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ABSTRACT 

The compressive stress signal of soil during vibration compaction is an unstable and 
transient saltation signal accompanied by broadband noise, and the spectra of the signal and noise 
always overlap. To extract the ideal original signal from noisy data, this paper studies several 
signal de-noising methods such as low-pass filtering, multi-resolution wavelet transform, spectrum 
subtraction and independent component analysis. Experiments show that the traditional low-pass 
filter is only applicable when the spectra of the signal and noise can be separated in the frequency 
domain. The multi-resolution wavelet transform can decompose the signal into different frequency 
bands and remove the noise efficiently by extracting useful the frequency band of the signal, but 
this method is not reliable when the signal to noise ratio (SNR) is low. Spectrum subtraction can 
remove strong background noise with stationary statistical characteristics even if the noise level is 
high and the spectrum of the signal overlaps with that of the noise. Independent component 
analysis can extract weak signals which are combined with heavy noise and can separate the 
noise from signal effectively when the independent channel hypothesis holds. These de-noising 
methods are of great importance for further analysing vibration signals in engineering. 

KEYWORDS 
Compressive stress signal,  Low-pass filter,  multi-resolution wavelet transform; spectrum 
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INTRODUCTION 
Signals can be easily degraded by noise due to signal generators, sensors and other 

equipment during the acquisition and transmission process. In practical applications, most received 
signals are accompanied by noise. Processing the noisy signals directly will affect the feature 
recognition, classification and other subsequent steps [1]. Therefore, it is very important that signal 
de-noising is performed and the original signal information is preserved and extracted.  

The soil compressive stress signal contains important physical information about the 
process of vibration compaction. It not only reflects the distribution of the compressive stress in 
each layer, but the distribution, absorption and transfer of the compaction energy in the soils. The 
compressive stress signal of soil during vibration compaction is an unstable transient saltation 
signal accompanied by broadband noise, and the noise and signal spectra always overlap [2]. In 
order to study the joint time-frequency property and the laws of distribution and transfer of the soil 
compressive stress signal in each layer, so as to reveal the vibration compaction mechanism, it is 
crucial to extract the ideal original signal from noisy data for further processing and analysis. In 
recent years, a large number of novel algorithms have appeared in the study of unstable and 
transient saltation signal de-noising [3-6]. Considering the soil compressive stress signal during 
vibration compaction, this paper discusses and studies the effect of de-noising methods on 
vibration signals; such methods include low-pass filters, multi-resolution wavelet transforms, 
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spectrum subtraction and independent component analysis. A comparative analysis of the 
experimental results is presented and the applicability of the algorithms is discussed. 

1.  SOIL VIBRATION COMPACTION TEST 
A soil vibration compaction test was implemented in the large soil tank of Key Laboratory for 

highway construction techniques and equipment of the Ministry of Education, Chang’an University. 
The test equipment used a custom-designed vibratory roller model [7]. The compaction test section 
length was 8 m, with a width of 1 m. Based on the test conditions and vibratory roller that used 
during vibration compaction, the nominal amplitude, vibration frequency and running speed of the 
roller are the main influencing factors in the test. An orthogonal experiment scheme of the 3 factors 
at 3 levels was implemented, resulting in nine tests that fully reflect the influence of various factors. 
For each condition, static compaction was first performed 2 times, then the vibration compaction 
was repeated for 12 times [8].  

Before the test, turned loose soil to 35cm in soil tank by hand, and watering in order to 
achieve the appropriate moisture content. Then, three dynamic strain gauge pressure cells were 
placed on 3 layers under the soil at depths of 5cm, 15cm and 25cm, respectively. A DEWE-2010 
data logger recorded the soil compressive stress signals of the pressure cells during the vibration 
compaction process, capturing stress signals on an oscilloscope in real time, as well as storing and 
processing data. The experimental setup is shown in Figure 1. The sampling frequency of the soil 
compressive stress signal in the test was 2000Hz. 
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2.  DE-NOISING METHODS OF COMPRESSIVE STRESS SIGNALS  
This paper considers the case of the soil compressive stress signal, and assumes a signal 

S1 with a low amount of noise and signal S2 with heavy noise. Signal S1 retains the waveform 
characteristics of stress signal generally, but due to the heavy noise, the waveform of signal S2 has 
been distorted. The vibration compaction operating parameters in the test were: vibration 
frequency-- 30Hz, nominal amplitude-- 1.2mm, and running speed--1.12 km/h. According to the 
analysis, the ideal compressive stress signal is an unstable transient signal which has a peak value 
at the moment of impact, but is a stable signal with zero mean at other times. 

