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ABSTRACT 

Three-dimensional nonlinear finite element (FEA) is developed to predict the experimental 
behaviour of concrete filled square steel tubular member. The FEA is conducted to determine 
moment carrying capacity at ultimate load for simple beam. The concrete-steel interface model is 
the important parameter affecting the result of FEA simulation. Based on the experimental result, 
there is a local buckling near the loading contact point. To investigate the local buckling 
phenomenon, concrete-steel interface model is studied by using contact analysis between 
concrete and steel elements, by using rigid bar element (rbe2 element) and by using interface 
elements. The geometrical non-linearity, material non-linearity, loading, boundary conditions is the 
same for all analysis models. To account for all of these properties, FEA model by means MSC 
Marc Mentat software is developed. The proposed model can predict the ultimate strength with 
difference only 5-30%. The collapse modes by FEA model are also compared. Based on the 
numerical analysis, it can be seen that the local buckling is clearly shown in the FEA model with 
the concrete and steel interface by using interface elements. 
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INTRODUCTION 
Concrete filled steel tubes (CFST) are composite members comprise of steel tubes with 

concrete infill. It became popular for modern structural projects. Its ductility is better than 
conventional structures such as steel and reinforced concrete structures [1-3]. The concrete infill 
restrains inward buckling of the steel tube, while the steel tubes act as tensile reinforcement for the 
concrete infill. Studies on flexural behaviour of CFST beam have been conducted by many 
researchers [4-6]. The concrete infill improves the flexural strength and ductility of structural 
members of CFST beam as well as to prevent local buckling of steel tubes [7]. A series of 
experiments of CFST beam with D/t ratios ranging from 74 to 110 is conducted to examine 
geometrical instabilities.   

Finite element analysis (FEA) has been used by many researchers to study the behaviour 
of CFST beams under pure bending. Karrech et al [8] conducted FEA of cold-formed Circular 
Hollow Section (CHS) beams filled with concrete subjected to a static plastic pure bending. A 
damaged plasticity model with softening effect was used for concrete and Von-Miseselasto-
plasticity with hardening was used for steel. Three dimensional FEA of concrete filled steel tubes 
has been used by many researchers, by using ANSYS software [9-11] and by ABAQUS software 
[12-14].  
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A Three-dimensional nonlinear finite element (FEA) is developed to predict the 
experimental behaviour of concrete filled square steel tubular member by using MSC Software, 
MSC Marc-Mentat [15]. The FEA is conducted to determine moment carrying capacity at ultimate 
load for simple beam. The concrete and steel material model is modelled by using the nonlinear 
material. The nonlinear geometry is conducted by means of large displacement analysis. The 
result of the three-dimensional finite element analysis is then verified against the experimental 
results by Effendi [16].  

The concrete-steel interface model is the important parameter affecting the result of FEA 
simulation. A Three-dimensional nonlinear finite element (FEA) is developed to predict the 
experimental behaviour of concrete filled square steel tubular member. The FEA is conducted to 
determine strength for CSFT simple beam.  

 

EXPERIMENTAL PROGRAM  

In order to verify the proposed model, one specimen in total had been tested. The detail of 
specimen in the experimental study has been shown in Table 1. 

Material Properties 

The test specimen of square tube, Sfs (B/t=33.2), had been tested at the Department of 
Architecture, Kyushu University [16]. Square shapes of cross section of steel tubular members as 
well as the specimen length and the position of loading which was analysed in this study is shown 
in Figure 1. The yield stress of square tubular members was 385 N/mm2. The Poisson’s ratio, v is 
0.3. Table 1 summarizes the dimensions and material properties. 

Experimental Set-up 

The test setup for static loading is illustrated in Figure 2. The supports were pin and roller supports 
at both ends. Roller support was a simple one which was just greased between the bottom end 
plate of a specimen and testing bed which was made by H-shaped steel, so that specimen ends 
can freely slide in the member axis direction. 

      Two displacement transducers were installed to measure the displacement of a loading head, 
and a laser displacement sensor was placed at the bottom of the mid-span of a tubular member to 
measure the overall displacement. Strain gauges were installed at the bottom of the mid and 
quarter span for a square tube. 

 
Fig. 1 – Specimen’s Illustration (unit: mm) 
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Fig. 2 – Experimental Setup 

 
Tab. 1 - Measured Dimensions and Material Properties of Specimen 

Name of 

Specimen 

Steel Tube Concrete 

sB (mm) t (mm) fy (N/mm2) Es (N/mm2) cσB (N/mm2) Ec (N/mm2) 

Sfs 100.0 3.01 385 188000 71.5 39900 

 

FINITE ELEMENT ANALYSIS 

In this study, the commercial software package, MSC Marc-Mentat is used. MSC Marc, 
general-purpose finite element software, has been used as the analytical tool. MSC Mentat was 
employed to generate the mesh, material and geometry assignment, loading conditions and 
boundary conditions. FEM analysis can simulate accurately the response of structure under static 
loading if the model is used properly. The validity of FEM analysis was justified by comparing with 
the experimental results. The full Newton-Raphson iterative procedure is chosen to solve the 
iteration process. The iterative procedure is terminated when the convergence ratio is less than 
criterion of tolerance, residual checking and displacement checking. 

