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ABSTRACT  

This paper presents an efficient and accurate method for detecting flat roof leaks using a 
combination of unmanned aerial vehicles (UAVs) and deep learning. The proposed method utilizes 
a DJI M300 drone equipped with RGB and thermal cameras to capture high-resolution images of the 
roof. These images are then processed to create orthomosaics and digital elevation models (DEMs). 
A deep learning model based on the U-NET architecture is then used to segment the roof into 
different classes, such as PVC foil, windows, and sidewalks. Finally, the damaged insulation is 
identified by analyzing the temperature distribution within the PVC foil segments. The proposed 
method has several advantages over traditional inspection methods. It is much faster and efficient. 
An UAV can collect images of a large roof in a matter of minutes, while traditional methods can take 
several days or weeks. The orthomosaics and temperature maps generated by the UAV are much 
more detailed than the images that can be collected by a human inspector. Third, the UAV-based 
system is safer. The UAV can collect images of the roof without the need for a human inspector to 
climb onto the roof, which can be dangerous. The results of this study show that the proposed 
method is an effective and accurate way to detect flat roof leaks. The deep learning model was able 
to achieve an overall accuracy of 95% in segmenting the roof into different classes. The method was 
also able to identify damaged insulation with a high degree of accuracy. 
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INTRODUCTION 

Flat roofs in large industrial halls are the weakest link in the whole building. A flat roof is 
characterized by its low pitch, which gives the advantage of covering a large area at a lower cost 
than pitched roofs. The flat roof has one major drawback in the form of slow rainwater drainage. Flat 
roofs can have a slope almost to the horizon, i.e. in the range of 0-1 degrees, which is often used on 
modern buildings or to create a roof terrace. Low pitch, which ranges between 1-5 degrees, is a 
common choice for commercial buildings and allows for a variety of uses such as solar panels or 
roof gardens. Roofs with a moderate pitch (5-10 degrees) are suitable for residential and commercial 
buildings and allow for relatively easy maintenance and efficient drainage. Due to the slow rate of 
rainwater runoff, great emphasis is placed on the design of flat roofs and their subsequent control 
according to the composition.  

There are several compositions of flat roofs, and each plays a key role in providing stability, 
insulation and weather protection to this modern roof structure. We start with the roofing material, 
which is the first layer that forms the outer surface of the roof. This covering can be made from a 
variety of materials such as asphalt board, PVC sheeting, EPDM (ethylene propylene diene 
monomer rubber) rubber membranes, TPO (thermoplastic olefin) sheeting or concrete tiles, and is 
designed to resist weathering and provide an aesthetically pleasing appearance like on Figure 1. 
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This is followed by a waterproofing layer, which is key to keeping the roof dry. This layer prevents 
water from penetrating the structure and can be made of different waterproofing materials such as 
bitumen sheeting or liquid waterproofing. This is followed by insulation, which serves to maintain the 
interior temperature and ensure the energy efficiency of the building. Insulation materials include 
foam, mineral wool, expanded polystyrene (EPS) or extruded polystyrene (XPS). The drainage 
system, comprising the roof pitch and drainage elements such as gutters, downspouts and roof mats, 
is another important element. Its purpose is to quickly drain rainwater and prevent water from 
standing on the roof, which could cause failures. Security against wind and weather can be achieved 
by using a wind barrier. 

 

Fig. 1 – Example of typical flat roof 

Flat roofs covered with PVC membranes or even other membranes are susceptible to cracks, 
holes and other wear and tear caused by careless handling during construction, degradation from 
UV rays or others. Rainwater subsequently runs off through the hole into other layers of the roof 
composition. The water can remain in the waterproofing layer where it causes a reduction in the 
functionality of the thermal insulation in which the insulation becomes a conductor of heat. Water 
can seep through to the inside of the building and damage the interior and equipment of the building. 
An example of a flat roof leak is visible in Figure 2. 

Regular inspection of flat roofs is key to addressing leaks effectively. Various methods exist 
for detecting holes in PVC foil roofing, including visual inspection, electropulse testing, needle 
testing, and smoke testing. These non-destructive techniques enable precise localization of holes in 
small areas, typically within a radius of about 0.5 meters. However, for larger roofs exceeding 10,000 
square meters, employing these methods can become costly. An alternative solution for such 
extensive roofs involves thermography conducted by unmanned aerial vehicles (UAVs), offering 
efficient detection and assessment of leaks. 

