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ABSTRACT 

Using the principles of soil dynamics and structural dynamics, an analytical solution for an 
elastic supporting pile under horizontal vibration was formulated, based on an improved beam-on-
dynamic-Winkler-foundation model and taking into consideration the change along the soil depth 
and the inertia phase of the fluid. The degenerated impedance on the top of the elastic supporting 
pile was proved to be correct. The parameters influencing the horizontal vibration characteristics of 
the elastic supporting pile were analysed in detail, and the influence of the elastic support on the 
impedance on the pile-top was discussed. 

 

KEYWORDS 

Elastic support, analytical solution, horizontal vibration, pile-soil interaction 

 

INTRODUCTION 

The mechanism of pile-soil interaction in horizontal vibration of an elastic supporting pile 
during action of the machine is an important issue for geotechnical workers. Numerous studies on 
the dynamic response of pile foundations under vibration have been conducted. Novak [1], Nogami 
and Novak [2], and Novak and Aboul-Ella [3] have systematically studied pile-soil interactions in 
single-phase soil under vibration. Fixation of the underground pile may not be completely rigid 
when the soil around the pile is soft and the pile is not embedded deep into bedrock or when the 
bedrock is soft. Novak’s plane strain model uses a series of simplified algorithms of radiation 
damping to calculate when the pile is horizontally vibrating in saturated soil [4–6]. Some 
researchers have simulated the vertical dynamic response of a pipe pile, based on Biot’s 3D 
poroelastic theory of porous media in saturated soil, by separating the variables and the potential 
function to provide an analytic solution for the impedance in a pile-tip, when the pile is embedded 
in saturated soil [7,8]. The results will inevitably be inaccurate if the fixation of the pile is assumed 
to be completely rigid. In previous studies, the supporting role of the pile-tip soil against the pile 
has often been simplified to rigid support, but studies on the bearing contact of the pile-tip are rare. 
Low-strain integrity testing has been widely used in pile foundation quality detection. In this, the 
tubular structure is subjected to a transient point loading, and analytical solutions are obtained [9–
12]. 



 
  Article no. 10 

 
THE CIVIL ENGINEERING JOURNAL 2-2017 

 
----------------------------------------------------------------------------------------------------------------- 

 

             DOI 10.14311/CEJ.2017.02.0010 100 

 

Currently, no studies have been reported on the dynamical characteristics of an elastic 
supporting pile embedded in saturated soil under horizontal vibration. This paper considers the 
components of displacement along the depth and fluid inertia of the pile. Based on the dynamic 
consolidation theory proposed by Biot, the dynamic characteristics of an elastic supporting pile 
embedded in saturated soil under horizontal vibration are obtained. The solution has broad 
applicability and can meet the demand of projects. 

 

CALCULATION MODEL 

Basic assumptions 

The analyses in this paper are based on the following basic assumptions. The pile is assumed to 

be a cylinder of radius 0r , height H , and constant cross-sectional dimensions (Figure 1). The soil 

around the pile is saturated and is both isotropic and homogeneous. The pile of soil is isotropic, is 
of uniform quality, and has a constant radius. Based on an improved beam-on-dynamic-Winkler-
foundation model, the gradient varies and the inertia phase of the fluid along the depth of volume 
stress, and the displacement components in the soil around the pile are considered. When 
horizontal vibration occurs, the pile and soil are only displaced laterally and vertical displacement is 
negligible. The bottom support of the pile is the elastic support, only can obtain motion in horizontal 
direction but not relative rotation. During vibration, the pile and soil are in full contact; therefore, slip 
and detachment do not occur. The spring anti-horizontal displacement comprises a horizontal 

resistance coefficient of soil s
k  and a horizontal resistance coefficient of pile-tip 

p
k , which means 

that the shear resistance of the soil and the pile-tip need to resist a unit horizontal displacement. 

 

Fig. 1 - Structure diagram of an elastic supporting pile embedded in saturated soil under horizontal 
vibration 

 

 

 



 
  Article no. 10 

 
THE CIVIL ENGINEERING JOURNAL 2-2017 

 
----------------------------------------------------------------------------------------------------------------- 

 

             DOI 10.14311/CEJ.2017.02.0010 101 

 

Boundary Conditions 

The five boundary conditions are described below:  

(1) Boundary conditions for the soil at the pile hole wall: 

   1
, , , cos

i t

ru r z t u e W z
                                                      (1) 

   1
, , , sin

i t
u r z t u e W z



                                                      (2) 

(2) Horizontal distance continues infinitely. Displacement is attenuated to 0. 

