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ABSTRACT 
Minimizing the thermal cracks in mass concrete at an early age can be achieved by 

removing the hydration heat as quickly as possible within initial cooling period before the next lift is 
placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to 
take an effective and efficient decision on temperature control plan in advance. Thermal properties 
of concrete, water cooling parameters and construction parameter are the most influencing factors 
involved in the process and the relationship between these parameters are non-linear in a pattern, 
complicated and not understood well. Some attempts had been made to understand and formulate 
the relationship taking account of thermal properties of concrete and cooling water parameters. 
Thus, in this study, an effort have been made to formulate the relationship for the same taking 
account of thermal properties of concrete, water cooling parameters and construction parameter, 
with the help of two soft computing techniques namely: Genetic programming (GP) software 
“Eureqa” and Artificial Neural Network (ANN).  Relationships were developed from the data 
available from recently constructed high concrete double curvature arch dam. The value of R for 
the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 
and 0.9146 respectively. Relative impact on target parameter due to input parameters was 
evaluated through sensitivity analysis and the results reveal that, construction parameter influence 
the target parameter significantly. Furthermore, during the testing phase of proposed models with 
an independent set of data, the absolute and relative errors were significantly low, which indicates 
the prediction power of the employed soft computing techniques deemed satisfactory as compared 
to the measured data. 

KEYWORDS 
 mass concrete, temperature control, cooling, placing time, artificial neural network, genetic 
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INTRODUCTION 
Mass concrete plays an important role in modern construction, especially in hydraulic and 

hydroelectric construction. For example, in China more than 10 million m3 of mass concrete are 
poured every year in hydraulic and hydroelectric engineering. Besides, the structure of harbor 
engineering and foundations of heavy machines are often built with mass concrete. In massive 
concrete structures like concrete dams, temperature control and thermal crack prevention during 
construction is very important and challenging task. The problems arise from the thermal properties 
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of concrete, which vary with time as the concrete hardens as well as temperature and multiple 
factors affecting the temperature rise curve.  

Pipe cooling, which was first studied in early 1930’s by USA Bureau of reclamation in the 
design of Hoover Dam [1], is regarded as one of the effective method to control the thermal 
cracking in a mass concrete structure during the construction phase. Controlling the temperature 
development in a massive concrete structure is realized by flowing chilled water through the 
interconnected pipe networks embedded into the concrete during construction [2, 3]. However, 
pipe cooling is also a double-edged sword, which could cause damage the concrete in the case of 
improper control. In modern water-conservancy construction, to minimize the thermal cracks at 
construction phase, pipe cooling is mainly conducted in three phase namely: initial cooling period, 
mid-term cooling period and late term cooling period. 

Especially, for large concrete structures which are made sequentially in a series of blocks of 
1.5m -3.0m, it is therefore necessary to remove as much of heat of hydration as possible during 
initial cooling period taking the full benefit of low modulus of elasticity of concrete at an early age to 
minimize the thermal cracks. As, construction time is usually an important consideration, it is 
essential to carry out the heat removal as quickly as possible before the next lift is placed. 
According to ACI 207.4R (1993), duration of an initial cooling period can be as short as several 
days or as long as one month but  one or more additional cooling periods can be added if the 
increase in concrete temperature is significant after an early/initial cooling [4]. EM 1110-2-
2201(1994) suggests not to extend an initial cooling period more than 15 to 30 days to control the 
peak temperature [5].  During initial cooling period at construction phase of concrete dams, the 
water cooling flow (qw) and inlet temperature of water (Tw) is adjusted based on the numerical 
calculation and engineering experience to remove the hydration heat. Recently, due to the lack of 
simple and practical relationship between the parameters involved in controlling hydration heat 
(initial temperature of concrete, T0) during the initial cooling duration, temperature control process 
seems more complicated.  

 Therefore, understanding the relationship between the cooling time (CT) required to drop a 
T0 to the target temperature (Tt) or to the temperature at the end of an initial cooling period (Te) 
during initial cooling period with cooling water parameters as: (Tw, qw, spacing of cooling pipe and 
diameter of cooling pipe), thermal properties of concrete and construction parameter (construction 
time lag between successive lifts, Pf) helps to take an efficient and effective decision on 
temperature control plan in advance. Relationships between these parameters are non-linear in 
pattern, complicated and not well understood yet. Some attempts had been made to understand 
and formulate the relationship taking account of thermal properties of concrete and water cooling 
parameters. Zhu (2014), proposed one practical formula for the calculation of the time required to 
drop T0 at any interval (from T0 to Te or from T0 up to Tt) within an initial cooling period at 
construction phase of concrete dams [6]. ACI 207.1R (1996) gives an approximation method to 
calculate CT needed for accomplishing the required temperature reduction of concrete using 
graphs [7]. However, parameter Pf has not been considered during formulation of relationship in 
previous studies.   