 
 
 

2.1  Low-pass filtering 

When the signal is band-limited and the signal and noise spectra can be separated in the 
frequency domain, a low-pass filter can filter out the noise spectrum by multiplying a window 
function in the frequency domain, thus separating the noise from signal through a purpose-
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designed filter [3, 9], as long as the cut-off frequency of the signal is known. Then, the de-noised 
signal can be obtained in the time-domain through the Inverse Fourier Transform. 

By low-pass filtering signal y( )t , we can obtain the signal as follows: 

( ) ( ( ) ( ))x t IFFT Y W 
                (1) 

Where ( )W   is window function.
 

The spectra of the signal and noise overlap in most cases. Low-pass filtering can remove 
high-frequency noise but low frequency noise is still mixed with the signal and is difficult to 
separate. The influence of the noise spectrum is more obvious when the SNR is low. Therefore, 
the de-noising effect of the low-pass filter degrades greatly with the decrease of the SNR. 

 

  

 
(a) Noisy compressive stress signal 

 

 
(b) Signal de-noised through frequency domain low-pass filtering  

Fig. 2 - Low-pass filtering of noisy signal S1 
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(a) Noisy compressive stress signal 

 

 
(b) Signal de-noised through frequency domain low-pass filtering  

Fig.3 - Low-pass filtering of noisy signal S2 
 

The vibration compaction operating parameters show that the main frequency of the signal 
is close to 30Hz. Therefore, the width of the pass-band of the low-pass filter applied was about 
30Hz with a width of 35%. Figure 2(a) shows the compressive stress signal S1 with small noise, 
Figure 3(a) shows compressive stress signal S2 with heavy noise, Figure 2(b) and Figure 3(b) 
shows the de-noised signals S1 and S2 through the low-pass filter.  

Comparing the de-noised result of Figure 2(b) with that of Figure 3(b), it can be seen that 
the de-noising effect is not significant when the noise is small, and we cannot reconstruct the ideal 
compressive stress signal through low-pass filtering when the noise level is high. This is because 
the compressive stress signal of the soil during vibration compaction is a mutation signal and 
contains high frequency information which is useful for signal processing. However, the low-pass 
filter filtered out the high frequency components over 1.35 ∗ 30Hz as noise. Therefore, the low-pass 
filter cannot separate high frequency components of the signal from the noise effectively. 
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2.2  Multi-resolution wavelet transform 

2.2.1  Signal analysis principle of wavelet transform [10] 

The wavelet transform is a novel signal analysis method gaining popularity in recent years 
[4,11-13], and it is widely used in de-noising of transient saltation vibration signals accompanied by 
noise.  

Let ,and  be the result of the Fourier transform of . If  meets the 

admissibility condition: , then we consider  as a basic wavelet function, 

through the scale transformations and translations of which a group of wavelet functions can be 
obtained. 

(2)
 

In Equation (2), ‘a’ is the scale factor which controls the time window width of the wavelet 
function, and ‘b’ is the displacement factor which controls the translation of the wavelet function on 
the time axis. The bigger |a| is, the wider the time window is and the narrower the frequency 
window is. It can be proved that the product of the time window width and the frequency window 
width of the wavelet function is constant. 

The dyadic wavelet transform is used widely in practice. By letting  a group of 

dyadic wavelet functions can be obtained.  

(3)
 

The wavelet transform of signal is defined as: 

(4)
 

From the perspective of signal processing, changes in ‘a’ are equivalent to a continuous 
change of the transmission bands of a band-pass filter and changes of ‘b’ are equivalent to the 
band-pass filtering of the signal at different times. By varying ‘a’, the signal can be observed 
through the wavelet transform on a wide time window (which corresponds to a narrow frequency 
window) at low frequency, but on a narrow time window (that is a wide frequency window) at high 
frequency. The local time-frequency characteristics of the wavelet transform are very suitable for 
the analysis of signals that change slowly at low-frequencies but rapidly at high-frequencies. 