(3) Upper and lower boundary conditions for the soil: 

0
0zr z


 , ( ) 0s rr

z H

k uu

z G



 


                                                   (3) 

 (4) Boundary conditions for the pile: 

0p z Hu


  , 

3

3
( ) 0

p p

p z H

p p

u k
u

z E I



 


                                              (4) 

(5) Coordination conditions of the pile and soil: 

0 0p r r r r r
u u

 
                                                               (5) 

 

Governing Equation 

According to the analysis of Zienkiewicz [13], for general soil dynamics problems, Biot’s wave 
equation in saturated soil can be written as follows: 

2
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The equation of motion of the fluid is as follows:  
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f r r r
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                                              (9) 

Assuming that the soil particles and fluids are not compressible, the seepage flow equation of 
continuity in cylindrical coordinates is given as follows: 

1 1
( ) ( )=r r r r

f

w uw w u u
M M p

r r r r r r

 
 

  
    

   
                                (10) 

where r
u  and u denote the displacement of the soil skeleton along the directions of r  and  , 

respectively. rw  and w  denote the radial and tangential displacement of fluid relative to the soil 
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skeleton.   and G  are the constants of Lame.  , s
 , and 

f
  are the densities of saturated soil, 

soil skeleton, and pore water, respectively, where (1 ) s fn n     . n  is the porosity of the soil. 

f
p  is the excess pore water pressure. d

d

w

k
k

g
  , d

k   is the dynamic permeability coefficient of the 

soil, where d
k  is the permeability coefficient of the soil and g  is the gravitational acceleration. e  is 

the volume strain of the soil skeleton, where 
1r r z

uu u u
e

r r r z





 
   
  

. 2
  represents the second 

order operator of Laplace, such that 
2 2 2

2

2 2 2 2

1 1

r r r r z

   
    

   
.   and M  are the 

parameters that reflect the compressibility of soil, such that 0 1   and 0 M   , when 

M   and 1  , which means that the particles and pore fluid are not compressible. 

 

Derivations of the equations 

The following section introduces the scalar potential function 1  and 2
 , the vector potential function 

1
  and 2 , the displacement vector of the saturated soil skeleton u , and the relative displacement 

vector of the fluid w :  

1 1 1 1

2 2 2 2

1 1
,

1 1
,

r

r

u u
r r r r

w w
r r r r





   

 

   

 

   
       


       

    

                                      (11) 

By substituting the potential function into Equations. (6) to (10) and separating the vector and 
scalar, the following equations are obtained:  

2
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It can be seen that 1 , 2
 , 1

 , and 2  have the same form of the potential function, then  

 1 1( , , ) ( )r t W z   , 2 2 ( , , ) ( )r t W z                                        (16) 

 1 1( , , ) ( )r t W z   , 2 2 ( , , ) ( )r t W z                                       (17) 

By substituting Equations (16) and (17) into Equations (12) to (15), we arrive at the following 
equations:  
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From the boundary conditions of the elastic supporting pile, Equation (3) yields the following:  
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sinh( ) cosh( ) 0

n

s
n n

n

B B B B h h J

k
J H J H

Gh

   



 



                                             (21) 

where 1, 2, 3, 4n   defines the horizontal resistance coefficient ratio of the soil s
s

k
k

G


 . n

J  

can be calculated by programming. 

To give Equations (18) and (19) an nontrivial solution, the coefficient determinant must be made 0 
and then should be simplified as follows: 
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Using the operator decomposition theory, 1 2

1,2 1,2 1,2
    , where 1

1,2  and 2

1,2
  satisfy the 

following formula: 
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the solution of Equation (26) is obtained by separation of variables: 
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Substituting Equations (29) to (32) into Equations (12) to (15) yields the following: 
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From the stress–strain relationship of saturated soil, the expressions of 1
u , r

u , u , rw , w , r , 

r
  can be obtained.  

 

 



 
  Article no. 10 

 
THE CIVIL ENGINEERING JOURNAL 2-2017 

 
----------------------------------------------------------------------------------------------------------------- 

 

             DOI 10.14311/CEJ.2017.02.0010 105 

 

Decomposing 1
u  into a series form results in the following equation: 
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n
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

                                                        (37) 

By contacting the boundary conditions (1) and the impervious conditions of the pile-soil contact 
surfaces, the following is obtained:  
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3n equations can be got by simultaneous Equations (38) to (40), and simultaneous every three 

equations corresponding to each n-order mode, the corresponding variables of each equation (
1nC , 

2nC  and 
3nC ) can be shown as 

n
U , and then all coefficients contain only one variable. 

n
U  can be 

determined from the condition of pile-soil interaction. Below, 
1nC , 

2nC  and 3nC  are introduced: 

1 22 33 23 32 12 23 13 22 11 22 33 11 23 32 21 12 33 21 13 32 31 12 23 31 13 22( ) / (  )n nC c c c c c c c c c c c c c c c c c c c c c c c c c c U          (41) 
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23 3 1 3( ) /c c K r r , 31 1 1( ) /c K r r  , 32 1 2( ) /c K r r  , 33 1 3[ ( )]c K r   . 

