
GPU-accelerated raster map reprojection
Petr Sloup

Department of Geomatics, Faculty of Civil Engineering
Czech Technical University in Prague

Thákurova 7, 166 29 Prague 6, Czech Republic
petr.sloup@fsv.cvut.cz

Abstract

Reprojecting raster maps from one projection to another is an essential part of
many cartographic processes (map comparison, overlays, data presentation, . . . )
and reduction of the required computational time is desirable and often signifi-
cantly decreases overall processing costs. The raster reprojection process operates
per-pixel and is, therefore, a good candidate for GPU-based parallelization. The
architecture of GPU allows a high degree of parallelism. The article describes an
experimental implementation of the raster reprojection with GPU-based paralleliza-
tion (using OpenCL API). During the evaluation, we compare the performance of
our implementation to the optimized gdalwarp utility and show that there is a
class of problems where GPU-based parallelization can lead to more than sevenfold
speedup.

Keywords: Raster reprojection, warping, parallelization, OpenCL, GPGPU, GPU.

Introduction

Representation of the surface of the Earth in two dimensions has always been important for
performing various tasks such as navigation or planning. Although this process has developed
significantly throughout the history, it is not possible to represent Earth’s surface on a plane
without distortion (as proven by [4]). Many map projections exist and each distorts the map
in a specific way (angles, areas, distances, . . . ).

Because of this, maps are created in various projections depending on the depicted area and
the intended use. There is often need to visually compare two or more maps or even digitally
display one map over another (overlay). This task is usually impossible without having the
maps in the same projection, which can be achieved through the process of reprojection.

Precise transformation of digital raster map from one projection to another requires compu-
tationally intensive per-pixel calculations, which can cause the reprojection process to take
very long time (even hours for larger datasets). Because of this, working with many GIS
applications can be slow and inefficient. This is especially unacceptable in certain situations
such as natural crisis management (hurricanes, tsunamis, wildfire, . . . ) when rapid response
is crucial in order to minimize property damage or even save lives. Longer processing can
also be more costly – especially with modern cloud-based computing, which is often charged
depending on the computation durations.

This article briefly describes the process of raster reprojection, parallelization techniques
based on GPU (Graphics Processing Unit) and outlines how it can be utilized to achieve
significantly faster reprojection times without reducing output quality.

Geoinformatics FCE CTU 15(1), 2016, doi:10.14311/gi.15.1.5 61

http://orcid.org/0000-0003-4600-0527
http://dx.doi.org/10.14311/gi.15.1.5
http://creativecommons.org/licenses/by/4.0/


P. Sloup: GPU-accelerated raster map reprojection

Raster reprojection

As mentioned above, raster map reprojection is a process, when a new raster map in one
projection is mathematically derived from an existing raster map in a different projection.

The reprojection process inputs are usually:

• Input properties: raster data (this can be one or more files, possibly accessed via network
or too large to decompress as one piece); projection; extent

• Output requirements: projection; extent (if it differs from the input extent); raster
dimensions or resolution

• Reprojection parameters: resampling method; nodata values; . . .

The first phase of the process is to determine the extent of the required source data in order
to avoid loading and handling of unnecessarily large data. This is usually achieved using
the inverse transformation (from the output projection to the input projection) to transform
regularly sampled points (at least corners) of the desired output extent. The bounding box
of the transformed points (minimum and maximum in each axis) then outlines the required
area in the input data that needs to be processed.

Then, there are two common approaches to the actual data transformation:

a) Forward transformation (source-oriented)
The more intuitive approach is to read each input data pixel, determine its coordinate
in the input projection and then calculate its coordinate in the output projection using
the forward transformation. The pixel color is then written to the proper output pixel
position.

This approach can be quite straightforward to implement on certain platforms, but
provides significantly less control over the reprojection process and implementation of
different resampling methods can be very complicated. It can also be inefficient for
downsampling (when the input raster is significantly larger than the desired output) or
when only a subset of the raster is needed.

b) Inverse transformation (output-oriented)
The more common approach is to process individual pixels of the output raster – deter-
mine the output pixel coordinate in the output projection and calculate input coordinate
using the inverse transformation.

The color of the output pixel is then determined by sampling one or more pixels near
the appropriate position in the input raster. The particular sampling method depends
on specific application needs.

This solution provides more control over the process and can be often computationally
more efficient (since no unnecessary transformations are performed).

The gdalwarp utility – part of GDAL (Geospatial Data Abstraction Library) [5] – is often
used for raster data reprojection between arbitrary projections and data formats. It uses the
inverse projection approach described above.

Geoinformatics FCE CTU 15(1), 2016 62



P. Sloup: GPU-accelerated raster map reprojection

Parallelization

Large datasets usually cannot be processed at once, because the uncompressed raster data
would not fit into the computer’s operating memory (or even hard drive). The raster datasets
are therefore split into chunks and each of them is processed individually.