2.2.2  Wavelet transform principles for de-noising 

The fundamental principle of wavelet transform for de-noising is to let some high-frequency 
components be zero selectively and retaining some useful frequency band, then reconstruct the 
signal through the wavelet reconstruction algorithm.  

Mallat [4] proposed a multi-resolution wavelet transform based on a orthogonal wavelet 
basis. Let  be a wavelet function representing a band-pass filter, and  be a scaling 

function representing a low-pass filter. From the perspective of multi-resolution analysis, wavelet 

decomposition is equivalent to applying the low-frequency signal  with scale  through the 

band-pass filter and the low-pass filter . Then, after downsampling, we can get a low-
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frequency signal  and a high-frequency signal  with scale .The principle of multi-

resolution wavelet decomposition is shown in Figure 4.  

 

 

Fig.4 - Multi-resolution wavelet decomposition 

The low-frequency signal can be decomposed step by step using a multi-resolution wavelet 
transform. In every decomposition, the signal can be divided into a low-frequency band and a high-

frequency band. Let the frequency band of the original signal be . Then, for the k-th 

wavelet decomposition, the signal can be divided into a low-frequency band and a high-frequency 

band with respective ranges and . 

A signal can be decomposed into different frequency bands through multiple multi-
resolution wavelet decompositions. By extracting the useful frequency band but suppressing the 
high-frequency band and applying the wavelet reconstruction algorithm, we can obtain the de-
noised compressive stress signal.  

The vibration frequency of the vibratory roller was 30Hz in the test so, theoretically, the soil 
compressive stress signal should demonstrate a resonance peak value at about 30Hz. Therefore, 
the signal within this frequency band is useful and should be retained. In addition, because of the 
nonlinear characteristics of the vibration, the compressive stress signal not only includes the 30Hz 
frequency components, but other harmonic components such as those at 60Hz and 90Hz, etc, 
which should also be selectively retained. According to the sampling theorem, due to the fact that 
the sampling frequency of the stress signal in the test was 2000Hz, the frequency range analysed 
using the wavelet transform should be [0,1000Hz]. Thus, based on the frequency band segregation 
theorem of wavelet decomposition, the signal should be decomposed to 5 levels.  

According to the above analysis, we decomposed the noisy compressive stress signal 
using the sym8 orthogonal wavelet function to 5 levels. The frequency of the low-frequency signal 
at the fifth level is [0,31.25Hz], which should be completely retained, and the frequency bands of 

high-frequency signals at the other levels are respectively [1000/2𝑘, 1000/2𝑘−1 ] Hz. We can 
dispose of the high frequency coefficient at different levels by choosing soft thresholds using 
adaptive thresholding based on the estimated noise levels at each decomposition level. Thus, the 
signal can be reconstructed by disposing the high frequency coefficients and retaining the low-
frequency signal at the fifth level. 
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(a) Noisy compressive stress signal 

 

 

 
(b) Signal de-noised through the wavelet transform 

Fig.5 - Signal S1 before and after application of the wavelet transform. 
 

Figure 5(a) shows the noisy compressive stress signal S1, while 5(b) shows the wavelet 
transform de-noising result. Compared with Figure 2, the de-noising effect using the wavelet 
transform is better than that obtained using the low-pass filter, and closer to the ideal stress signal. 
Because the wavelet transform can selectively retain some high frequency information, it is more 
effective in retaining the high frequency characteristics of signal. 
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(a) Noisy compressive stress signal 

 

 

(b) De-noised signal through wavelet transform 
Fig.6 - Signal S2 before and after application of the wavelet transform  

 
Figure 6 shows the wavelet transform de-noising result for signal S2. It can be seen when 

noise levels are high, the wavelet transform can remove some noise but cannot reconstruct the 
ideal original signal. This is because the wavelet transform method is based on the assumption 
that the spectrum band of the noise and the signal can be separated in the multi-resolution 
decompositions; this is approximately correct only when the SNR is high. When the noise is of 
narrow spectrum, its influence can be ignored even its spectrum overlaps with that of the signal. 
However, when noise level is higher, the influence of the overlapping spectrum cannot be ignored. 
Therefore, the wavelet transform is only suitable for de-noising signals with a high SNR, as the 
result is not reliable when the SNR is low and the signal and noise spectra overlap.  

