
 

  Article no. 22 
 

THE CIVIL ENGINEERING JOURNAL 3-2024 
 

 

DOI 10.14311/CEJ.2024.03.0022      321 

DETECTION METHOD OF TUNNEL SURROUNDING ROCK 
LEAKAGE CHANNEL BASED ON IMPROVED CHAOTIC 

PARTICLE SWARM OPTIMIZATION ALGORITHM 

Lei Zhu1, Peixuan Qiao, Fuyu Jiang3 , Caihua Shen3, Yuke Jiang1 

 

1. Zhongjiao Tunnel Bridge (Nanjing) Technology Co., Ltd., Jiangsu, Nanjing, 211800, China 

2. Anhui Water Resources and Hydropower Survey and Design Research Institute Co., Ltd., 
Hefei, Anhui, 230088, China, huandengwoqiao2@163.com 

3. School of Civil Engineering and Transportation, Hohai University, Nanjing, Jiangsu, 
210098, China 

ABSTRACT 

Leakage channels in tunnel lining and surrounding rock can lead to water seepage on tunnel 
walls, significantly posing risks to the safety and stability of tunnel operations. Accurate detection of 
these leakage channels is important to block them and maintain safe operations of tunnels. Based 
on the theory of natural potential field detection, the potential distribution on the tunnel wall is studied. 
An improved particle swarm optimization algorithm is applied to invert the spatial charge distribution 
inside the tunnel lining and surrounding rock. The distribution of spatial charges is used to infer the 
location and direction of leakage channels within the tunnel lining and surrounding rock. The 
research results show that the variance of charge distribution is 1.58% in the forward modeling 
inversion and 7.6% in the inversion of measured data. The inverted result shows an area of charge 
anomaly consistent with the actual position of the leakage channel. 
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INTRODUCTION 

Water seepage in the tunnel wall will affect the normal operation and lifespan of tunnel 
electromechanical equipment, leading to cracking or detachment of t tunnel lining, posing a threat to 
tunnel stability. In China, tunnel leakage is a significant issue. In 1995, a survey of 4855 railway 
tunnels revealed that 1428 tunnels had severe leakage, accounting for 29.4% of the total. According 
to the statistics of China's railway tunnel technical status in 1997, there were more than 5,000 railway 
tunnels in operation along the entire line. Among them, about 70% of the tunnels have leakages, and 
1,502 tunnels were affected by cracking and water leakage, accounting for more than 30% of the 
total railway tunnels [1-2]. One of the main causes of these diseases is that the groundwater flows 
through the seepage channels in the surrounding rock and soil mass of the tunnel, continuously 
eroding the tunnel lining layer, leading to the breakage of the tunnel lining layer. The location 
detection of tunnel leakage channels has always been a challenging engineering problem. In practice, 
the method of repairing the leakage channel mostly adopts extensive excavation and then filling, 
which is blind, ineffective and wasteful. Therefore, it is necessary to detect the leakage channels 
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inside the tunnel lining and surrounding rock and to repair the leakage channels according to the 
detection results. 

According to the flow potential effect, uneven distribution of positive and negative charges will 
occur in the leakage channel, causing abnormal distribution of potentials in the inner wall of the 
tunnel. In line with the principle of natural potential method exploration, it is possible to use the 
distribution of potentials in the inner wall of the tunnel as a known condition to detect the internal 
distribution of electric charges in the tunnel surrounding rock [3-5]. This article will study the detection 
method for the location of tunnel surrounding rock leakage channels based on the principles of flow 
potential effect and natural electrical exploration, striving to provide direction for the management of 
tunnel leakage water sections. 

