numerous studies have recently examined 𝑈𝐻𝑃𝐶 usage and 

behaviour [6], where 𝑈𝐻𝑃𝐶  typically displays 𝐶𝑆 that range from 150  𝑀𝑃𝑎  to 810  𝑀𝑃𝑎  [7]–[9]. 
Researchers are interested in using materials like micro-silica, fly ash, metakaolin, and nano-silica 
in the design of concrete mixtures. Furthermore, since the assets are used to address various 
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aspects of the concrete and the design of the concretes is primarily based on 𝐶𝑆, comparing their 
effects on the mechanical features of concrete has the greatest interest [10], [11]. 

The Portland cement-like fly ash helps produce concrete with less water by having a shape 
and size similar to Portland cement. Fly ash and superplasticizers are best blended to enhance the 
mechanical properties of concrete, particularly its CS. The cost, durability, workability, and water 
permeability of concrete, on the other hand, are all significantly impacted by the addition of fly ash. 
Fly ash is frequently used to replace sticky substances in construction projects. While highlighting 
the environmental advantages, using fly ash in concrete mixtures lowers the risk of contamination 
[12]–[14]. Fly ash can replace 20– 50% of the total adhesion of concrete and can even be increased 

to 60% if the initial strength of the concrete is a crucial factor [15], [16]. 
Concrete with a similar shape to pozzolan is mixed with a different amount of cement, 

changing how practical concrete behaves [17]–[20]. Because of the silica fumes' small particle size, 
it can serve as both a filler and a pozzolan in the concrete mixture [21]. The concrete's short-term 
(28 − 𝑑𝑎𝑦) 𝐶𝑆 would be improved despite the increasing proportion of silica fume inside the concrete 
that reduces the concrete's ability to be worked [22]. It is not always possible to determine with 
absolute certainty which silica fume will achieve the best CS. To increase the 𝐶𝑆  of concrete, 
researchers substitute various percentages of silica fume [23], [24]. Since the particles are smaller 
than those of cement, the silica vapour reaction improves the properties of concrete similarly to 
pozzolan [25]–[30]. Micro-silica with superplasticizers improves 𝐶𝑆  in the context of fly ash by 
lowering porosity [31]. 

 The use of Machine Learning (𝑀𝐿) techniques in civil engineering is very widespread. Such 

solutions have the researchers’ view for appraising concrete properties [32]–[35]. The 𝑈𝐻𝑃𝐶 

presence entails more progress in modeling with Artificial Intelligence (𝐴𝐼) for knowing the behavior 

of concrete overloading. Many methods to model the performance of 𝑈𝐻𝑃𝐶 have been successfully 
introduced by experts in several studies [36]–[38]. These techniques depend on a dataset to create 
a trustworthy model, and the accuracy of their results depends on the species discovered through 
experimentation or the dataset drawn from the literature. One study included sugarcane bagasse 
ash and used a gene expression program to estimate the 𝐶𝑆 of concrete [39]. By contrasting the 
model's output with empirical strength measurements, the accuracy of the model was determined. 
In other research, a framework for evaluating the compressive strength of cement made of nano- 
and micro-silica was developed using genetic programming [40]. One study proposed a silica fume-
based model for predicting the 𝐶𝑆 of concrete [41]. To lessen the expense and complexity of the 

developed model, they used Artificial Neural Networks (𝐴𝑁𝑁) and had the grey wolf optimisation 

algorithm (𝐺𝑊𝑂) algorithm optimise their model. 

 In the current study, a 𝑀𝐿 method based on the Support Vector Regression (𝑆𝑉𝑅) method is 

investigated. This method makes use of the algorithms to predict the 𝐶𝑆 of concrete. In this regard, 

Particle Swarm Optimisation (𝑃𝑆𝑂)  and Henry's Gas Solubility Optimisation (𝐻𝐺𝑆𝑂),  two novel 

optimization algorithms, are used to more accurately model the 𝐶𝑆 of 𝑈𝐻𝑃𝐶. R2, 𝑉𝐴𝐹, 𝑂𝐵𝐽, and 𝑀𝐴𝐸 
are four indices that are used to assess the modeling process; they are thoroughly introduced in 
Table 3. 

 From a paper on 𝑈𝐻𝑃𝐶 , 𝐶𝑆  studies, an experimental research dataset with numerous 

parameters is gathered [42]–[44]. Ingredients needed to produce high 𝑈𝐻𝑃𝐶 is 1) fine powders (silica 
fume crushed, nano-silica, and quartzite), 2) lower water/binder ratio (below 0.2), 3) cement (more 
than 800 kg/m3); 4) high range water-reducing admixture, and 5) steel fibers as well as polyethylene 
fibers [45]. 