2.3  Spectrum subtraction 
The fundamental principle of spectrum subtraction is that we subtract the power spectrum 

of the noise from that of the signal in frequency domain, then obtain the power spectrum estimation 
of the de-noised signal [5,14-16]. It is essentially a modification of the amplitude of signal by 
subtracting from its power spectrum while retaining the original phase information. Then, the de-
noised signal in the time-domain can be obtained through the Inverse Fast Fourier Transform 
(IFFT). 

Suppose 𝑠(𝑛) is an ideal signal and 𝑦(𝑛) is an actual observation signal; then 

𝑦(𝑛) = 𝑠(𝑛) + 𝑑(𝑛),               (5) 
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where 𝑑(𝑛) is the additive noise.  
When the signal and the noise are stationary random processes, the cross-correlation 

function 𝑅(𝜏) and power spectral density function 𝑃(𝜔) of the signal are related through the Fourier 
transform. In this case, the power spectrum of the signal is defined as the modular square of the 
Fourier transform of the signal, which represents its energy density, that is: 

𝑃𝑌(𝜔) = |𝑌(𝜔)|2 = |𝐹𝐹𝑇(𝑅𝑌(𝜏))|2,     (6) 

However, 𝑅𝑌(𝜏) = 𝐸(𝑌(𝑛)𝑌(𝑛 + 𝜏)) = 𝐸[(𝑠(𝑛) + 𝑑(𝑛))(𝑠(𝑛 + 𝜏) + 𝑑(𝑛 + 𝜏))]. 
If the noise is uncorrelated with the signal, it can be deduced that: 

 𝑅𝑌(𝜏) = 𝐸[𝑠(𝑛)𝑠(𝑛 + 𝜏)] + 𝐸[𝑑(𝑛)𝑑(𝑛 + 𝜏)] = 𝑅𝑠(𝜏) + 𝑅𝑑(𝜏) (7) 
By applying the Fourier Transform to both sides of Eq. (7), it can be deduced that: 

|𝑌(𝜔)|2 = |𝑆(𝜔)|2 + |𝑁(𝜔)|2               (8) 
The estimated value of the power spectrum of the signal can be obtained using power 

spectrum subtraction: 

|𝑆̂(𝜔)|
2

= |𝑌(𝜔)|2 − |𝑁̂(𝜔)|
2
         (9) 

Where 𝑁̂(𝜔)  is the estimated value of the power spectrum of the noise, which can be 
approximated using the variance of the noise.  

It can be concluded from Eq. (9) that: 

2ˆ ˆ( ) ( ) ( 1 (| ( ) | / | ( ) |) )S Y N Y     
               

 (10)
 

Suppose  
Where   is a small positive constant. Then: 

ˆ( ) ( )S Y G                                     (11) 

The estimation of the reconstructed signal can be obtained through IFFT but retains the 
original phase information of signal, that is:  

    ˆ( ) ( ( ) )
i

s n IFFT S e
       (12) 

where 𝜃 is the phase function of the original noisy signal. In practice, the compressive stress signal 
is non-stationary, but each signal segment can be regarded as stationary and can be reconstructed 
using spectrum subtraction by processing short-time windowing segments in the time-domain. 
 