Thermography offers a non-invasive glimpse into the building's health, but accurate 
interpretation hinges on meticulous data acquisition. Surface emissivity, the culprit of varied thermal 
signatures even in identical materials, can be tamed through combined thermal camera and contact 
thermometer measurements. Reflected apparent temperature, another influential factor, is 
addressed by incorporating a reference object for subsequent corrections. Atmospheric attenuation, 
caused by air temperature and humidity, is easily mitigated by post-processing corrections based on 
weather station data. Finally, the camera-object distance, automatically embedded in modern 
thermograms, eliminates distance-related biases. By diligently accounting for these factors, 
thermography empowers researchers and professionals with reliable data to pinpoint heat loss, 
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thermal anomalies, and potential damage, paving the way for optimal building health and energy 
efficiency.  

 

Fig. 2 – Flat roof leak sample 

Thermal images captured by terrestrial thermal cameras require adjustments for perspective 
correction [1] and compensation for reflected longwave radiation from the Sun [2]. Despite their low 
resolution, thermal images can be processed using SfM (Structure from Motion) techniques [3]. 
Combining RGB images with thermal images enhances model detail [4], and aerial thermal imaging 
complements terrestrial coverage [5]. 

Detecting defects becomes challenging due to shadows, addressed either by capturing 
images under cloudy conditions or by segmenting thermal images for analysis [6]. Aerial thermal 
imaging, utilizing uncooled thermal cameras, suffers from vignetting nonuniformity, necessitating 
temperature calibration for accuracy [7]. Moreover, aerial thermography aids in calibrating building 
envelope models to meet energy efficiency standards [8-9]. 

The use of thermal cameras on drones has only recently begun. Lightweight thermal cameras 
had very low resolution and it was practically difficult to process the data by SfM. It was only about 
five years ago that improvements were made, the resolution of thermal cameras was increased and 
the software was adapted [10]. 

Thermography is an important tool in modern engineering and construction, allowing non-
invasive detection and evaluation of defects in structures without compromising their integrity. To 
find a flat roof leaks, the total area of the roof must be recorded. It is therefore easier to use UAVs 
for data collection and subsequent processing of thermograms into orthomosaics than single 
thermograms. Thermograms that capture thermal distributions can be processed similarly to 
standard RGB images, except that they have a lower resolution. Professional thermal imaging 
cameras often offer a resolution of 640x512 px, which is significantly lower than standard RGB 
images. This limitation must be considered when photogrammetrically processing thermographic 
data [11-15]. 

Convolutional Neural Networks (CNNs) represent a class of deep learning architectures 
adept at tasks like image recognition and processing. Inspired by the human visual cortex, CNNs 
comprise layers designed to process input data hierarchically. At the outset, CNNs usually feature 
a convolutional layer tasked with feature extraction from the input image. This layer employs filters, 
small weight matrices, applied across different regions of the input, resulting in feature maps that 
encode detected features. Following the convolutional layer, a pooling layer is typically employed 
to downsample the feature maps, reducing their size while retaining essential information. The 
common max pooling operation selects the maximum value within specified regions of the feature 
map. This sequence of convolutional and pooling layers iterates through the network, progressively 
extracting more intricate features. Finally, a fully connected layer often concludes the CNN, 
responsible for classifying the input into predefined categories. [16] CNNs find wide-ranging 
applications, including land cover classification [17], tree species detection [18], and damage 
assessment following earthquakes [19]. 
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U-Net stands out among convolutional neural network (CNN) architectures due to its 
specialization in pixel-level segmentation tasks, scheme of the network is in Figure 3. While 
traditional CNNs typically classify entire images, U-Net excels at identifying individual pixels 
belonging to specific classes within an image. This capability makes it particularly well-suited for 
tasks such as object detection, semantic segmentation, and instance segmentation. In drone 
orthophotos, U-Net can be trained to distinguish various elements such as buildings, roads, 
vegetation, water bodies, or even specific objects based on the application [21]. Through 
segmentation, this process effectively isolates these elements from the background, enabling 
detailed analysis and quantification. For instance, U-Net has been applied to scenarios such as 
detecting fallen trees after hurricanes or other disasters [22] and windthrow events [23]. Deep 
learning detection isn't limited to RGB or satellite data inputs. While RGB images are commonly used 
as the primary dataset, and most backbone models require RGB images, digital elevation models 
(DEMs) can also be utilized. Multi Directional Hillshade based on DEM data with three bands with 8 
bits similar to RGB are suitable for Deep learning [24]. Another option is to leverage elevation data 
directly from the DEM, along with derived features such as slope (ranging from 0° to 90°) and terrain 
curvature [25]. These alternative data sources provide additional information that can enhance the 
capabilities of models like U-Net in various applications. 