The transverse dynamic reaction force 1u
f  of the pile-side soil to the pile can be calculated. The 

value of 1u
f  is positive when its direction coincides with the direction of movement. Then, 1
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where 2 2 2 2 2

0 1 1 1 1 0 1 2 2 1 2 0 2 3 1 3 0 3
[( 2 ) ( ) ( 2 ) ) ( ( ) ] /

n
C r G Mc M B K r G Mc M B K r GB K r G                     

 

 

SOLVING THE DIFFERENTIAL EQUATION 

The differential equation of the single pile under horizontal vibration can be built by considering the 

dynamic equilibrium conditions when the thickness of thin layer element in the pile is . dz
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4 2

4 2
1
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
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where ( , )
p

u z t  is the horizontal displacement of the pile at soil depth of z , 
p

E  and 
p

I  are the 

elastic moduli and the rotational moment of inertia of the pile, respectively, and 
p

m  is the mass of 

the pile per unit length. 

For steady-state vibration, the horizontal displacement of the pile can be expressed as 

( , )
i t

p pu z t U e


 . Substituting this into Equation (46) and simplifying yields, the following equation 

is obtained:  

4
4

4
1

( )
i t

n n n

np p

U G
U ch J z C U e

z E I







  


                                         (47) 

where  

 

2
4

p p

m

E I


                                                                     (48) 

For ease of calculation, ti
e

  is omitted. The solution of this fourth order ordinary differential 

equation is as follows: 

1 2 3 4 4 4
1

( ) sin( ) cos( ) ( ) ( ) ( )
( )

n
p n n

n p p n

GA
U z f z f z f sh z f ch z U ch J z

E I J
   







    


          (49) 

According to the contact condition of the pile and soil, the following equation is obtained:  

1 2 3 4 4 4
1 1

sin( ) cos( ) ( ) ( ) ( ) ( )
( )

n
n n n n n

n np p n

GC
f z f z f sh z f ch z U ch J z D U ch J z

E I h
   



 

 

    


    

(50) 

where 

 
01 1 1 2 1 2 3 1 3[ ( )] [ ( )] ( ) /n n n n r rD D K r D K r D K r r   

                                (51) 

The cosh function ( )nch J z  is an orthogonal function system in [0, ]H , which means the following: 

0

,
( ) ( )

0,

H
n

n m

L m n
ch J z ch J z dz

m n


 


                                               (52) 

Multiplying each side of Equation (50) by ( )
m

ch J z  then integrating over [0, ]H  gives the following:  

4 4
[ ]

( )

n
n

n
n n

p p n

M
U

GC
D L

E I J 






                                                   (53) 

where 

2

0

( ) ( )
( )

2 2

H
n n

n n

n

ch J H sh J HH
L ch J z

J
                                           (54) 
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1 1 2 3 4
0

[ sin( ) cos( ) ( ) ( )] ( )
H

n n
M f z f z f sh z f ch z ch J z dz                           (55) 

Taking the integral of Equation (3) to (51) gives the following equation: 

1 1 1 2 2 3 3 4 4nM f N f N f N f N                                                  (56) 

where 

2 2

1

2 2

2

2 2

3

2 2

4

[ sin( ) ( ) cos( ) ( ) ] / ( )

[ cos( ) ( ) sin( ) ( )] / ( )

[ ( ) ( ) ( ) ( ) ] / ( )
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n n n n

n n n n

n n n n

n n n n

N J H sh J H H ch J H J

N J H sh J H H ch J H J

N J sh H sh J H ch H ch J H J

N J ch H sh J H sh H ch J H J

    

   

    

   

    


  


   


  

                     (57) 

Then n
U  can be obtained as follows:  

1 1 2 2 3 3

1 1 1

4 4

1

( ) [sin( ) ( )] [cos( ) ( )] [ ( ) ( )]

[ch( ) ( )]

p n n n

n n n

n

n

U z f z k ch J z f z k ch J z f sh z k ch J z

f z k ch J z

  



  