 Therefore, coupled frameworks of 𝑆𝑉𝑅 − 𝑃𝑆𝑂 and 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 attempt to feed on data of 

ingredients of concrete and target values of 𝐶𝑆 and then generate the 𝑈𝐻𝑃𝐶 persistence rates with 
various ingredients. The specific information needed for modeling is displayed in the following 
section.  
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MATERIALS AND METHODOLOGY  

The clear methods provided in this sector are required for the probe of models that attempt 
to the results of ingredient compositions should be estimated in terms of 𝐶𝑆 for 𝑈𝐻𝑃𝐶. Two potent 

optimization algorithms work in tandem with the capable 𝑆𝑉𝑅 to avoid estimating the necessary 
parameters while locating the best modeling framework. To improve the accuracy of simulating the 
𝐶𝑆 of various sample compositions, the 𝑆𝑉𝑅 − 𝑃𝑆𝑂  and 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂  have been developed. For 

samples, the data published in [42]–[44] are available. Table 1 provides a brief overview of the 

information gathered from 110 experimental samples in this regard. The various 𝐶𝑆𝑠 of each sample 
are produced by combining the aforementioned ingredients in different amounts. 

  Simulating their resistance is modeled with the mathematical solutions elaborated on in this 
section. Also, Fig. 1 exhibits the 𝐶𝑆 derived from the various mixtures of items presented in Table 1, 

in which each colorful string represents one sample out of 110 samples. 

Tab.1 - Input and target data for predictive models 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – The compressive strength of various mixtures of ingredients 

Henry’s gas solubility optimization algorithm, 𝑯𝑮𝑺𝑶 

Henry's Law of Physics is used to construct the 𝐻𝐺𝑆𝑂 [46]. The aforementioned regulation 
was developed by the maximum amount of dissolved solute envisioned at a specific pressure and 
temperature level [47]. Applying the aforementioned rule makes it possible to demonstrate the 

Ingredient 𝑈𝑛𝑖𝑡 𝑆𝑦𝑚𝑏𝑜𝑙 Statistical measurements 
   𝑀𝑖𝑛 𝑀𝑎𝑥 𝑀𝑒𝑎𝑛 𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑡. 𝑑𝑒𝑣 

𝐶𝑒𝑚𝑒𝑛𝑡 (𝑘𝑔/𝑚3) 𝐶𝐸 383 1600 879.7 786 329.8 

𝑆𝑖𝑙𝑖𝑐𝑎 𝑓𝑢𝑚𝑒 (𝑘𝑔/𝑚3) 𝑆𝐼 30 367.95 192 196 94.6 

𝐹𝑙𝑦 𝑎𝑠ℎ (𝑘𝑔/𝑚3) 𝐹𝐴 120 448 33 120 72.7 

𝑆𝑎𝑛𝑑 (𝑘𝑔/𝑚3) 𝑆𝐴 292 1898 980 1107 513.8 

𝑆𝑡𝑒𝑒𝑙 𝑓𝑖𝑏𝑒𝑟 (𝑘𝑔/𝑚3) 𝑆𝐹 2 470 39 8 74.8 

𝑄𝑢𝑎𝑟𝑡𝑧 𝑝𝑜𝑤𝑑𝑒𝑟 (𝑘𝑔/𝑚3) 𝑄𝑃 203.3 750 36.9 211 125.9 

𝑊𝑎𝑡𝑒𝑟 (𝑘𝑔/𝑚3) 𝑊𝐴 109 334.5 197.1 185.3 54.3 

𝐴𝑑𝑚𝑖𝑥𝑡𝑢𝑟𝑒 (𝑘𝑔/𝑚3) 𝐴𝐷 4 185 31.9 30.1 28.2 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑀𝑃𝑎) 𝐶𝑆 95 240 152.2 147.9 31.5 
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solubility of low-soluble gases in the unique solvent. The ability of solubility has been largely 
influenced by temperature and pressure; for gases, the pressure parameter is reduced by increasing 
the temperature variable, and the relationship is appropriate for solids. Pressure's incremental trend 
contributes to an increase in solubility [48]. The gas and the pertinent solubility were used in the 
study by Hashemian et al. to develop the Henry law [46]. The following lists the steps needed for 
𝐻𝐺𝑆𝑂: 