Deep Learning is also usable for Thermal abnormality detection. RGB images are used for 
the segmentation of visible buildings into walls, windows and doors and abnormality is localized by 
the temperature threshold of the anomaly area determined from the multimodal temperature 
distribution of the target domain [26]. 

 

Fig. 3 – U-NET scheme [20] 
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METHODS 

Testing data 

Dozens of flat roofs were used for testing, flown from 2021 to 2024. The total area exceeds 
over 825,000 m2 of flat roof area. Data collection was carried out on selected halls across the Czech 
Republic with implementation by NDN Tech company. The roofing on all flat roofs was made of PVC 
foil, on which flat roof leaks were searched. Roofs contain other categories like windows, walking 
paths, lightning rods and components, the percentage is in Figure 4. 

Data for roof leak detection was collected using a DJI M300 drone equipped with a DJI P1 
RGB camera and a DJI H20T thermal camera. RGB images were collected during the day to ensure 
good lighting conditions for the creation of a digital elevation model (DEM) and an RGB orthomosaic. 
Thermal images were collected after sunset to take advantage of the thermal contrast between the 
insulation and the surrounding environment. 

High thermal contrast is essential for accurate leak detection. This contrast is most 
pronounced during the cooling and heating phases of the day when the insulation and the 
surrounding environment are at different temperatures. 

 

Fig. 4 – Diagram of the percentile of class on the roof 

 Workflow of automatic flat roof leak detection 

The full workflow consists of several steps based on image collection, preprocessing raw 
images, processing Ortomosaic and DEM in Agisoft Metashape, preprocessing raster data, training 
and applying the CNN model, raster segmentation and classification of a flat roof leak. The 
Workflow scheme is visible in Figure 5. 

Data is collected by DJI M300 with DJI P1 and DJI H20T camera with automatic planning 
mission over a flat roof. All images have coordinates from the RTK module connected to the 
nearest GNSS permanent station. RGB images were captured during the day with good light 
conditions. TIR images were captured after sunset to eliminate reflected radiation and spot 
radiation emission with high contrast between damaged insulation and fine.  Image specifications 
are in Table 1 below. 

TIR images captured on UAV contain relative temperature and raw data. For absolute 
material temperature, TIR images must be calibrated by material emissivity, reflected radiation, 
atmospheric radiation, air temperature, humidity and distance from the object. Most elements are 
known from auxiliary measurements except material emissivity. Material emissivity is known from 
laboratory tests, but in real conditions, emissivity is far from the laboratory value. During the data 
acquisition method of determination, material emissivity and absolute material temperature were 
found as calibration of the thermograms. Calibration of the thermograms is performed using 
temperature calibration points. At the calibration points the absolute temperature is measured with 
a contact thermometer. For thermograms with a captured calibration point, the emissivity of the 
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material is determined retrospectively and applied to the rest of the thermograms in the TIR 
dataset. Thermal calibration points are selected on the PVC foil of the flat roof. The temperature of 
these points is measured before the UAV flies and after to control temperature drop. Points are 
signalized by an aluminium target to be visible on TIR images. 

RGB images are processed in Adobe Lightroom from raw to jpg to correct exposure, fix 
highlights and pull shadows. The images are then processed in Agisoft Metashape to create DEM 
and RGB orthomosaics. Image coordinates sometimes contain the wrong position due to a lack of 
mobile signal when using GNSS correction. To avoid this problem, it is better to align the photo 
relative and after alignment apply georeferencing by image coordinates. Images with wrong 
coordinates contain higher position errors and fine georeferencing is prevented. 

 

Fig. 5 – Process scheme 

Processing of TIR images in Agisoft Metashape is done as RGB images except for DEM 
computation. Due to the low resolution of TIR images, it is better to use DEM from RGB images. 
Georeferencing with RTK coordinates allows the blending of RGB and TIR datasets without 
common control points. Ortho Mosaicing of the TIR dataset is based on DEM from the RGB 
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dataset. Results from image processing in Agisoft Metashape are RGB orthomosaic (24bit), DEM 
(32bit float), and TIR orthomosaic (32bit float). 