  





     

 

  



       (58) 

where 

1 1k N , 2 2
k N , 3 3

k N , 4 4
k N                                     (59) 

4 4
[ ( ) ]

n

n p p n n n

GC

L E I J D GC





 
                                            (60) 

The rotation amplitude ( )z , the bending moment amplitude ( )M z , the displacement amplitude 

U , and the shear amplitude ( )Q z  can be obtained using the relations ( ) ( )z U z  , 

( ) ( )
p p

M z E I U z , and ( ) ( )p pQ z E I U z . By setting the displacement and internal forces of the 

pile-top for 0
U , 0

 , 0M , and 0Q , and substituting them into Equation (61), the coefficient matrix 

[T(z)]  can be calculated. 

 

 

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

/ ( ) ( ) ( ) ( ) ( )

/ ( ) ( ) ( ) ( ) ( )

p

p p

p p

U t z t z t z t z f f

t z t z t z t z f f
T z

M E I t z t z t z t z f f

Q E I t z t z t z t z f f



       
      
       
      
       

     

                    (61) 

11_1
f , 21_1

f , 31_1
f , and 41_1

f  are coefficients if it is assumed that unit horizontal displacement 

occurs in the pile-top, which can be solved by the boundary condition: 

1 1

3

1 1

1 1 1 1 1 13

0 : (0) 1, (0) 0

( )
: ( ) 0, ( ) 0

p p

p

p p p

z U

U l
z l k U l M l

z





  



   



                                    (62) 
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The impedance in the pile-tip can be calculated as follows:  

1 11_1 41 21_1 42 31_1 43 41_1 44

1 2

(0) (0) (0) (0)h

h h

K f t f t f t f t

F iF

   

 
                               (63) 

1 11_1 31 21_1 32 31_1 33 41_1 34

1 2

(0) (0) (0) (0)rh

rh rh

K f t f t f t f t

F iF

   

 
                               (64) 

11_ 2
f , 

21_ 2
f , 

31_ 2
f , and 

41_ 2
f  are coefficients when unit horizontal displacement occurs in the pile-

top, and can be also solved by a boundary condition as follows: 

1 1

3

1 1

1 1 1 1 1 13

0 : (0) 0, (0) 1

( )
: ( ) 0, ( ) 0

p p

p

p p p

z U

U l
z l k U l M l

z





  



   



                                    (65) 

The impedance in the pile-tip can be calculated using the following equation: 

1 11_ 2 41 21_ 2 42 31_ 2 43 41_ 2 44

1 2

(0) (0) (0) (0)hr

hr hr

K f t f t f t f t

F iF

   

 
                              (66) 

1 11_ 2 31 21_ 2 32 31_ 2 33 41_ 2 34

1 2

(0) (0) (0) (0)
r

r r

K f t f t f t f t

F iF

   

 
                              (67) 

Equations (62), (63), (66), and (67) are impedances in the pile-top. For ease of calculation, the 
dynamic factors of an elastic supporting pile under horizontal vibration can be defined as follows: 

1
1

r
r

p p

F
f

E I
 , 2

2
r

r

p p

F
f

E I
 , 1

1
h

h

p p

F
f

E I
 , 2

2
h

h

p p

F
f

E I
 , 1

1
rh

rh

p p

F
f

E I
 , 2

2
rh

rh

p p

F
f

E I
 , 1

1
hr

hr

p p

F
f

E I
 , 

2
2

hr
hr

p p

F
f

E I
 . 

 

MODEL VALIDATION 

To validate the rationality of the theory in this paper, the lateral complex impedance factors were 

used as a sample, with 10pk

 , 0

/ 10H r  , 
6

10
d

k
  , 25.5pE GPa , 

3
2500 /p kg m  , 

3
2700 /

s
kg m  , 

3
1000 /f kg m  , 1  , 0.375n  , 10G MPa , and 0.25v  . Contrastive 

analysis was explored to calculate the lateral complex impedance in the pile-tip using an elastic 

supporting pile and a rigid supporting pile. Custom frequency ratio 0 g
a   ,   and g

  are 

vibration frequency and first order primary frequency of soil (  2 1 , 1, 2, 3...
2

s
g

V
n n

H
    ). 