1- Establishing the precise location and quantity of gases (creating the initial population). 
2-  Creating population classes based on gas type characteristics. 
3-  figuring out the cost of the classes, selecting them, and selecting the ones with the best 

results to assign appropriate conditions. 
4- Updating the coefficients of Henry's law. 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) × 𝑒
(−𝐶𝑗(

𝑇𝜃−𝑇(𝑡)

𝑇(𝑡)×𝑇𝜃))

 

(1) 

𝑇(𝑡) = 𝑒
(

𝑡
𝑖𝑡𝑒𝑟

)
 

(2) 

In which the 𝐻𝑗 shows the Henry law coefficient for class 𝑗 .𝐶𝑗 and 𝑇𝜃 Alternatively, exhibit a 

random and constant number of [0 𝑡𝑜 1]. Also, the variables of 𝑖𝑡𝑒𝑟 and 𝑡 represent, respectively, 
the number of iterations in the queue and temperature. 

5- Update of the factor of solubility using Eq. (3). 

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡) (3) 

 where 𝐾 displays a constant value; 𝑃𝑖,𝑗(𝑡) and 𝑆𝑖,𝑗  represent the solubility and pressure of gas 𝑖th 

in the class of 𝑗, alternatively. 

6-  Next, the location of the primitive population is updated using Eq.s (4, 5). 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 × (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡))

+ 𝐹 × 𝑟 × 𝛼 × (𝑃𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 
(4) 

 

𝛾 = 𝛽 × 𝑒
(−

𝐹𝑏𝑒𝑠𝑡(𝑡)+𝜀
𝐹𝑖,𝑗(𝑡)+𝜀

)
+ 𝜀 

(5) 

In which 𝑋𝑖,𝑗  describes where the gas of 𝑖  in the class of 𝑗 . Variables of 𝐹𝑖,𝑗  and 𝐹𝑏𝑒𝑠𝑡 

demonstrates the population in cluster 𝑗 and the best cost of petrol 𝑖. Parameters of 𝑋𝑖,𝑏𝑒𝑠𝑡 and 𝑋𝑏𝑒𝑠𝑡 

indicate, instead, the preferred gas in the class of 𝑗 and the population. Additionally, the 𝑟 parameter 

displays a random number between [0 𝑎𝑛𝑑 1]. 𝛼 and 𝛽 , as a fixed number, are determined 1 as well 

as 𝜀, which is 0.05. 𝛾 additionally displays the probable interaction between the gases.  
7- To satisfy the regional minimum trapping standards, the worst petrol number is assigned. 

𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝐶2 − 𝐶1) + 𝐶1) (6) 

 In which, 𝐶1 and 𝐶2 are fixed, as 0.1 and 0.2, alternatively, and the 𝑁 shows the population. 

8- The worst gas location can be calculated with Eq. (7). 

𝐺𝑖,𝑗 = 𝐺𝑀𝑖𝑛(𝑖,𝑗) + 𝑟 × (𝐺𝑀𝑎𝑥(𝑖,𝑗) − 𝐺𝑀𝑖𝑛(𝑖,𝑗)) (7) 

In which 𝐺𝑀𝑖𝑛 and  𝐺𝑀𝑎𝑥 are, respectively, the lower and upper boundaries. The variable of 𝐺𝑖,𝑗 

denotes the gas 𝑖 location in the class of 𝑗. 
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Particle swarm optimization algorithm, 𝑷𝑺𝑶 

Known as a population-based solution, the 𝑃𝑆𝑂  algorithm. 𝑃𝑆𝑂 was created with an eye 
toward the feedback of animal group interactions. Essentially, this approach was proposed in a study 
that 𝐾𝑒𝑛𝑛𝑒𝑑𝑦 𝑒𝑡 𝑎𝑙. [49], who elaborated it extensively [50]–[53]. This makes the location and the 
velocity parameter essential components of population control. The first of two scoring schemes is 
taken into consideration, and the best global position is the one that best fits the placement of the 
particles. To reach the maximum number of iterations, particle location, and velocity are determined 
iteratively. Updates to the locations and velocities are made by the equations below. 

𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤 = 𝑊𝑃. 𝑣𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐶1𝑟1(𝑃. 𝑝. 𝑏𝑒𝑠𝑡𝑖𝑗
𝑛𝑒𝑤 −

𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡  )+𝐶2𝑟2(𝐺𝑙𝑜𝑏𝑎𝑙. 𝑏𝑒𝑠𝑡𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

(8) 

 

𝑃. 𝑝𝑖𝑗
𝑛𝑒𝑤 =  𝑃. 𝑝𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤 

(9) 

where 𝑊 stands for the inertia factor. 𝑃.𝑣 and 𝑃.𝑝 display the position and speed of the particles. The 

accidental number of (0 𝑡𝑜 1)  is represented by the variables 𝑟1  and 𝑟2 . 𝐶1  and 𝐶2  are used to 
calculate the acceleration factors for local and global learning, respectively. The best solutions from 
all swarms are represented by the Global best variable. 