Tab. 1 - Methods of processing time 

 RGB images TIR images 

cameras DJI P1 DJI H20T 

resolution [px] 8192x5460 640x512 

lens [mm] / Equival. 35 58 

FOV  [°] 63.5 40.6 

time day sunset 

above ground level (AGL) [m] 80 50 

ground sample distance (GSD)  [cm] 1 4.4 

Overlap 80%, 60% 90%, 80% 

Before training CNN (Convolutional Neural Network) model, rasters must be united into the 
same data type. Different data types are not allowed by the CNN model like 8bit vs. 32bit float. 
Most CNN models work with RGB data due to the most common sensor. Thermal data for the 
detection of flat roof leaks are also valuable information for classification by the CNN model. 
Objects on flat roofs are made from different materials with different emissivity and temperatures 
shown on thermograms in Figure 6. For example, the ventilation temperature on flat roofs is 
temperature-dependent on the cooling or heating process. The colour may be the same as PVC 
foil but the temperature is diametral different, this will help the CNN model to differentiate objects. 
Problems appear when each flat roof is inspected at a different time and season, and air condition 
and building operating temperatures are different. For purposes of the CNN model, data must be 
normalized by the median of TIR orthomosaic, which is the average temperature of PVC foil. 
Normalization excluded different temperatures across flat roof datasets. 

 

Fig. 6 – Example of TIR orthomosaic 
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During the photogrammetry process in Agisoft MetaShape to achieve RGB and TIR 
orthomosaic DEM is created. DEM can extract useful information for the CNN model like altitude 
and slope. Altitude has the same problem as temperature, it is unique on each flat roof. Each 
building is built in a different area with some altitude. The usage of raw height from DEM for the 
CNN model will be not sufficient. Dem must be normalized by the median of DEM values, which is 
the height of a flat roof. The flat roof value on normalized DEM will be 0; other components will 
have different values. Some flat roofs have different levels, each level can be inspected for flat roof 
leaks. A flat roof level has a value other than 0 on normalized DEM and the CNN model can 
misclassify the level. The solution is to calculate slope based on DEM, but DEM by 
photogrammetry process may contain noise on PVC foils because of low contrast on RGB images 
and GSD. Due to the issue, DEM must be filtered to achieve smooth values Figure 7. For 
smoothing DEM used a median filter with a 3x3 kernel. After the smoothing slope can be 
calculated and the wrong values on PVC foil disappear, the comparison is visible in Figure 6.  

 

Fig. 7 – RGB orthomosaic (left), Slope before DEM filtering (middle), Slope after DEM filtering 
(right) 

The RGBDTS raster used for creating samples for the U-NET model is composed of bands 
Red, Green, Blue, nDEM (normalized Digital Elevation Model), nTIR (normalized Thermal infrared) 
and Slope. All bands have the same 8-bit type for usage in the CNN model. For sample creation, 
CAD drawings are used for the first classification of flat roofs. CAD drawings were created as part 
of a job of flat roof inspection by company NDN tech. Computer aided design CAD drawings were 
converted into polygons representing each class of flat roof: PVC foil, windows, sidewalks, 
lightning rods and components. 

Trimble eCognition - CNN approach  

Using the Vector-based segmentation in Trimble eCognition was then from the polygons 
created image objects. These image objects were then classified responding to the number and 
type of input classes. From these classified image objects were then created samples for the CNN. 
The type of samples was used in RAW format, sample count was 50 000 and the sample patch 
size was 32 pixels. Samples were made for each layer of RGB texture. The Convolutional Neural 
Network contained 2 hidden layers. The kernel of the first layer was set at 7 and the number of 
distinct feature maps was 12. The kernel of the second layer was set to 5. The CNN was trained 
with a 0.0006 learning rate, with 5000 training steps and 50 samples were used in each training 
step. After applying the CNN, heat maps of each class were created. The Values of heat maps 
represent probabilities of occurrence of each class. 

The RGBDTS raster is used with OBIA segmentation to achieve segments most similar to 
real objects of flat roofs. Object-Based Image Analysis (OBIA) is a technique that moves beyond 
the traditional pixel-based analysis commonly used in remote sensing. Instead of treating individual 

https://cs.wikipedia.org/wiki/Computer_aided_design
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pixels as the smallest unit of analysis, OBIA groups pixels into meaningful objects or segments 
based on their spectral, spatial, and contextual characteristics (shape and compactness). This 
approach allows for a more accurate and context-aware interpretation of the data. Segments are 
classified into PVC foil, windows, sidewalks and other classes by heatmap from the CNN model. 
With classified PVC foil, it is possible to divide segments into damaged and fine insulation. 
Damaged insulation has a higher temperature compared to fine insulation. PVC foil segments are 
classified by the rule: IF temperature PVC foil exceeds 0 from nTIR class as a flat roof leak. 

ArcGIS - U-NET approach  

The U-NET model's training chips were generated using 256x256 pixel tiles extracted from 
the RGBDTS raster data. Each tile contained polygons defining the different classes present in the 
scene. Training chips were in the "Classified Tiles" format. 