Figure 2 shows that when the horizontal stiffness coefficient of the pile bottom is reasonable, the 
model described in this paper produces similar results to the model of a rigid supporting pile. This 
means that if the stiffness in the tip of an elastic supporting pile is large enough, it is reasonable to 
simplify it as a rigid supporting pile.  
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Fig. 2 - Comparison of present model (in this work) and the model of a rigid supporting pile 

 

HORIZONTAL DYNAMIC PARAMETRIC ANALYSIS OF THE ELASTIC SUPPORTING 
PILE 

To analyse the influence of the lateral elastic anti-displacement coefficient of the soil s
k  and the 

lateral elastic anti-displacement coefficient in the pile-tip p
k , the lateral complex impedance factors 

were used samples. 

Influence of the lateral resistance coefficient of the pile-tip on lateral complex 
impedance of the pile-top 

The relationship curve between the lateral resistance coefficient of the pile-tip on the lateral 
complex impedance and the frequency of the pile-top is shown in Figure 3, when 

0/ 10, 20, 40H r  , *
0 0.01 0.1 1 10 1000pk  , , , , , . The horizontal resistance coefficient ratio in the 

pile-top *

pk  reflects the bearing capacity of the pile-bottom medium to pile-tip. The greater is its 

value, the stronger is the ability of the pile-tip to resist horizontal displacement and the larger is the 

horizontal displacement stiffness of the pile bottom. When 
*

pk  is infinite, the elastic supporting pile 

can be equivalent to a rigid supporting pile.  

Figure 3 depicts that the horizontal complex stiffness factor in the pile-tip appears to have more 
obvious peaks and troughs. The smaller is the horizontal resistance coefficient in the pile-tip, the 
larger is the wave amplitude of the horizontal complex stiffness in the pile-top and the more 
obvious is the influence of the horizontal resistance coefficient ratio in the pile-tip. 

When the ratio of the length to diameter is small, the changes of *

pk  have a large impact on the 

complex stiffness in the pile-tip and will generate large fluctuations in the horizontal, swing, or 
horizontal-swing complex impedance amplitude. With an increase in the ratio of length to diameter, 
the horizontal resistance in the pile-tip becomes less obvious, and the volatility in the 
corresponding vibration frequency grows. This means that the complex impedance in a pile-tip with 
a small ratio of length to diameter is more susceptible to the influence of the horizontal resistance 
coefficient in the pile bottom. 

For the pile of larger diameter, when the frequency is low (especially the low-frequency range 
relevant to power foundation design), the horizontal resistance coefficient in the pile-tip has almost 
no effect on the horizontal complex impedance in the pile-top. As the frequency increases, the 
influence of the lateral resistance coefficient of the pile-tip on lateral complex impedance of the 
pile-top increases. 
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(a) 
0

/ 10H r   

  

(b) 
0/ 20H r   

  

(c) 
0/ 40H r   

Fig. 3 - Influence of lateral resistance coefficient ratio of the pile-tip on lateral complex impedance 
factors in the pile-top 

 

Influence of lateral resistance coefficient of soil on the lateral complex impedance of 
the pile-top 

Figure 4 depicts the relationship curve when the lateral resistance coefficient ratio of soil is
*

0 0.01 0.1 1 10 1000pk  , , , , , . Under the conditions of low frequency (with vibration frequency 

smaller than 0.35 Hz) and soft soil around the pile lateral, the changes of the horizontal resistance 
coefficient in the pile bottom exert great influence on the impedance function and amplitude 
frequency in the pile-top. 
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(a) 
0

/ 10H r   

  

(b) 
0/ 40H r   

Fig. 4 - Influence of the lateral resistance coefficient ratio of soil on the lateral complex impedance 
of the pile-top 

 

In the physical mechanism, under the conditions of low frequency and soft soil, wave propagation 
follows the horizontal direction. The horizontal connection condition of the pile-tip (horizontal 
reaction coefficient of soil around the pile bottom) has an influence on the complex impedance 
factor in the pile-top. Under conditions of high frequency (the vibration frequency is greater than 
0.35 Hz) this effect is not obvious. 

The characteristics of the complex stiffness factor in the pile-top were studied under conditions of 
low frequency, small length-diameter ratio, and soft soil around the pile lateral. The amplitude of 
resonance in the piles and soil is small and fluctuates quite gently. When the ratio of length to 
diameter is larger, the resonance amplitude of the pile is bigger and the wave is more obvious. 
Boundaries as the elastic modulus of soil under pile, when the force coefficient is larger than the 
elastic modulus, the force coefficient in the pile bottom will no longer have an impact on the 
impedance in the pile-top 

 

CONCLUSION 

This work derived the analytical solution of an elastic supporting pile embedded in saturated soil 
under horizontal vibration. We substantiated the validity of this method by retrogressed verification 
of the model, and analyzed the influence of elastic support for lateral complex impedance in a pile-
top. 
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