Material Model 

 MSC Marc [14] requires the stress and strain characteristics to be entered as the true 
stress and the equivalent plastic strain, respectively. The tensile strength of steel tubes taken from 
tensile test is represented as in Figure 3. The von Mises yield criterion and the kinematic hardening 
rule are used as the plastic flow conditions. 

           The infill concrete is simulated by implementing the Mohr-Coulomb yield criterion combined 
with the isotropic hardening rule. The concrete model in compressive path is as shown in Figure 4. 
The tensile model is the cracking stress specified to be a very small value and the tension 
softening modulus specified to almost zero. The Poisson’s ratio is assumed as 0.2. 
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Fig. 3 – .Equivalent Plastic Strain and True Stress Relationships of Steel Tubes 

 
Fig. 4 – Concrete Model in Compressive Path 

 

Element Type, Boundary Conditions and Mesh Segmentation 

 The FEA model with contact option can be seen in Figure 5 and with interface element can 
be seen in Figure 6. Both models use the eight-node solid, isoparametric, arbitrary hexahedral 
element with three degrees of freedom per a node (u, v and w ), (the element type 7 of MSC Marc 
[17], for the analytical model of a steel tubular and concrete elements. While, FEA model with rbe2 
element can be seen in Figure 7. The steel used the element type 75 of MSC Marc. The element is 
a four-node, thick-shell element with global displacements and rotations as degrees of freedom. 
The coordinates, displacements and the rotations use bilinear interpolation. 

 The supporting conditions were the simple beam to which the concentrated lateral load 
applied at the mid-span. The all nodes on both supports were constrained in the direction of Y axis 
and an additional one node in the mid of the nodes were constrained in the direction of Z axis to 
stabilize the analysis. The remaining degrees of freedom were set to be free.          

 The displacements of one node at the bottom of cross section at mid span were 
constrained in the direction of X axis. The loading tip, which is a rigid body composed of rigid 
surface elements, applies lateral loads to a steel tube that was composed of deformable elements. 
The vertical displacement of the loading tip was increased by the displacement control method. 
With respect to end plate, the shell elements are used with the elastic material properties. 
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Fig. 5 – Boundary Conditions and Mesh Segmentation with Contact Analysis 

 
Fig. 6 – Boundary Conditions and Mesh Segmentation with Interface Element 
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Fig. 7 – Boundary Conditions and Mesh Segmentation with rbe2 element 

 

Contact Analysis 

The contact interactions are considered between a rigid body of the loading tip and a 
deformable body of steel tubular member as well as between steel tubular elements and concrete 
elements. The contact tolerance of the deformable body was defined to be between plus and 
minus of 0.1 mm. The MSC Marc deals with the contact analysis by the direct constraint 
procedure. 

Interface Element 

The interface element is set between steel elements and concrete elements. The element 
type 188 of MSC Marc [18], an eight-node three-dimensional interface element, is used to simulate 
the onset and progress of delamination. The connectivity of the element is shown in Figure 8 
where the nodes 1, 2, 3 and 4 correspond to the bottom of the interface and nodes 5, 6, 7 and 8 to 
the top. The bottom of the interface side is contact with the concrete element and the top is contact 
with the steel element. The stress components of the element are one normal traction and two 
shear tractions, which are expressed with respect to the local coordinate system, indicated in 
Figure 8.The corresponding deformations are the relative displacements between the top and the 
bottom face of the element. The element is set to be infinitely thin or zero thickness, in which case 
the faces 1-2-3-4 and 5-6-7-8 coincide. 
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Fig. 8 – The connectivity of the interface element 

 

 
Fig. 9 – Stress Block for CFST Members’ Ultimate Bending Capacity 

 

Rigid Bar Element  

The rigid bar element (rbe2 element) can be used for connecting two nodes to model a 
pinned connection with 3 translational DOFs. The connection is between a single retained node 
with dependent degrees of freedom specified at an arbitrary number of tied nodes. These elements 
artificially add stiffness by constraining the system to follow a one to one linear displacement 
and/or rotational relationship between the connected nodes. The distance between the tied nodes 
to the retained node must be greater than zero. The updated Lagrange is set and large rotation 
formulation is automatically used in the analysis. 

 

THEORETICAL BACKGROUND 

The theoretical value of the ultimate moment, Mu which is the full plastic moment of a CFST 
member, is based on the Recommendations by AIJ [19], where the stress distributions are 
assumed as shown in Figure 9. The neutral axis, xn is obtained by trial and error so the sum of 
ultimate axial force, Equation (1) close or equal to zero. Then, Mu can be calculated from Equation 
(2). The concrete and steel tubes contribution in ultimate axial force calculation is determined by 
Equation (3) and Equation (5). The concrete and steel tubes contribution in ultimate moment is 
determined by Equation (4) and Equation (6). It was assumed that there was no concrete strength 

reduction so the value of 
c ur , reduction factor for concrete strength, is set equal to 1.   