The U-NET model underwent training with data augmentation techniques specified in Table 
2. The training was conducted in batches of 8 samples for 20 epochs, with 10% of the data 
designated for validation purposes. A ResNet34 architecture served as the backbone for the deep 
learning model. 

Tab. 2 - Methods of processing time 

 Min Max Step 

Rotate 0 360 10 

Brightness 0.4 0.6 1 

Contrast 0.7 1.5 1 

Zoom 0.7 1.3 1 

Flat roof leaks were extracted on segmented PVC foil at a higher temperature than 
the rest PVC foil. 

RESULTS 

Trimble eCognition - CNN - heatmaps 

The application of a Convolutional Neural Network (CNN) within the eCognition software 
yielded unsatisfactory results. This can be attributed to several limitations. Each image chip could 
only receive a single class label, leading to misclassification when containing multiple classes 
within its boundaries. Smaller chip sizes might not capture sufficient textural information crucial for 
the accurate classification of flat roof elements. Introducing more than three distinct classes 
resulted in insufficient heatmap resolution for effective classification Figure 8. 
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Fig. 8 – Results from eCognition 

ArcGIS - U-NET pixels segmentation 

Leveraging U-NET within ArcGIS effectively segmented flat roof classes. Employing larger 
image chips successfully preserved textural information crucial for accurate classification. Notably, 
the Classified Tiles format proved advantageous by enabling the representation of multiple classes 
within a single chip, thereby mitigating mislabelling issues.  

 

Fig. 9 – Training loss 
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Fig. 10 – Results from ArcGIS 

The efficacy of utilizing RGBDTS raster data was assessed against RGB raster data in 
terms of segmentation performance. Specifically, this evaluation focused on a flat roof scenario, 
employing identical network architectures, backbones, and other relevant parameters for both 
datasets. The results indicated superior segmentation outcomes when employing the RGBDTS 
raster compared to the RGB raster. Notably, there was no discernible difference in testing times 
between the two raster types, with both requiring equivalent time for one training epoch. Figure 10 
visually represents the enhanced segmentation achieved across all three classes. This 
underscores the limitation of relying solely on colour information, particularly when distinguishing 
between classes with similar greyish hues. The resulting training results based on the RGBDTS 
raster are visible in Table 3 according to the evaluation equations (1-3) for deep learning. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

                (3) 

 

Tab. 3 - Methods processing time 

 PVC windows lightning rod components walking 

precision 0.994304 0.989148 0.926059 0.815632 0.980574 

recall 0.995657 0.990409 0.937605 0.807025 0.952942 

f1 0.994980 0.989778 0.931796 0.811306 0.966561 
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CONCLUSION 

This study successfully demonstrated a streamlined and precise approach to flat roof leak 
detection, merging the power of remote sensing data and deep learning. By leveraging a DJI M300 
drone equipped with RGB and thermal cameras, we captured comprehensive roof data and 
processed it into orthomosaics and DEMs. The U-NET deep learning model excelled at segmenting 
the roof into distinct classes (PVC foil, windows, sidewalks), paving the way for leak identification. 
Damaged insulation was pinpointed by analyzing temperature variations within PVC foil segments, 
effectively revealing leaks. 

This novel method surpasses traditional inspection methods in several key aspects. Firstly, 
it boasts remarkable speed and efficiency, allowing UAVs to capture large roof areas in minutes, 
compared to days or weeks required by conventional methods. Secondly, the UAV-based system 
delivers superior accuracy, generating highly detailed orthomosaics and temperature maps that far 
exceed the capabilities of human inspectors. Most importantly, it prioritizes safety by eliminating the 
need for inspectors to physically climb roofs, thereby mitigating potential dangers. 

The achieved results are highly promising, showcasing an overall segmentation accuracy of 
95% for the deep learning model and a high degree of success in pinpointing damaged insulation. 
This innovative approach holds immense potential to revolutionize flat roof inspections, offering 
significant advantages: 

Inspections can be completed much faster, reducing time and resource expenditure. Detailed 
data acquisition and analysis lead to more precise leak detection and damage assessment. 
Eliminating the need for manual roof access minimizes risks for inspectors. Detailed roof condition 
information facilitates informed maintenance and repair decisions. 

By integrating additional classes (attics, ventilation systems, drainage elements) and refining 
the deep learning model with more data, the system's capabilities can be further expanded. This 
paves the way for a future where UAV-based inspections become the norm, ensuring safer, more 
efficient, and cost-effective flat roof management. 
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