 Further, some attempts had been made by some researchers to co-relate the variation of 
concrete temperature with parameter Pf during the construction phase of a concrete dam. 
According to IS (1999) and Fairbairn, Silvoso et.al (2004), increase in the construction time period 
between two successive lifts allows the maximum temperature to dissipate before the next lift is 
placed [8, 9]. Zhu (2014) believes parameter Pf and spacing of cooling pipes greatly influence the 
thermal stress during an initial cooling period [6].  Wang, Liu et.al (2015) stated, the maximum 
temperature of concrete occurs after 5 to 7 days of Pf and the correlation between the maximum 
temperature and the interval length is trivial when the pouring interval is from 15 to 28 days [10]. 
Mentioned literatures reflect that the parameter Pf plays an important role in controlling the 
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temperature of concrete during the construction phase.  

 Over the last two decades, where the non-linearity between the parameters cannot be 
understood logically and complex to solve analytically, soft computing tools (like ANNs, fuzzy 
neural network systems and GP) inspired by the human brain is gaining popularity in civil 
engineering. ANN method is widely used by many researchers for determining different properties 
of concrete [11-13] and concrete structures [14-16]. Among these soft computing techniques, GP 
which was first introduced by John Koza (1992) [17], is another branch of machine learning 
methods which automatically generates computer models based on the rule of natural genetic 
evolution.  Due to the ability to discover the underlying data relationships and express them in 
semi-complex mathematical form rather than data without any assumptions on priori functional 
form of the solution [18 -20], different types of GP likes: gene expression programming [21, 22] and 
multi gene-genetic programming [16] has been utilized to derive simplified model for solving civil 
engineering problems. Commercial code based GP software” Eureqa” is a symbolic regression tool 
for detecting equations and hidden mathematical relationships in raw data [23]. There have been 
some scientific efforts aiming to apply Eureqa for solving some problems in civil engineering field 
[19, 24].   

The literature review, as discussed above, reveals that no research has been undertaken 
with the help of GP and ANN to formulate the relationship between CT required to drop T0 at any 
interval within an initial cooling period encompassing thermal properties of concrete, water cooling 
parameters and construction parameter. The present study is intended to formulate the relationship 
for the same. To formulate the relationship, the coefficient of pipe cooling (p1), Tw in 0C, ∆t 
(temperature difference between T0 and Tt or T0 and Te within an initial cooling period) in 0C and Pf 
in days were entered as the inputs while the CT values were used as output. Developing such 
models will be beneficial in-terms of saving cost and time for laboratory works and helps to make 
an efficient and effective decision on temperature control plan in advance.   

DATA SOURCE AND ANALYSIS  
To achieve the objective of this research, data were taken from the project named “Xiluodu 

high concrete double curvature arch dam (285.5 m high and 700 m crest length)” which was 
recently constructed and located in the lower reach of the Jingsha River, Yunnan Province, in 
southwest China [25]. During the construction of the project, an optical fiber was embedded (as 
shown in Fig. 1) in four monoliths namely, 5#, 15#, 16# and 23# to monitor the temperature of 
concrete.  

 
Fig. 1 - On-site Schematic layout of optical fiber 

Concrete temperature data recorded from the optical fiber at different time interval within a 
day for every lift of each monolith and water cooling data (Tw and qw) measured almost at the same 
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time of concrete temperature measurement within an initial cooling period were taken in this study. 
Both the concrete temperature and water cooling data were then averaged for an individual day 
within the initial cooling period.  

Further, the coefficient of pipe cooling p1 (which is dependent on qw) is derived from the 
following relationship, Zhu [6].  

2
1 1 ( / D )sp k ga=  (1) 

 Where, 
2

1 2.08 1.17 0.256k ξ ξ= − +  
(2) 

20.971 0.1485 0.0445s ξ ξ= + −  (3) 

w w w

L
c q
λ

ξ
ρ

=
 

 (4) 

0.48

0

1.67exp{ 0.0628[ ( ) 20] }b cg
c r

η= − −   (5) 

In which, g is a coefficient to consider the influence of b/c and the material of pipe.  