0=+= NNN sucu  
(1)

 

usucu MMM +=
 

(2)
 

Bcuccnuc rBxN ...=
 

(3)
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( ) Bcuccnncuc rBxxBM ....
2

1
−=  

(4)
 

( ) ysscnus tBxN ...2.2 −=
 

(5)
 

( ) ( )  yssnncsssus txxBBtBM ....2. −+−=
 

(6)
 

The theoretical value of the ultimate strength, Pu, is calculated based on the equilibrium of 
simple beam as Equation (7). The ultimate strength by FEA and experiment are defined as the 
point at which the tangent stiffness of the load-deflection curve becomes one-sixth of the initial 
stiffness as shown in Figure 10 [20]. 

LMP uu 4=
 

(7)
 

 

Fig. 10 – Definition of Ultimate Strength by Experimental 

 

RESULTS AND DISCUSSION 

Comparison of Load-Deflection Relationships by Experiments and by Finite Element 
Analysis 

In Figure 11, it is seen that the load-deflection curve of the FEA in the elastic range is 
similar as that of experimental results. However, after the elastic behaviour is extended the FEA 
using contact analysis is almost the same as that of experimental results. FEA using interface 
element and using rbe2 element are stiffer than FEA using contact analysis in the initial slope. 
After the yielding of the steel tube is extended, FEA using rbe2 element did not show strength 
degradation. The strength is increasing as the deflection is increasing. The rbe2 element increases 
the stiffness of the specimen.  

The dot mark shows the ultimate strength both FEA and experiment. The ultimate strength 
resulted from the FEA using contact analysis, interface element and rbe2 element have a different 
value to the theoretical value of the experimental load with 6.5%, 16.7% and 27.3%, respectively 
as shown in Table 2. While, the ultimate strength resulted from the experimental has a difference 
value to the theoretical value of the experimental load with 9.3% as shown in Table 2.This proves 
that the theoretical value is safe for the CFST beam. 

Comparison of Load-Strain Relationships by Experiments and by Finite Element 
Analysis 

The strain is taken from the mid of midspan of the specimen. In Figure 12, it is seen that the 
elastic range of FEA using rbe2 element is stiffer than others. It is caused by the additional 
stiffness from the rbe2 element. The strain from FEA using interface element is the same as that of 
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experiment. The strain from FEA using contact analysis is the same as that of experimental in the 
elastic range, however in the plastic range the strain is lower than that of experiment. 

 
Tab. 2 - Comparison between Ultimate Strengths by Experiment and Theory 

 Ultimate Strength (kN) Ultimate Strength Ratio (%)* 

Theoretical 77.4 100 

Experiment 84.6 109.3 

FEA Contact 82.4 106.5 

Interface 90.3 116.7 

rbe2 98.6 127.3 

*Ultimate Strength Ratio with respect to Theoretical value (%) 

 

Fig. 11 – Boundary Conditions and Mesh Segmentation with rbe2 element  

 

Fig. 12 – Load-Strain Relationships by Experiments and by Finite Element Analysis 
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Comparison of Collapse Modes by Experiments and by Finite Element Analysis 

Figure 13(a) and Figure 13 (b-d) show the collapse mode of specimen by experiment and 
by FEA. It appears that the collapse shape of the FEA results is almost similar to the experimental 
results. In the experimental results there is local buckling near the loading point as shown in Figure 
14(a). FEA using contact and rbe2 element did not show any local buckling near the loading point. 
However, FEA using interface element shows local buckling near the loading point as shown in 
Figure 14(b).  

 

(a) Experiment 

 

(b) Contact Analysis 

 

(c) rbe2 Element 

 

(d) Interface Element 

Fig. 13 – Collapse Modes by Experiments and by Finite Element Analysis 

  

(a) Experiment (b) Interface Element 

Fig. 14 – Zoom in of Upper-side of the Beam 
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CONCLUSION 

From the limited research reported in the paper, it can be concluded as follows: 
1. The proposed FEA model using interface element and contact analysis can generally model the 

experiment of the concrete filled steel tube beam. However, the FEA model using rbe2 element 
is stiffer than others FEA models because the rbe2 element add the stiffness of concrete and 
steel. 

2. The load-deflection results of the FEA model using interface element and contact analysis can 
be considered coincide with the experimental results. However, FEA model using rbe2 element 
is higher than others FEA models. 

3. The load-strain results of the FEA model using interface element is matching with the 
experimental results. The strain of FEA model using contact analysis is lower than that of 
experimental results. The strain of FEA model using rbe2 element is higher than that of 
experimental results. 

4. The collapse modes  are basically identical as that of the experimental are almost identical 
5. The local buckling of specimen near the loading point can be modelled only in FEA model using 

interface element. 
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