MATERIALS AND METHODS 

Study on Forward Modeling of Electric Potential Distribution on Tunnel Walls 

The essence of the abnormal distribution of natural electric field on the tunnel lining's inner wall 
is the selective adsorption of charged particles in the liquid by the surrounding rock and lining layers, 
leading to the directional separation of charged particles. This abnormal distribution of natural electric 
field is coupled with the seepage field, and there is a coupling relationship equation between the 
seepage field and the natural electric field under saturated conditions [6-8]. Under quasi-static 
conditions, the total current density jin saturated porous media can be represented as follows: 

𝑗 = −𝜎𝑠𝑎𝑡𝛻𝜑 + 𝑗𝑠                                     (1) 

where φ, σ𝑠𝑎𝑡 and j𝑠 are the potential, conductivity and flow current density, respectively. Under 

saturation conditions, the flow current density 𝑗𝑠 is expressed asfollows: 
𝑗𝑠 = 𝜎𝑠𝑎𝑡𝐶𝑠𝑎𝑡∇𝑃                                      (2) 

where σ𝑠𝑎𝑡 is the conductivity of the pore water under saturated conditions; 𝐶𝑠𝑎𝑡 is the coupling 

coefficient of the flow potential under saturated conditions, and P  is the pressure. Charge is 
conserved under quasi-static conditions, and the equation can be calculated as follows: 

𝛻 ∙ 𝑗 = 0                                           (3) 

The governing equations of the flow potential can be obtained from Eqs.(1) and (3): 
𝛻 ∙ 𝜎𝑠𝑎𝑡𝛻𝜑 = 𝛻 ∙ 𝑗𝑠                                    (4) 

The coupled relationship equations between the seepage field and the natural electric field in the 
saturated state can be obtained by coupling Equatios (2) and (4): 

𝛻 ∙ 𝜎𝑠𝑎𝑡𝛻𝜑 = 𝛻 ∙ 𝜎𝑠𝑎𝑡𝐶𝑠𝑎𝑡𝛻𝑃                               (5) 

Based on the above analysis, a three-dimensional coupled seepage field-natural electric field model 
is established within the Comsol multi-physics software for the analysis of the potential distribution 
on the inner wall of the tunnel. The model is shown in Figure 1. The boundary condition used for the 
model is the Delicacy boundary condition with a value of 0 at infinity. 
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Fig. 1 - Schematic diagram of tunnel forward model 

According to theoretical analysis, the low water pressure appears at the location of the leakage 
channel. Due to the variation of water pressure, the flow velocity and direction at the location of the 
leakage channel also change [9-11]. Based on the coupled relationship between the natural electric 
field and seepage field (Equation 5), the electric potential distribution at the leakage channel location 
can be calculated. It can be seen from Figure 2 that there is an obvious positive potential feature 
close to the inner wall of the tunnel, and a significant negative potential feature at a position away 
from the inner wall of the tunnel. Figure 3 illustrates the electric potential distribution on the tunnel 
walls. 

 

Fig. 2 - Potential distribution diagram of leakage channel position 

 

Fig. 3 - Potential distribution of inner wall of tunnel 
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Inverse study of charge distribution in tunnel surrounding rock 

In the inversion of the space charge distribution, the inversion can be divided into the following three 
steps: 

① Construct the fitness function; 

② Solve the solution when the fitness function takes the minimum value; 

③ Output of results and graphical display; 

In inversion, the establishment of the fitness function is the most important part, and the construction 
of fitness function can be divided into the following steps: 

(1)   Randomly generate n points in the target inversion space, with the positions (xi, yi, zi)and 
the charges of the point as qi, where i = 1, 2, 3 .....n. 
(2)   Import the measured data. The position and potential of each point in the measured data 
is(xj, yj, zj) and Uj, where j = 1, 2, 3 .....m, m is the number of measured data points. 
(3)   The sum potential Umerj generated by all point charges in space at the location of the jth real 
point can be expressed as follows: 

𝑈𝑚𝑒𝑟𝑗 = ∑ 𝑘
𝑞𝑖

𝑟𝑖𝑗
2

𝑛
𝑖=1                                     (6) 

where k is the Coulomb constant, qi is the charge of the i-th point charge, and rij is the distance from 
the i-th point charge to the j-th data point. 
(4)   Use Vj as a parameter to measure the deviation between the measured potential at the 
location of the j-th data point and the combined potential Umerj, Vj is expressed as follows: 

𝑉𝑗=|
𝑈𝑚𝑒𝑟𝑗−𝑈𝑗

𝑈𝑗
|                                      (7) 

(5)   The average deviation 𝑉𝑎 from the measured value of the combined potential generated by 
all point charges in space at all measured point positions is as follows: 

𝑉𝑎 =
∑ 𝑉𝑗

𝑚
𝑗=1

𝑚
                                      (8) 

Construct the fitness function fad as follows: 

fad=𝑉𝑎                                         (9) 

fad is a function of xi, yi, zi, qi. 