Support Vector Regression, 𝑺𝑽𝑹 

𝑆𝑉𝑅, was introduced to classify regression problems [54]. Support vector machine (𝑆𝑉𝑀) 

regression refers to a 𝑆𝑉𝑅 machine that uses a tolerance region (𝜀) to determine a regression. In 

the 𝑆𝑉𝑅 approach, regression class classification is utilized to design a hyperplane optimized. To 

find answers to questions about regression and to create the following features, 𝑆𝑉𝑅 was combined 
with supervised learning techniques [55]: 

𝑚𝑖𝑛𝑤,𝑏 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑚

𝑖=1
 

(10) 

𝑠. 𝑡.    {

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 

 

The specifications of 𝑤, 𝐶, 𝑏, 𝜉, and 𝜀, alternately represent the bias, amount of boundary 
exceeding, coefficient weight, queue regularisation factor, and rate of deviation from the hyper-plane. 
Two concepts are included in the function of fitness: 

  
1

2
 ‖𝑤‖2 

(11) 

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)

𝑚

𝑖=1
 

(12) 

Equation (11) was used to maintain the distance between the sample and the hyperplane 

while modifying Equation (12) to widen the gap between the sample and the hyperplane. When 

creating a function with a hyperplane target, appropriate values of 𝑏  and  𝑤  were gathered. To 
achieve the desired outcome for this study, a quadratic objective function was used [56]. The main 
responsibility of the 𝑆𝑉𝑅 has been to determine the defining parameters in the optimal levels (𝜀, 

𝑠𝑖𝑔𝑚𝑎, and 𝐶) that are indicated in Table 2.  
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Tab. 2 − The determining variables’ magnitudes of each optimizer 

  𝑺𝑽𝑹 − 𝑯𝑮𝑺𝑶 𝑺𝑽𝑹 − 𝑷𝑺𝑶 

Training phase 

𝐶 3.050 0.05 

𝐸𝑃𝑆𝐼𝐿𝑂𝑁 139.302 1298.62 

𝐺𝐴𝑀𝐴 0.066 0.05 

Testing Phase 

𝐶 0.301 3.781 

𝐸𝑃𝑆𝐼𝐿𝑂𝑁 28.094 2981 

𝐺𝐴𝑀𝐴 0.070 2 

𝑆𝑉𝑅  was combined with a variety of optimizers, including 𝐻𝐺𝑆𝑂  and 𝑃𝑆𝑂 , to estimate 
parameters at the best level to locate pertinent parameters. 

Criteria for evaluation of developed 𝑺𝑽𝑹 − 𝑯𝑮𝑺𝑶 and 𝑺𝑽𝑹 − 𝑷𝑺𝑶 

The various evaluators for measuring the 𝐶𝑆 of concrete samples using predictive 

frameworks are defined in Table 3. 

Tab. 3 − The metrics used to evaluate models 

In mentioned relations, 𝑝𝑁 exhibits the magnitude of predicted 𝐶𝑆; 𝑡𝑛 is the 𝑛𝑡ℎ target value 

(as measured); 𝑡̅ is the measured data as calculated averagely; 𝑝̅ represent the averaged target 

values of 𝐶𝑆 and the variables for the phases of training and testing, respectively, the 𝑛𝑡𝑟𝑎𝑖𝑛 and 

𝑛𝑡𝑒𝑠𝑡 which are the collected number of 𝐶𝑆 relevant steps of train or testing. 

RESULTS AND DISCUSSIONS 

The results of modeling 𝑈𝐻𝑃𝐶  in 110  compound samples were produced using both 
frameworks. In addition, to better understand the capabilities of each proposed model, the 
performance evaluation indices evaluated the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and 𝑆𝑉𝑅 − 𝑃𝑆𝑂 modeling processes. In 
the initial step, the simulated results of each sample's CS are shown in front of the actual numbers. 
In this regard, Fig. 2 displays the 𝐶𝑆𝑠 that S𝑉𝑅 − 𝐻𝐺𝑆𝑂 modeled. 