Where, 

b= 0.5836* √ (S1*S2) (6) 

Designation, unit and the values (taken as the real situation of the research project) of the 
parameters (thermal properties of concrete and water cooling pipe parameters) used in Equation 1 
– Equation 6 are tabulated in Tab. 1.  

 

Tab. 1 - Thermal Properties of Concrete and Water Cooling Parameters 

Parameters Designation Unit Value 

Coefficient of thermal conductivity of concrete  λ kJ/mh 0C 7.28 
Thermal diffusivity of concrete  a m2/day 0.067 
Outer radius of concrete cylinder  b m 0.875 / 0.715 / 0.584 
Diameter of concrete cylinder  D =2*b m 1.75 / 1.43 / 1.168 
Coefficient of thermal conductivity of non-metal cooling pipe  λ1 kJ/mh 0C 1.6 
Length of pipe  L m 300 
Outer radius of non-metal cooling pipe  c m 0.040 
Inner radius of non-metal cooling pipe  r0 m 0.033 
Density of cooling water  ρw kg/m3 1000 
Specific heat of cooling water  cw kJ/kg 0C 4.187 

Horizontal and Vertical Spacing of Cooling Pipes (H:V) S1 * S2 
m *m 1.5m*1.5m,1.0m*1.5

m and 1.0m*1.0m 
Rate of flow of cooling water  qw m3/h 0.3 – 3.06 

η = λ/λ1   4.55 
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108 numbers of lifts (lift height of 1.5 m and 3 m) from monoliths 15#, 16# and 23# 
containing 2974 rows of each input and output variables were used for building/training and 
validating the models. Beside validation, 45 numbers of lifts from monolith 5# containing 257 rows 
of each input and output variables were used for testing (checking the applicability) of the proposed 
models. Descriptive statistics of the input data that were used to formulate the prediction models 
for CT from GP and ANN techniques are tabulated in Tab. 2. Both the models were run (expect the 
variables T0 and Te) within the range of value given in Tab. 2. Further, qw was taken within the 
minimum and maximum range 0.3m3/h and 3.06m3/h respectively.  

Tab. 2 - Descriptive Statistics of Input Data 

 Input Target 
Input* p1 Tw 

0C T0
0C Te

0C ∆t 0C Pf (days) CT (days) 

Mean 0.043 15.114 24.048 20.052 2.234 12.99 17.45 

Median 0.038 15.165 24.027 20.009 1.973 11.00 15.00 

STDEV* 0.011 0.852 1.737 1.269 1.531 6.29 12.24 

Variance 0.000 0.726 3.017 1.610 2.343 39.58 149.81 

Maximum 0.014 12.821 20.296 16.569 0.012 5.00 1.00 

Minimum 0.072 18.392 28.766 25.477 8.658 36.00 65.00 
      *=Standard Deviation 

METHODS 
Eureqa and Automated Solution Seeking  

Eureqa® software package, developed by Dr. Hod Lipson [26] is fairly new, publically 
available product from Cornell Creative Machines Lab http://creativemachines.cornell.edu/eureqa 
[23] is a symbolic regression tool for automated numerical regression methods, optimization, 
detecting equations and hidden mathematical relationships in raw data and is based on GP.  The 
evolution of the programs toward the best solution is controlled by an appropriate fitness functions 
namely: mean squared error (MSE), mean absolute error (MAE), mean relative error (MRE) and 
correlation coefficient (R). The best GP solution is eventually validated through the use of an 
independent set of data which was not introduced during a training phase. In Eureqa, each variable 
values can be assigned to single rows and searches are specified by writing a search function. A 
solution fit plot against predicted and actual data, list of candidate function ranked by fitness 
(error/complexity), a plot of solution respective to their error size; residual error plot and a plot of 
different fitting statistics of the generated solutions can be obtained as output in Eureqa [24].  