Taking xi, yi, zi and qi as the unknowns of the fitness function fad for solution when the fitness 
function fad is minimized, these solutions can represent the position and charge of each point, and i 
= 1, 2, 3 ...n. Since the fitness function may be underdetermined and unknowns are large, it is solved 
using a nonlinear optimization algorithm. 

The particle swarm optimization algorithm is an evolutionary algorithm inspired by bird flocking 
behavior, and developed by Kennedy and Eberhart [12], and El Rassy et al. [13]. Particle swarm 
algorithm is an iterative optimization algorithm that firstly creates a set of random solutions in the 
solution space, i.e. the initial particle swarm. Then it takes the optimal solution in the initial particle 
swarm, allowing the remaining particles to follow the optimal particles for optimization in the solution 
space, and gradually approach to the better solution by adjusting the particle's moving speed and 
position [14-15]. 

The solution of the above fitness function belongs to the solution of multi-dimensional and multi-
peak function. As can be seen from the previous studies [16-18], compared with other nonlinear 
solution methods, the particle swarm algorithm for multi-dimensional, multi-peak problems has the 
advantages of strong solving ability, good convergence, good stability, high computational efficiency, 
and simple parameters, which is very suitable for the solution of the minimum value of the above 
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fitness function. In this study, the particle swarm algorithm is used to solve the solution when the 
fitness function takes the minimum value. 

Improvements to the Particle Swarm Optimization (PSO) 

Traditional PSO-based inversion algorithms has problems such as easy to fall into the local 
optimal solutions, the multiple solutions leads to mismatch between the inversion results and the 
actual situation, and difficulty in displaying the inversion results are difficult to display. In response to 
the above problems, the PSO-based inversion algorithm is improved.  

Adaptive Weight Method 

In a traditional PSO algorithm, the inertia weight is a fixed value, typically between 0.4 and 0.9. 
A smaller inertia weight will weaken the global search capability of the PSO algorithm, while a larger 
one will weaken its local improvement ability [19-21]. To balance the global search and local 
improvement capabilities of the PSO algorithm, a nonlinear dynamic inertia weight coefficient formula 
can be expressed as follows (10): 

𝜔 = {
𝜔𝑚𝑖𝑛 − (𝜔𝑚𝑎𝑥 − 𝜔min) × (𝑓 − 𝑓𝑚𝑖𝑛)(𝑓𝑎𝑣𝑔 − 𝑓𝑚𝑖𝑛) , 𝑓 ≤ 𝑓𝑎𝑣𝑔

𝜔𝑚𝑎𝑥  , 𝑓 > 𝑓𝑎𝑣𝑔
               (10) 

where ω𝑚𝑎𝑥and ω𝑚𝑖𝑛 are the maximum and minimum values of ω, respectively 𝑓 is the current 

fitness of the particle;  𝑓𝑎𝑣𝑔 are the average fitness of all current particles, and 𝑓𝑚𝑖𝑛is the minimum 

fitness of all current particles. 
In the above equation, the inertia weight will automatically change with the objective function 

value of the particle, is hence called the adaptive weight [22-24]. 
When the objective value of each particle tends to be consistent or tends to be locally optimal it 

will increase the inertia weight; while when the objective value of each particle is more dispersed, it 
will decrease the inertia weight. Meanwhile, for particles whose objective function values are better 
than the average objective values, the corresponding inertia weight factor is smaller, protecting the 
particles. On the other hand, for particles whose objective function values worse than the average 
objective values, the corresponding inertia weight factor is larger, making the particles closer to the 
better search area. 