𝐼𝑛𝑑𝑒𝑥𝑒𝑠 𝐶𝑜𝑑𝑒𝑠 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑆𝑡𝑎𝑡𝑢𝑠 

Variance 
account factor 

𝑉𝐴𝐹 (1 −
𝑣𝑎𝑟(𝑡𝑛 − 𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100 A high value means desirable 

Mean absolute 
error 

𝑀𝐴𝐸 
1

𝑁
∑|𝑝𝑛 − 𝑡𝑛|

𝑁

𝑛=1

 A low value means desirable. 

Root mean 
squared error 

𝑅𝑀𝑆𝐸 √
1

𝑁
∑(𝑝𝑛 − 𝑡𝑛)2

𝑁

𝑛=1

 𝐴 𝑙𝑜𝑤 𝑣𝑎𝑙𝑢𝑒 𝑚𝑒𝑎𝑛𝑠 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒. 

Pearson’s 
correlation 
coefficient 

𝑅2 (
∑ (𝑡𝑛−𝑡̅)(𝑝𝑛−𝑝̅)𝑁

𝑛=1

√[∑ (𝑡𝑛−𝑝̅)2𝑁
𝑛=1 ][∑ (𝑝𝑛−𝑝̅)2𝑁

𝑛=1 ]

)2 𝐴 ℎ𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 𝑚𝑒𝑎𝑛𝑠 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 

Statistical 
parameters, 
including the 
various error 

indices 

𝑂𝐵𝐽 

(
𝑛𝑡𝑟𝑎𝑖𝑛 − 𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡
)

𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑟𝑎𝑖𝑛
2 + 1

+ (
2𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡
)

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 − 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑒𝑠𝑡
2 + 1

 

A low value  means desirable 

[57] 
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The aforementioned optimization algorithms and the 𝑆𝑉𝑅 model are created independently 
in the Matlab software before being combined to create the hybrid framework. The optimization 
algorithm is viewed as the primary function in the modeling process, and the 𝑆𝑉𝑅 model is taken to 
be the cost function. The optimization algorithm defines the input variables, target variables, and the 
hey parameter of 𝑆𝑉𝑅 in each step, and the 𝑆𝑉𝑅 model provides predictions corresponding to these 

variables. The maximum iteration serves as the stopping criterion, and the 𝑅𝑀𝑆𝐸 value is used to 

determine which model is best developed. Additionally, Appendix 𝐴 now includes a brief program of 

the 𝑆𝑉𝑅 − 𝑃𝑆𝑂 model development. 

Tab. 4 - Comparison of present study results with recently published articles with similar 
datasets. 

𝑊𝑜𝑟𝑘 𝐼𝐷 𝑀𝑜𝑑𝑒𝑙 𝑅2 

Wu [1] 𝐹𝐷𝐴 − 𝑅𝐵𝐹 0.916 

𝑅. 𝐴𝑏𝑢𝑜𝑑𝑒ℎ 𝑒𝑡 𝑎𝑙. [2] 𝐵𝑃𝐹𝑁𝑁 0.8 

𝐴𝑙𝑎𝑏𝑑𝑢𝑙𝑗𝑎𝑏𝑏𝑎𝑟 𝑒𝑡 𝑎𝑙 [3] 𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 0.969 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 0.964 

A comparison of the present study with published articles that studied similar fields is presented 
in Table 4. This table is presented as an identifier of the developed hybrid model performance and 
workability compared to recent studies. The results obtained from the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 show its higher 

capability in predicting the 𝐶𝑆 of 𝑈𝐻𝑃𝐶. 

 Fig. 2 – Estimated 𝐶𝑆 by: a) 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and b) 𝑆𝑉𝑅 − 𝑃𝑆𝑂 

As seen in Figure 2, the results of each model are at an acceptable rate. 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 was 

able to model the 𝐶𝑆 variables 2.31 percent better than 𝑆𝑉𝑅 − 𝑃𝑆𝑂 due to its higher R2 at the level 

0.92. Similar to this, the other model performed this task better, with a 4.69 percent lower 𝑅𝑀𝑆𝐸 

index, and was able to model the compounds' 𝐶𝑆 factor with a 10.13 𝑀𝑃𝑎 error. The slope of the 

trendline for the 𝑃𝑆𝑂-owned model, however, could be found to be better with a value of 0.84, this is 

6.33  percent higher than SVR-HGSO, indicating that certain points between the samples with 

numbers 195 to 210 that are outside the best-fit line may have been the source of this event. 

https://content.iospress.com/search?q=author%3A%28%22Wu,%20Mengmeng%22%29
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Fig. 3 –Estimated and Target values 𝐶𝑆 appraised by: a) 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and b) 𝑆𝑉𝑅 − 𝑃𝑆𝑂 