 

Development of the empirical model using GP 
Commercial code based GP software “Eureqa” was utilized for deriving the GP model. To get 

the suitable GP model, the basic arithmetic operators (+, -, *, /), the trigonometric operator (sin, 
cos) and some basic exponential functions (exponential, natural logarithm, square root, factorial 
and power) were utilized in this study. The four numbers of input parameters p1, Tw, ∆t and Pf were 
taken for deriving output parameter CT. Following function is used to obtain the hidden relationship 
between CT and the influencing variables: 

CT =f (p1, Tw, ∆t,  Pf ) (7) 
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Dataset containing 2974 numbers of rows of each input and output variables were divided 
randomly into two parts (training and validation). Percentage division of dataset for formulating the 
GP model is listed in Tab. 3. According to Marref et al. (2013), the division of data’s used during 
building the model can be altered while fulfilling two opposing criteria: (i) while deriving the model, 
the size of the dataset used in training should be as large as possible to account for a diversity of 
data and (ii) For validation of the derived model, the size of the dataset used can be as large 
enough to avoid for over fitting of the proposed model [27].   

Development of the model using ANN 
A successful application of an ANN needs a good conception of the impact of different 

internal parameters. For ANN architectures and training of the same, the significant internal 
parameters include learning rate, initial weights, learning cycle ,number of training epochs, 
numbers of hidden layers, numbers of neurons in each hidden layer and transfer functions for 
hidden layers and output layers [11]. In this study, a three-layered feed-forward network was 
trained with back-propagation (BP) training algorithm. Levenberg-Marquardt (LM) was utilized as a 
learning algorithm because of its ability to provide the numerical solution to the problem by 
minimizing a non-linear function quickly.  

The software MATLAB (R.2014.b) was chosen among different programming languages as 
this software provides most efficient and flexible environment to develop an ANN [28]. A program 
code is written to perform the necessary computations. The same dataset used for developing GP 
model were utilized to construct an ANN. The input data sets were randomly divided into three 
parts: learning/training phase, validation phase and test phase. Percentage division of dataset 
used for developing the ANN model is listed in Tab. 3. 

Tab. 3 - Division of dataset for formulating GP and ANN model 

Method Training (%) Validation (%) Test (%) Testing (Checking Model Applicability) 

GP 50%  50%   257 numbers of data from monolith 5# 

ANN 60%  20%  20%  257 numbers of data from monolith 5# 

The ANN developed in this research consists of four neuron (inputs) in an input layer and 
one neuron (output) in an output layer. The numbers of neurons in the hidden layer was adjusted 
13 after doing many trial and errors. A non-linear hyperbolic tangent sigmoid function and linear 
function were used as transfer functions in hidden and an output layer respectively due to their 
ability to learn the complex non-linear relation between an input parameter and an output 
parameter [11]. Network training parameters adopted to construct an ANN model are summarized 
in Tab. 4.  

Tab. 4 - Parameters used in ANN model 

Parameters ANN 

Number of neurons in input layer 4 
Number of hidden layer 1 
Number of neurons in hidden layer 13 
Number of output layer 1 
Learning  rate 0.01 
Learning cycle 6 
epochs 1000 
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RESULTS AND DISCUSSIONS 
Two emerging soft computing techniques, namely; GP and ANN were utilized in this study 

to explore the predictive capability for CT required to drop T0 at any interval within initial cooling 
period at construction phase of the concrete dam.  

Tab. 5 shows the best three GP models that were formulated using GP technique. The 
values of R, MSE and MAE given in Tab. 5 is for validation data set. Values of R closed to 1 and 
low MSE and MAE values indicate the data were more fitted. Thus, model 1 was selected as the 
best compromise between others. 

 

Tab. 5 - Different GP based models 

Rank MSE MAE R Expressions  

1 
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Fig. 2 a shows how well the proposed ANN model fit the experimental data during training 
process. Fig. 2b - Fig. 2d represents performance plot, error histogram plot and regression plot at 
the learning phase of an ANN. 
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(b)                                                                 (c) 

 

 
(d) 

Fig. 2 - Overall statuses during training process in ANN: (a) solution fit plot during ANN training, (b) 
performance plot, (c) error histogram and (d) regression plot 

Due to the lack of previously developed rational model predicting CT required to drop T0 at 
any interval within an initial cooling period encompassing the influencing variables considered in 
this study, it is not possible to conduct a comparative study of the results obtained from this study 
with the previous studies. Based on the rational hypothesis, Smith [29] suggested the following 
criteria for judging the performance of a model: 

 
ü If a model gives |R|>0.8, a strong correlation exists between the predicted and measured 

values [30].  