Chaos Mapping Method 

When the PSO algorithm iterates to a certain extent, the traditional PSO algorithm is prone to 
getting stuck in local optima and unable to escape. When the PSO algorithm falls into a local optimum, 
if it can force some particles to break through the local optimum and continue global search, it can 
significantly improve the global search ability of the PSO algorithm. 

Chaos is a widespread nonlinear phenomenon in nature. It may seem chaotic, but it has a 
complex internal structure, featuring randomness, ergodicity, and regularity. It is highly sensitive to 
initial conditions and can traverse all states within a certain range without repetition according to its 
own rules. Based on the properties of chaotic motion, optimization searches can be carried out [25-
26]. The main idea of introducing chaotic optimization search techniques into the PSO algorithm is 
to incorporate the computation process of the PSO algorithm the main procedure. When the optimal 
fitness of the population changes very little in n iterations, indicating that it has fallen into local optima, 
chaotic optimization search is applied to particles with the optimal fitness. This drives the particle to 
escape the local optimum, thereby improving the trend of PSO algorithm falling into local optima in 
the later stages of evolution [27-29]. 

To improve computational efficiency, chaotic optimization search is not triggered in the early 
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stages of evolution due to the fast convergence speed of PSO algorithm. However, in the later stages, 
when the convergence of the PSO algorithm slows down, chaotic optimization search will be called 
multiple times for optimization. 

The chaos mapping method used in this study is the Logistic-Sine-Cosine chaotic mapping, and the 
formula to generate chaotic sequences is as follows (11): 

𝑦𝑖+1 = cos {𝜋[4𝑟𝑦𝑖(1 − 𝑦𝑖) + (1 − 𝑟)𝑠𝑖𝑛(𝜋𝑦𝑖) − 0.5]}, 𝑟 ∈ [0,1]               (11) 

where 𝑦1 is a random number; 𝑦2— 𝑦𝑖+1 is generated by the chaos mapping formula, and 𝑦1-𝑦𝑖 is 
the chaos mapping sequence. 

The chaotic sequence is mapped into the 𝑥𝑖-centered domain by carrier wave, and expressed as 
follows (12): 

𝑥𝑖
′ = 𝑥𝑖 + 𝑅(2𝑦𝑖 − 1)                                    (12) 

where R is the chaotic search radius, and the value range of 𝑥𝑖
,
 is as follows: 

𝑥𝑖
′ ∈ [𝑥𝑖 − 𝑅, 𝑥𝑖 + 𝑅]                                    (13) 

The update formula for particle swarm velocity is as follows: 

v𝑖
′ =

𝑥𝑖
′ −𝑥𝑖

‖𝑥𝑖
′ −𝑥𝑖‖

                                        (14) 

Adaptive Outlier Filtering Method 

When applying the traditional PSO algorithm to the inversion of leakage channels within the 
tunnel lining and surrounding rock in a three-dimensional space, the reliability of the inversion results 
will be inevitably affected by the multiple solutions. On one hand, the inversion results may 
significantly deviate from reality; on the other hand, the results from two different inversions may be 
entirely dissimilar. To address this issue, constraints need to be applied to the inversion process and 
results. 

According to the basic geological distribution pattern, the distribution of charges is continuous 
and smooth, and it is unlikely that there will be a sudden change in charges. Therefore, this regularity 
can serve as a constraint to eliminate mutation points, reduce the existence of multiple solutions, 
and make the inversion results closer to reality. 

To eliminate mutation points, this inversion algorithm adopts an outlier determination-correcting 
method based on the Pautacriterion to rectify mutation points. During the correction process, an 
adaptive weighting coefficient δ is introduced to avoid data distortion and overcorrection. 

The calculation steps are as follows: 

(1)   Calculate the distance rkm from the data point k to all remaining data points in the solution 

space, where k = 1,2,3... n，m=1,2,3... n, and n is the total number of points in the group. 