 

 
(a) Ideal compressive stress signal 

Fig.7 - Ideal compressive stress signal and noise signal 
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(b) Noise signal 

Fig.7 - Ideal compressive stress signal and noise signal 

 

 

 
(a) Noisy compressive stress signal 

 

 
(b) Spectrum of signal and noise 

 
 

(c)Signal de-noised through spectrum subtraction 
Fig.8 - The original signal, its spectrum and the signal de-noised through spectrum subtraction  

 
The de-noising performance of spectrum subtraction is verified for a segment of a simulated 

signal. Suppose Figure 7(a) is an ideal compressive stress signal. After the addition of the noise 
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signal shown in Figure 7(b), we obtain the noisy signal shown in Figure 8(a), whose waveform is 
distorted seriously because of the noise. Figure 8(b) shows the spectra of the signal and noise 
which overlap. Figure 8(c) shows the signal de-noised through spectrum subtraction, where it can 
be seen that the de-noised signal is very close to the ideal compressive stress signal. Therefore, 
spectrum subtraction performs well when removing strong background noise.  

 

 

 
(a) Noisy signal 

 

 
(b) Signal de-noised through spectrum subtraction 

Fig.9 - De-noised signal of noisy signal S2 through Spectrum subtraction 
 

Figure 9 shows signal S2 de-noised through spectrum subtraction. The result shows that 
the de-noised signal has the characteristics of the compressive stress signal and is very close to its 
ideal form. Obviously, the de-noising results obtained through spectrum subtraction are superior to 
those obtained using the wavelet transform shown in Fig. 6. Therefore, when the SNR is lower, 
spectrum subtraction can be used to recover the ideal compressive stress signal even if the signal 
and the noise spectra overlap. 

2.4  Independent component analysis (ICA) 
 ICA assumes that N source signals are statistically independent instantaneously, there is 

only one Gaussian-distributed signal at most in the source signals and that the received signal is a 
linear mixture of these N source signals. The ICA algorithm is essentially an optimization problem. 
The mixed signal is decomposed into independent components when the degree to which the 
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components are non-Gaussian reaches a maximum value. Every component obtained is a source 
signal [6,17-21]. 

Suppose 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑚)𝑇 is the m-dimensional random observation signal vector, which 
is a linear combination of n independent source signals 𝑠𝑗  in the source signal vector 𝑠 =

(𝑠1, 𝑠2, ⋯ , 𝑠𝑛)𝑇. Then, we can write 

𝑥 = 𝐻𝑠 = ∑ ℎ𝑗𝑠𝑗
𝑛
𝑗=1 , 𝑗 = 1,2, ⋯ 𝑛          (13) 

In Eq. (13), H is an unknown 𝑚 × 𝑛 full-rank hybrid matrix. The ICA algorithm is used to 
estimate the separation matrix W, and the output that represents the source signal obtained by 
separating 𝑥(𝑡) using W is 

𝑦(𝑡) = 𝑊𝑥(𝑡) = 𝑊𝐻𝑠(𝑡) = 𝐺𝑠(𝑡)         (14) 
The separation can be achieved by solving for the optimal G. 
The central limit theorem of probability theory states that the probability distribution of sum 

of each independent random variable tends to be a Gaussian distribution. For the signal under 
consideration, the higher degree to which the components are non-Gaussian, the higher their 
mutual independence. Therefore, the signal is decomposed based on the non-Gaussianity 
measure of the resulting components. When the measure reaches a maximum, this indicates that 
each independent component has been completely separated. The non-Gaussianity measure can 
be represented using a probability density function 𝑝(𝑦) and the Kullback–Leibler divergence of the 
Gaussian distribution with the same covariance matrix, which is called negentropy. The negentropy 
of a random variable y is defined as: 

( ) ( ) ( )g GaussN y H y H y              (15) 

where ( ) ( ) lg ( )H y p x p x dx   is the comentropy of y. ( )GaussH y  is the comentropy of a Gaussian 

distribution which has the same covariance matrix with y. According to information theory, the 
random variable of Gaussian distribution which has the same variance also has the maximum 

comentropy. The more non-Gaussian y is, the higher of the value of ( )
g

N y . The approximation 

equation of negentropy in practical applications is defined as follows:  

2

1

( ) { [ ( )] [ ( )]}
P

g i i i

i

N y k E G y E G v


    (16)  

where 𝑘𝑖 is the constant greater than zero; 𝑣 is the Gaussian random variable that obeys the N 

(0,1) distribution; and 𝐺𝑖 is a non-quadratic function. 
In order to maximize the upper equation, according to the Kuhn-Tucker condition, when 