It can be seen from Tab. 5 and Fig. 2d, entire GP and ANN model respectively have R 
value greater than the suggested good fit (|R|>0.8), which indicates that both models have a good 
predictive ability. MSE for GP and ANN model is 33.86 and 24.49 respectively. The value of R 
close to 1 and low MSE value were sought for better accuracy of model. 

Comparison of predicted outputs from ANN model was well fitted with real CT during 
training of ANN as shown in Fig. 2a. Performance plot shown in Fig. 2b specifies that LM learning 
algorithm retrieves the result in just a few epoch. The maximum number of epochs taken by the 
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model was 48, which clearly indicates that the time taken from ANN model to predict CT was less. 
Error histogram displayed in Fig. 2c represents the error during ANN training, calculated error are 
within the range of -17.56 to +19.35. 

In order to determine the prediction capability of the proposed models, comparisons were 
made between the predicted values of CTs from GP and ANN model with real CTs (data from 
monolith 5#) that were not included during analysis by plotting the graph as shown in Fig. 3.  

 

  
 

(a)                                                                             (b) 

Fig. 3 - Comparison between real CT and predicted CT at testing phase for monolith 5#: (a) with 
GP model and (b) with ANN model 

It is obvious from Fig. 3, during testing phase the predicted and real CTs were strongly 
correlated with a linear relationship with R2/R of 0.9466/0.9729 and 0.8525/0.9233 from GP and 
ANN model respectively. Comparing these data in terms of statistical terms, the value of R from 
ANN is higher than from GP during training and validation phase, but lower than from GP at testing 
phase, so it is hard to say which model is more reliable. Each model uses its own algorithm to 
select the random data for training and validation, so it is concluded that reliability of model solely 
depends on data. Therefore, a low value of errors and higher values of R2/R more is certainty, 
rather than stick on some model. 

 Moreover, the absolute error and the relative error were calculated to determine the 
accuracy of the proposed models at testing phase. The absolute error was calculated by 
subtracting the real CT with the predicted CT from the proposed models. The relative error was 
determined by dividing the absolute error with the real CT and then expressing it in percentage 
form.  The mean absolute error from GP and ANN model is 0.392 and 1.284 respectively whereas; 
the mean relative error from GP and ANN model is 6.79% and 21.26% respectively. Comparing 
these statistical values, both the mean absolute error and mean relative error indicates that the 
errors were significantly low for GP model. These amounts of errors are acceptable in concrete 
technology, which clarifies that the proposed model was capable of generalizing the input and 
output variables with reasonably good predictions. 

Fig. 4 shows the comparative study of output predicted (CT) from GP and ANN model with 
real CT required to drop T0 to Te. Also, comparisons have been made with the output from practical 

formula proposed by Zhu [6]. Further, the derived models have been applied to check the 
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CT required to drop T0 up to Te for different lifts of monolith 5# having different CT at different 
height (from bottom) as shown in Fig. 5.  

 

 
Fig. 4 - Comparison between the results from proposed models (GP and ANN) with real filed data 

(monolith 5#) and output from practical formula proposed by Zhu 
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(c)                                                                             (d)                      
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(i)                                                                              (j) 

Fig. 5 - CT required for dropping T0 up to Te for monolith 5#: (a) Lift 5 at height 12 m, (b) Lift 9 at 
height 24 m, (c) Lift 12 at height 34 m, (d) Lift 16 at height 45 m, (e) Lift 17 at height 48 m, (f) Lift 

19 at height 54 m, (g) Lift 22 at height 63 m, (h) Lift 24 at height 69m, (i) lift 34 at height 99m and (j) 
lift 56 at 163.5m 

Note: Blue line, Red line, Grey line and Purple line indicates the same for Fig. 5b - Fig. 5j as used in Fig. 5a.  

As shown in Fig. 4 - Fig. 5j, comparing the prediction outputs from proposed GP and ANN 
models with the results obtained from the practical equation proposed by Zhu, more accurate and 
consistent predictions have been obtained using the proposed models. This clearly indicates that, 
parameter “Pf” has the influence to the target parameter and should be considered while predicting 
CT. The comparison of the calculated results from proposed models and real CTs shows that GP 
model is able to predict CT with acceptable accuracy.     

Sensitivity analysis was performed to evaluate the relative impact of input variables on 
target variable within the GP model. The sensitivity of the model with respect to each input 
parameters is defined as follows: 

| | * | |i

i

xstability

x stability

Sensitivity
σ

σ
∂

=
∂

 (11) 

Where: δ = partial derivate operator, σ = standard deviation, and xi is the ith input parameter [19].  