(2)   The sphere with the radius R is determined with the data point k as the center. 
(3)   When the number of points with a distance to the data point k less than R is greater than l, 
the standard deviation and average value of all points in the sphere range with R as the radius are 
obtained. The value of the data point k is corrected according to Eq. (15) when the difference 
between the value of the data point k and the average of all points in the range is greater than q 
times the standard deviation; otherwise, the value of the data point k(𝑣𝑎𝑙𝑘) remains unchanged. 

𝑣𝑎𝑙𝑘 = ∑
𝑟𝑘𝑖

∑ 𝑟𝑘𝑗
𝑛
𝑗=1

× 𝑣𝑎𝑙𝑖 × (1 − 𝛿) +𝑛
𝑖=1 𝑣𝑎𝑙𝑘 × 𝛿, 𝑖 = 1,2,3 ⋯ 𝑠, 𝑗 = 1,2,3 ⋯ 𝑠, 𝑘 = 1,2,3 ⋯ 𝑛    (15) 

where s is the number of all points in the range except the data point k; vali is the amount of charge 
of the data point i; rkj and rki are the distance between data point k and data points i and j. The 
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coefficient 𝛿 is determined as follows: 

𝛿 = 1.2−(𝑠−1)                                     (16) 
(4)   When the number of points whose distance to the data point k is less than R is less than or 
equal to l, the standard deviation and the mean of these l points plus data point k are sought. The 
data point k is corrected according to Equation (17) when the difference between the data point k 
and the average of the sought l+1 points is greater than q times the standard deviation; otherwise, 
the value of the data point k remains unchanged. 

𝑣𝑎𝑙𝑘 = ∑
𝑟𝑘𝑖

∑ 𝑟𝑘𝑗
𝑛
𝑗=1

× 𝑣𝑎𝑙𝑖 × (1 − 𝛿) +𝑛
𝑖=1 𝑣𝑎𝑙𝑘 × 𝛿, 𝑖 = 1,2,3 ⋯ 𝑙, 𝑗 = 1,2,3 ⋯ 𝑙, 𝑘 = 1,2,3 ⋯ 𝑛       (17) 

where vali is the amount of charge of the data point; rkj and rki are the distance between the data 
point k and data points i and j. The coefficient 𝛿 is determined as follows: 

𝛿 = 1.2−(𝑙−1)                                     (18) 

Four-Dimensional Discrete Data Point Grid Interpolation Method 

In the inversion of leakage channels within the tunnel lining and surrounding rock in three-
dimensional space, the output result of the PSO algorithm is represented as an𝑛×4matrix.In the 
output matrix, the first three columns are the position of the data point, and the fourth column is the 
charge of the point vali, 𝑖=1,2,3…𝑛. As the data points in the output result are sparsely distributed in 
three-dimensional space, it is challenging to visualize them directly. To address this, a four-
dimensional discrete data point grid interpolation algorithm is designed to visualize the randomly 
distributed four-dimensional data points. The algorithm steps are as follows: 

(1)   Establish a uniformly distributed three-dimensional grid of points𝑝𝑗 , and set the charge 

corresponding to each three-dimensional grid point as𝑑𝑣𝑎𝑙𝑗 , where𝑗 = 1,2,3 … 𝑚 , and m is the 

number of three-dimensional grid points. 
(2)   Calculate the distance from all date points to the three-dimensional grid point 𝑝𝑗  and 

indicate them by r1, r2, r3…rn. In addition, when 𝑟𝑖 is 0, 𝑟𝑖 is changedto1.0 × 10−100; 

(3)   Calculate the weight of all date points to 3D mesh point 𝑝𝑗  according to Eq. (19), 𝑗 =

1,2,3 … 𝑚: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖 =
𝑟𝑖

∑ 𝑟𝑖
𝑛
𝑖=1

, 𝑖 = 1,2,3 … 𝑛,                              (19) 

(4)   Calculate the charge amount 𝑑𝑣𝑎𝑙𝑗 of the three-dimensional grid point 𝑝𝑗as follows: 

𝑑𝑣𝑎𝑙𝑗 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑣𝑎𝑙𝑖 , 𝑖 = 1,2,3 … 𝑛,𝑛
𝑖=1 𝑗 = 1,2,3 … 𝑚,                  (20) 

(5)   The coordinates of the three-dimensional grid point 𝑝𝑗 and the charge amount 𝑑𝑣𝑎𝑙𝑗 of 

the point are combined to form a meshed interpolation matrix. 