 Surveying Figure 3, the training stages are approximately identical to each other except for 

some parts, such as samples with the numbers 32 and 33, which are modeled more accurately by 

the 𝑆𝑉𝑅 − 𝑃𝑆𝑂 with errors of 1.31% and 1.32%, respectively, while by the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 the errors 

are 7% and 4.7%. With an error of 1.28 percent in 𝑆𝑉𝑅 − 𝑃𝑆𝑂  versus 3.96 percent in 𝐻𝐺𝑆𝑂 , the 
sample of 75 also produced better modeling results. In the testing phase, 𝑃𝑆𝑂′s grey lines could be 

used to demonstrate that, when compared to 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂, 𝑆𝑉𝑅 − 𝑃𝑆𝑂′𝑠 grey lines are more closely 

aligned with the target red dashed lines. 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂, on the other hand, better models the sample 

size of 100 with an error of 8.70%, whereas 𝑆𝑉𝑅 − 𝑃𝑆𝑂 models this sample with an underestimation 

error of 24.61%. In order to better comprehend the disagreement in modelling 𝐶𝑆 values, Figure 

4 makes an attempt to illustrate the variations in 𝐶𝑆 magnitudes between the two proposed models. 

 

Fig. 4 – Difference between estimated 𝐶𝑆𝑠 and developed frameworks. 
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 It is noteworthy that Figure 4  was produced in the first stage by dividing the 𝐶𝑆  values 

modeled from 𝑆𝑉𝑅 − 𝑃𝑆𝑂 by 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂. Overall, the majority of the samples (samples 1 to 77) 

are modeled similarly, with a difference of 5% in the training phase. However, some examples in the 

testing phase, like 17 , 32 , and 56  samples, could be simulated with more than a five percent 

difference. On the other hand, samples 88, 91, 95, 100, and 109 were modeled with different rates for 
the testing phase. 

Figure 5 attempts to indicate the errors involved in modeling the 𝐶𝑆 of samples at the next 

stage. Any deviations from the measured 𝐶𝑆’𝑠 target value lead to a gap from the zero line. Based 

on Figure 5 (𝑎), the capability of 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 to model In contrast to 𝑆𝑉𝑅 − 𝑃𝑆𝑂, the compressive 

resistance of samples is modeled with high-rate fluctuations. In place of 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂, the smoother 
error line can be seen in the Training section. Every single point in the highlighted area is incorrect 
that are between −15% and +23% lower than 𝑆𝑉𝑅 − 𝑃𝑆𝑂, despite the third sample of 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 

having more errors of 27% during the training phase. 

 Additionally, the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 0-line does not have as many points as the 𝑆𝑉𝑅 − 𝑃𝑆𝑂 0-line 

that are touched by the evaluation indices. The 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 model includes a large number of 

samples for the testing phase. In contrast to 𝑆𝑉𝑅 − 𝑃𝑆𝑂, which gave the Testing section a 

smoother line around the 0 error line, they are far from the 0 error line. The 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 in the 

sample of 91 exhibits the highest error rate in Figure 4, with a 29.28 percent error. The outcomes 
of the model's performance should be examined, as was already mentioned. Four assessment 
criteria that were used in the current study to evaluate models are shown in Figure 5. 

 

 

Fig. 5 –  Error rates of 𝐶𝑆 modeling by a) 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and b) 𝑆𝑉𝑅 − 𝑃𝑆𝑂 
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𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂  has demonstrated improved performance for the three statuses of training, 

testing, and total in the index R2 for models. With a value of 0.96, the testing phase has a higher R2 

value, which is 3.84% higher than 𝑆𝑉𝑅 − 𝑃𝑆𝑂. 𝑆𝑉𝑅 − 𝑃𝑆𝑂 in the Training section could achieve the 

worst circumstance for the 𝑅𝑀𝑆𝐸  error index with a value of 10.492 𝑀𝑃𝑎, which is 3.33 percent 

higher than the rest. However, during the Testing section, 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 could only obtain 8.451 𝑀𝑃𝑎 

while 𝑆𝑉𝑅 − 𝑃𝑆𝑂 obtained 9.23 𝑀𝑃𝑎; this represents a 9.25% difference between the two models' 

simulations of the 𝐶𝑆  values under better conditions contrast to the 𝑅𝑀𝑆𝐸  indicator, the 𝑆𝑉𝑅 −
𝐻𝐺𝑆𝑂′𝑠  performance from the 𝑀𝐴𝐸  viewpoint from the 𝑆𝑉𝑅 − 𝑃𝑆𝑂′𝑠  according to Fig. 6 , 