𝐸[𝐺(𝑊𝑇𝑥)2] = ‖𝑊‖2 = 1, the optimal value should satisfy the following equation: 

𝐸[𝑥𝑔(𝑤𝑇𝑥) − 𝛽𝑥 = 0].             (17) 
Therefore, the recursion formula of the ICA algorithm can be obtained as follows: 

     

{ [ ( )] }/{ [ ( )] }

|| ||

T T

new

w w E xg w x w E g w x

w
w

w

 





   


 (18) 

where 𝛽 = 𝐸[𝑤𝑇𝑥𝑔(𝑤𝑇𝑥)]. 
According to the principle of independent component analysis, when the observed data are 

a random mixture of real signal and noise, they can be separated using the ICA algorithm. 
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(a) Ideal compressive stress signal 

 

 
(c) Noise signal 

Fig.10 - Ideal compressive stress signal and noise signal 
 

 

 
(a) Mixed-signal 1 

Fig.11 - Two mixed-signals 
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(b) Mixed-signal 2 

Fig.11. Two mixed-signals 
 

 

 
(a) Isolated stress signal 

 

 
(b) Isolated noise 

Fig.12 - Separation of signal and noise through ICA 
 

Figure 10(a) shows an ideal compressive stress signal, while 10(b) shows a noise signal 
obtained by extracting and amplifying the time-domain signal from a real compressive stress signal 
during the stable period. If the noise is independent from the original signal, the signal received by 
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the system is a random mixture of compressive stress signal and noise, as shown in Figure 11(a) 
and Figure 11(b), where the two signals are shown after being mixed randomly. Figure 12 shows 
the separation results of signal and noise obtained through the fast ICA algorithm. In Figure 12(a), 
it can be seen that the compressive stress signal was successfully separated from the two mixed-
signals, and is close to the ideal compressive stress signal. Figure 12(b) shows the separation 
result of the noise signal.   

3.  CONCLUSION 
This paper studied the principled and applicability of several de-noising methods for the soil 

compressive stress signal during vibration compaction, with applications on both low- and high-
SNR signals. According to the above analyses, the following can be concluded: 

1) Traditional low-pass filtering methods assume that the signal and noise are in different 
frequency bands, so using appropriately designed filters, noise can be removed while retaining the 
useful signal. When the noise level is low and the frequency band of noise does not overlap with 
that of the signal significantly, a low-pass filter can separate noise from the signal in frequency 
domain effectively. However, this method is not applicable when the spectrum of the signal 
overlaps with that of the noise. 

2) The multi-resolution wavelet transform can decompose the signal into different frequency 
bands, and effectively remove the noise by extracting the signal from the useful frequency bands. 
However, these methods are based on the assumption that the spectrum band of noise and signal 
can be separated during the multi-resolution decompositions. This assumption does not hold when 
the SNR is lower and the spectrum of the noise and signal significantly overlap. In this case, the 
de-noised result is not reliable. Therefore, the wavelet transform is widely used for signals with a 
higher SNR.  

3) Spectrum subtraction methods require that the noise is statistically stationary. Because 
spectrum subtraction takes full advantage of the statistical characteristics of the signal and the 
noise, it can remove the strong background noise. Spectrum subtraction can be applied to remove 
strong statistically stationary background noise, even in cases where the SNR is lower and the 
spectrum of the noise and signal overlap significantly. 

4) ICA assumes that a multi-channel signal is a random mixture of N independent source 
signals. When the signal received is such a random mixture of the ideal signal and noise, the ICA 
algorithm can separate the noise from the signal accurately. In particular, if N independent 
observation channels received meet the assumption of instantaneous independence, the N-
channel original signal can be directly extracted from N-channel noisy observation data through the 
ICA algorithm. ICA is applied in cases of broadband noise, low SNR and considerable spectrum 
overlap between signal and noise. 

In conclusion, when the noise is small, using the multi-resolution wavelet transform can 
yield better de-noising results; when the noise level is high and the effect of spectrum overlapping 
between noise and signal cannot be ignored, spectrum subtraction or ICA algorithm should be 
used to remove the noise based on the specific signal processing system and the characteristics of 
the signal and the noise. 
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