ANALYSIS AND RESULTS 

Comparison of Algorithm before and After Improvements 

Taking a simple three-dimensional model as an example, as shown in Figure 4(a), the simple 
three-dimensional model is established as follows: a charged sphere with a radius of 0.6m is placed 
in a semi-infinite space. The center coordinates of the sphere are (0.5, 0.5, -1). The surface of the 
semi-infinite space is at Z=0m. The volume charge density of the sphere is 1C/m3. The surface 
potential distribution at Z=0m is shown in Figure 4(b). 
 



 

  Article no. 22 
 

THE CIVIL ENGINEERING JOURNAL 3-2024 
 

 

DOI 10.14311/CEJ.2024.03.0022      328 

                 
(a)                                           (b) 

Fig. 4 - Surface potential distribution at z = 0m 

The standard particle swarm algorithm and the improved particle swarm algorithm are 
respectively used for inversion test, as shown in Figures 5 to 6. The direction of each axis of the 
coordinate system in Figures 5 to 6 is consistent with the direction of each axis of the coordinate 
system in Figure 4, but the coordinate origin in Figures 5 to 6 is located at (0, 0, -2) in the coordinate 
system of Figure 4. 

 
Fig.5 - Inversion result diagram of standard particle swarm optimization algorithm 

 
Fig.6 - Inversion Results of Improved Particle Swarm Optimization Algorithm 

 

The convergence curves of the algorithms are shown in Figure 7. 
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Fig. 7 Convergence curve of algorithm 

As shown in Figure 7, the inversion fitting variance of the improved PSO algorithm is significantly 
smaller than that of the standard PSO algorithm. Compared with the standard PSO algorithm, the 
inversion results of the improved PSO algorithm match the established model to a better extent, 
which shows better inversion effect. 

Forward Simulation Data Inversion 

The basic steps of the algorithm are as follows: 

(1)   Import raw data and set inversion parameters; 
(2)   Apply adaptive outlier filtering to preprocess the original data and remove outliers; 
(3)   Use the adaptive weighted particle swarm optimization algorithm to invert the preprocessed 
data; 
(4)   When optimization stagnates, apply chaos mapping to the optimal solution to expand the 
search range; 
(5)   Stop iteration when the objective fitness is reached, and apply adaptive outlier filtering to 
the discrete point cloud to make the results conform more to geological laws; 
(6)   Export the data and create plots. 

Taking the aforementioned three-dimensional coupled model of seepage field-natural electric field 
as an example, the inverse processing of the forward data is carried out in the following steps: 

(1)   As shown in Figure 3, the potential distribution of the surrounding tunnel wall is obtained on 
the tunnel wall of the forward model centered on the seepage point; 
(2)   Establish a square with a side length of 2 m as the inversion area, and take the center of 
the inversion area as the origin to establish a three-dimensional coordinate system, in which the Z-
axis points beyond the inner wall of the tunnel, the Y-axis is upward, and the X-axis is to the right, so 
that the coordinates of the inner wall of the tunnel are Z=1 m, and the coordinates of the water 
seepage point are (0, 0, 1). The established coordinate system is shown in Figure 8. 
(3)   Inversion parameter setting: a target fitting variance of 1%; a maximum number of iterations 
of200, and an initial filtering parameter-filtering number of1. 

In this inversion trial, the variance of the inversion results from the forward data is 1.58%. The 
inversion results are shown in Figure 8. 
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Fig. 8 - Inversion Results of Forward Model 

It can be seen from Figure 8 of the inversion results that the position and morphology of the 
leakage channel in the forward model have a good correspondence with the position and morphology 
of the positive charge concentration distribution in the space charge inversion result diagram. 
Therefore, the spatial charge distribution inversion based on the forward data is reliable. 