A summary of sensitivity, percent positive and percent negative values for the GP model is 
shown in Tab. 6.  

Tab. 6 - Sensitivity study of the GP model 

Input* Sensitivity Percent positive Percent Negative 

p1 0.2462 0 100 
∆t 0.9936 100 0 
Tw 0.2098 90 10 
Pf 0.1704 0 100 

                                 * As defined in expressions in Tab. 2. 

The term percent positive is defined as the percent of data in which the partial derivative of 
the target value with respect to the ith input is greater than zero. This number shows the possibility 
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that increasing the specified input parameter would increase the target value in the model and the 
same concept applies for a negative value of the aforementioned derivative term known as percent 
negative [19].  

Sensitivity analysis results shown in Tab. 6 clarify that input variable p1 has a negative 
impact on the target variable, whereas remaining input variables ∆t and Tw possess high positive 
impact on the target variable. Further, construction parameter “Pf” shows 100 percent negative 
impact with sensitivity 0.17 to the target variable, which confirms that the assumed hypothesis is 
true. 

 It must be kept in mind that, the proposed models for predicting CT are valid within the 
minimum and maximum range of parameters given in Tab. 2. These models were derived from 
three monoliths of the research project, as more data from different project become available, the 
proposed models can be improved to make a more precise prediction for the wider range. 
Recently, a numbers of large concrete dams are under construction around the world. This 
research will be helpful in developing countries where opportunities of high concrete dams are 
anticipated to build in coming days. 

CONCLUSION 
The GP and ANN models developed in this study are used to predict CT required dropping 

T0 at any interval within the initial cooling period during the construction phase of concrete dam. In 
this regard, data available from recently constructed high concrete double curvature arch dam 
(Xiluodu) in China, were used to derive the proposed models. 108 numbers of lifts from monoliths 
15#, 16# and 23# containing 2974 rows of each input and output variables were used during 
analysis. The GP model was trained and validated with 50% - 50% of data whereas, the ANN 
model was trained, validated and tested with 60% - 20% - 20% data respectively (chosen randomly 
in both cases). Beside validation, 45 numbers of lifts from monolith 5# containing 257 rows of each 
input and output variables were used for testing (checking the applicability) of the proposed 
models. The following conclusions were drawn from this research: 

(1) The proposed GP model is capable to sort out the complication on adjusting the 
water cooling parameters (Tw and qw) to control T0 in recent construction of concrete dams. Using 
this developed model, CT required to drop T0 can be calculated easily and accurately varying the 
parameters involved in temperature control process prior to construction, which helps to take an 
efficient and effective decision of temperature control plan in advance. 

 (2) As has been observed, both the models have R value (0.8822 and 0.9146 from GP 
and ANN model respectively) greater than suggested good fit (|R|>0.8) during training and 
validation. Beside validation, testing the models capabilities with an independent data set, R value 
is 0.9729 and 0.9233 from GP and ANN respectively, which indicate that the performance of the 
proposed models are admirable.  

(3) The derived GP and ANN models predicted CT required dropping T0 with an 
agreeable error. The mean absolute error (0.392 and 1.284) as well as the mean relative error 
(6.79% and 21.26%) for GP and ANN model respectively, which is acceptable in concrete 
technology, as observed during the testing process of the model. Further, comparing the prediction 
outputs from proposed models with the real CTs and output predicted from the practical formula 
proposed by Zhu, results obtained from the proposed GP model are convincing. 

 (4) Sensitivity analysis results clarify that; construction parameter “Pf” has 100 percent 
negative impact on target variable, which proves that the assumed hypothesis is true. Thus, it is 
concluded that the parameter “Pf” should be considered while predicting CT to drop T0.  

(5) Both models have their own advantages and can be used accordingly. Obtained 
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formulas from the GP model for predicting CT is simple whereas, the time for developing GP model 
is more than ANN model. Further, despite of the acceptable performance of ANN model (capability 
of predicting CT in less time), it is not able to explain the underlying principle of prediction and 
unable to generate prediction formulas. 

 (6) The overall findings of the present study indicate that the proposed models for 
predicting CT to drop T0 are reliable and applicable to concerned parties and it could save their 
time and cost of conducting sophisticated experiment that requires specialized equipment and 
expertise.  
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