performance for three conditions is ranked higher from an 𝑀𝐴𝐸 perspective. 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂′𝑠 testing 

phase had a 𝐶𝑆 calculation error of 5.644 𝑀𝑃𝑎, which is 20% more than 𝑆𝑉𝑅 − 𝑃𝑆𝑂′𝑠 . The 𝑉𝐴𝐹 
criterion also demonstrated how closely the outcomes of the two models matched one another. With 
a difference of 2.22% for both the training and testing phases, the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 could outperform the 

𝑆𝑉𝑅 − 𝑃𝑆𝑂  when the entire data set is taken into account. With rates of 92.21 and 96.33, the 

differences are roughly two percent in favour of 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 . Except for the 𝑉𝐴𝐹  index, 𝑆𝑉𝑅 −
𝐻𝐺𝑆𝑂, and 𝑆𝑉𝑅 − 𝑃𝑆𝑂, the 𝑂𝐵𝐽 indicator that encompasses all of the criteria mentioned in both 

phases obtained magnitudes of 7.575 and 6.747, indicating the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂′𝑠 superior performance 

with a 12.27% advantage over other models. 

 

 Fig. 6 – Evaluation indices’ results for the performance of the proposed model 

 
In the next stage, the distribution of errors for both models has been shown through Figure 7 

that for 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 , the errors are non-regularly spread over the horizontal axis with low 

concentrations around the 0 point of error. However, for 𝑆𝑉𝑅 − 𝑃𝑆𝑂, this condition seems better with 

a suitable distribution of errors around 0 error. The bell-shaped normal distribution curves of error 

also show the thinner 𝑆𝑉𝑅 − 𝑃𝑆𝑂 in front of the flatter 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 curve. 
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 Fig. 7 – Error distribution of 𝐶𝑆 modeled via developed 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and 𝑆𝑉𝑅 − 𝑃𝑆𝑂 

CONCLUSION 

Ultra-high-performance concrete (𝑈𝐻𝑃𝐶) is a widely used substance that produces buildings 
with exceptional performance, capabilities, and remarkable durability in any challenging 
environment. Reducing the cement and micro-silica content significantly lowers costs and 𝐶𝑂2 
emissions, even though the useful qualities and extended service life in comparison to regular or 
high-strength concrete compensate the pricey initial investment and negative environmental effects. 
Numerous studies have looked at the behavior of 𝑈𝐻𝑃𝐶, which typically exhibits a 𝐶𝑆 of between 
150 𝑀𝑃𝑎 and 810 𝑀𝑃𝑎. In some recent studies, various models were used to predict the 𝐶𝑆 of 𝑈𝐻𝑃𝐶 
concrete. Regarding these studies, it made sense that there wasn't a hybrid automated framework 
of predictive models. Consequently, a novel hybrid framework was created in the current study, and 
the presented models made a significant contribution is defined as follows: 

• The 𝑆𝑉𝑅 method, which employed the algorithms to predict concrete 𝐶𝑆, was examined as a 𝑀𝐿 
technique.  

• 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 and 𝑆𝑉𝑅 − 𝑃𝑆𝑂, two novel optimization algorithms, are used to more accurately 

model the 𝐶𝑆 of 𝑈𝐻𝑃𝐶.  

•  With a difference of 2.31 percent, the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 framework was able to model the 𝐶𝑆𝑠 more 

accurately than 𝑆𝑉𝑅 − 𝑃𝑆𝑂 thanks to its higher R2 at the level of 0.92. 𝑆𝑉𝑅 − 𝑃𝑆𝑂 was able to 

model the compounds' 𝐶𝑆 factor using the 10.13 𝑀𝑃𝑎 error for the 𝑅𝑀𝑆𝐸 index. While the other 

model performed this task more effectively than 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 , with an 𝑅𝑀𝑆𝐸  of 4.69 percent 
lower. 