Inversion Study of Measured Data 

After long-term operation, water seepage occurs in the inner wall of a tunnel, and it is necessary 
to carry out leakage plugging construction on the seepage channel. Taking the seepage location of 
the tunnel as an example, the effectiveness of the detection method is further verified. As shown in 
Figure 9(a), the measuring points are arranged where water seepage occurs in the tunnel inner wall, 
and the distribution of measuring points is depicted as shown in Figure 9(b). 

             
(a)                                               (b) 

Fig.9 - Layout of Measuring Points for Measured Data 

Based on the distribution of the measured points, a spatial coordinate system with the X and Y axes 
is established, as shown in Figure 9(b). The seepage point is the origin of the X-Y axis coordinate 
system. The Z-axis is set to point outward from the tunnel surface, where the Z-axis coordinate of 
the tunnel surface is 2m. Therefore, the origin of the coordinate system is 2m inside the tunnel lining, 
located at the intersection of the X and Y axes. Table 1 shows the coordinates and potential values 
of each measured point, and Figure 10 shows the potential distribution on the inner wall surface of 
the tunnel (interpolated using the Kriging method). 
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Tab. 1 - Measured Point Coordinates and Potential Values 
 

Dot X Y  Z potential(mV) 

Point 1-1 -0.35 0.7  2 -14.8082 
Point 1-2 -0.85 0  2 25.7779 
Point 1-3 -0.35 0  2 27.4132 
Point 1-4 -0.35 -0.7  2 5.4714 
Point 1-5 0.35 0.7  2 -27.6113 
Point 1-6 0.35 0  2 -32.2695 
Point 1-7 0.85 0  2 1.4756 
Point 1-8 0.35 -0.7  2 -27.3133 

 
Fig. 10 Potential distribution of inner wall surface of tunnel 

The inversion process utilizes parameters such as a target fitting variance of 5%, maximum 
iteration times of 200 and initial filtering parameters - filtering times of 1. The inversion variance is 
7.6%. The inversion result is shown in Figure11. 

 

Fig.11 Inversion Results of Measured Data 

From the inversion result in Figure11, it can be observed that the spatial charge distribution 
inversion based on the measured data corresponds to the actual situation of charge anomaly 
distribution caused by leakage channels. It can be inferred that the leakage channels in the external 
surrounding rock of the tunnel lining may exist at the location surrounded by the black wireframe in 
Figure 11. During the excavation process of the circled seepage channel, the excavation results 
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showed that at the abnormal position shown in Figure 11, the soil was loose and water seepage 
occurred. The loose part was excavated and replaced, and after treatment, there was no water 
seepage. 

CONCLUSION 

The following points can be drawn: 

(1) When there are leakage channels in the tunnel lining and the external surrounding rock, the 
potential distribution on the inner surface of the tunnel lining near the leakage channels will be 
significantly affected by the flow potential, resulting in anomalies. 

(2) The inversion software based on the improved chaos particle swarm optimization algorithm 
achieves a variance of 1.58% in the inversion of the forward model and a variance of 7.6% in the 
inversion of the measured data. Moreover, the charge anomaly distribution areas in the inversion 
results of the forward model are well correlated with the locations of leakage channels in the 
established model. In the inversion of the measured data, the distribution of charge anomalies 
conforms to geological laws. Therefore, the improved chaos PSO algorithm demonstrates good 
convergence and high consistency in the inversion of three-dimensional spatial charge distributions. 

(3) Through the analysis of the inversion results of numerical simulation data and measurement data, 
it can be seen that the improved chaotic PSO algorithm is used to perform three-dimensional 
inversion of the leakage channel inside the tunnel surrounding rock using the potential distribution 
of the tunnel lining layer as the original data, which is consistent with the actual situation. The 
inversion algorithm has high reliability. 
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