•  Both models accurately predicted the 𝐶𝑆 values in the testing phase compared to the training 

phase. The 𝑅𝑀𝑆𝐸  for 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂  was 8.451  𝑀𝑃𝑎 , while the 𝑅𝑀𝑆𝐸  for 𝑆𝑉𝑅 − 𝑃𝑆𝑂  was 9.23 

𝑀𝑃𝑎, a difference of 9.25%.  
• The 𝑉𝐴𝐹 criterion also demonstrated how closely the outcomes of the two models matched one 

another. With a difference of 2.22% for 𝑉𝐴𝐹 in both the training and testing phases, the 𝑆𝑉𝑅 −
𝐻𝐺𝑆𝑂 could outperform the 𝑆𝑉𝑅 − 𝑃𝑆𝑂. The rates were 92.21 and 96.33, with differences of about 

2% in favour of 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂. The 𝑉𝐴𝐹 index, the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂, and all of the other parameters 

specified in both phases were not included in the 𝑂𝐵𝐽 indication and the 𝑆𝑉𝑅 − 𝑃𝑆𝑂, respectively, 

obtained values of 7.575 and  6.747 , indicating that the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂  performed 12.27% better 

than the 𝑆𝑉𝑅 − 𝑃𝑆𝑂.  
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• On the other hand, it is obvious that the search process of the 𝐻𝐺𝑆𝑂 model in the exploration and 

exploitation outperformed compared to the 𝑃𝑆𝑂 model, and delaying in local minimal for 𝐻𝐺𝑆𝑂 is 

less than the 𝑃𝑆𝑂 model. 

To sum up, the 𝑆𝑉𝑅 − 𝐻𝐺𝑆𝑂 managed the error rates better than the 𝑆𝑉𝑅 − 𝑃𝑆𝑂 visible in Figure 

6 despite the accepted level of accuracy in modeling for both developed frameworks. 
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APPENDIX A: 
 

% PSO-SVR for UHPC Compressive Strength Prediction 

 

% Step 1: Load and preprocess the data 

data = load('uhpc_data.mat'); 

X = data.features; % Input features 

y = data.labels; % Compressive strength labels 

 

% Step 2: Split the data into training and testing sets 

ratio = 0.8; % Training-testing data ratio 

splitIdx = round(ratio * size(X, 1)); 

X_train = X(1:splitIdx, :); 

y_train = y(1:splitIdx); 

X_test = X(splitIdx+1:end, :); 

y_test = y(splitIdx+1:end); 

 

% Step 3: Define the objective function for SVR 

objective = @(x)svrObjective(x, X_train, y_train); 

 

% Step 4: Define the PSO parameters 

nParticles = 50; % Number of particles 

nVariables = size(X_train, 2); % Number of variables (dimensionality) 

maxIterations = 100; % Maximum number of iterations 

 

% Step 5: Initialize the PSO parameters 

particlePositions = rand(nParticles, nVariables); % Initialize positions randomly 

particleVelocities = zeros(nParticles, nVariables); % Initialize velocities to zero 

personalBestPositions = particlePositions; % Initialize personal best positions 

personalBestValues = inf(nParticles, 1); % Initialize personal best values 

globalBestPosition = zeros(1, nVariables); % Initialize global best position 

globalBestValue = inf; % Initialize global best value 

 

% Step 6: Perform PSO iterations 

for iteration = 1:maxIterations 

    % Evaluate current positions 

    particleValues = objective(particlePositions); 

     

    % Update personal best positions and values 

    updateIndices = particleValues < personalBestValues; 

    personalBestPositions(updateIndices, :) = particlePositions(updateIndices, :); 

    personalBestValues(updateIndices) = particleValues(updateIndices); 

     

    % Update global best position and value 

    [minValue, minIndex] = min(personalBestValues); 

    if minValue < globalBestValue 

        globalBestPosition = personalBestPositions(minIndex, :); 

        globalBestValue = minValue; 

    end 

     

    % Update particle velocities and positions 

    inertiaWeight = 0.9; % Inertia weight 

    cognitiveWeight = 2; % Cognitive weight 

    socialWeight = 2; % Social weight 
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    r1 = rand(nParticles, nVariables); 

    r2 = rand(nParticles, nVariables); 

    particleVelocities = inertiaWeight * particleVelocities ... 

        + cognitiveWeight * r1 .* (personalBestPositions - particlePositions) ... 

        + socialWeight * r2 .* (globalBestPosition - particlePositions); 

    particlePositions = particlePositions + particleVelocities; 

     

    % Perform boundary handling (if necessary) 

    % e.g., particlePositions = max(min(particlePositions, upperBounds), lowerBounds); 

end 

 

% Step 7: Predict the compressive strength using the trained SVR model 

predictedValues = svrPredict(X_test, globalBestPosition); 

 

% Step 8: Evaluate the prediction performance 

mse = mean((predictedValues - y_test).^2); % Mean Squared Error 

rmse = sqrt(mse); % Root Mean Squared Error 

mae = mean(abs) 