The process can be parallelized on several levels – ranging from task parallelism (or control
parallelism) to data parallelism, which usually scales better with the size of a problem [1]:

a) Input/Output operations
The reprojection is done sequentially by a single thread (chunk-by-chunk), but the
blocking IO operations are done asynchronously in a second thread (preparing data for
the main thread).

b) Raster blocks (chunks)
Several chunks can be processed in parallel – modern CPUs can efficiently run up to
16 threads. GDAL implements this parallelization approach. The calculations over
particular chunk (including transformations) are, however, still performed sequentially.

c) Individual pixels
The most fine-grained approach is to parallelize the individual per-pixel calculations:
inverse transformation, resampling, postprocessing operations.

The per-pixel parallelization is not suitable for regular CPU (central processing unit)
architecture – the overhead of creating and running thousands of threads on (up to)
tens of cores would significantly outweigh any performance gain.

Modern GPUs, on the other hand, can have up to thousands of cores that can be
programmed to perform various calculations. This allows the developers to perceive the
GPUs as parallel computers and employ data-parallel programming style [6].

General-purpose computing on graphics processing units

At the beginning of the 21st century, the GPU manufacturers (driven by the entertainment
industry) started to implement the programmable pipeline model (as opposed to the fixed-
function pipeline, where the graphics data processing is largely fixed and cannot be pro-
grammed). The programmable pipeline allows the developers to manipulate the graphics
processing and rendering by writing small programs called shaders. The popularity of this
model led to a gradual increase in the number of processing cores, which are used to execute
the shaders. The most common frameworks for GPU programming of graphics are OpenGL
(Open Graphics Library) and DirectX.

Since a large number of cores (up to thousands) can be very beneficial for many non-graphics
applications [9], there has been a significant development in the area of GPGPU (General-
purpose computing on graphics processing units) over the last several years.

OpenCL

OpenCL (Open Computing Language) [8] is a framework for applications executing across
heterogeneous platforms such as CPUs and GPUs. It is an open standard that provides a
cross-platform abstraction to the GPGPU capabilities (as well as CPU parallelism). OpenCL

Geoinformatics FCE CTU 15(1), 2016 63



P. Sloup: GPU-accelerated raster map reprojection

drivers are available for all the latest graphics cards from major manufacturers for all major
operating systems.

The framework can be used to create applications running on the host (CPU) that can initiate
data transfers and execute programs (called kernels – the analogy of the shaders) on the device
(GPU). The kernels are written in OpenCL C language, which is based on C programming
language [7]. The code is compiled at runtime by the hardware-specific OpenCL drivers to
ensure maximal portability. The kernels do not have access to IO operations (filesystem,
networking, . . . ) – this has to be handled by the host process and all the required data need
to be explicitly transferred to the device memory prior to the kernel execution.

When the kernel is executed, it can run many times in parallel (up to the number of available
cores), but the execution is similar to SIMD model (Single Instruction, Multiple Data; ac-
cording to Flynn’s taxonomy [3]) when running on GPU device – all the threads are executing
the same instruction at any given time. It is therefore important to avoid code branching
(conditional statements, loops with a dynamic number of iterations, . . . ) to optimize perfor-
mance. This is a restriction of given hardware architecture (in comparison to CPU), which
allows for the much higher number of cores.

OpenCL-accelerated warping

Experimental implementation was created to evaluate the proposed idea of raster warping
using OpenCL. The implemented method can be summed up into the following steps:

1. The required output raster is divided into several more manageable chunks than can fit
into the GPU memory.

2. For each chunk, the required source window is calculated – by applying the inverse
transformation on the uniformly sampled grid of 32 × 32 points covering the chunk
extent and calculating their bounding box. (The value of 32 was empirically chosen as
sufficient for determining the source window. GDAL uses 21 by default for a similar
process.)

3. The input raster data covering the calculated source window are loaded.

4. The output pixels (covering the chunk) are calculated using the inverse transformation
approach described above.

5. The calculated chunk content is written to the proper position in the output file.

Steps 1 and 2 are executed sequentially and only once. Steps 3–5 are executed sequentially
and repeated for every chunk, but the execution of these steps can overlap, so the reprojection
itself can run in parallel with the IO operations.

During the reprojection (step 4) the input data has to be explicitly transferred from CPU
memory to GPU memory and output buffer has to be allocated. The kernel function is
designed to calculate color of a single output pixel (output pixel position → coordinate in
output projection → coordinate in input projection → input pixel position → sample the input
buffer) and write it to the output buffer. The calculation is carried inside the kernel that is
written in OpenCL C and compiled at the start of the application.

Geoinformatics FCE CTU 15(1), 2016 64



P. Sloup: GPU-accelerated raster map reprojection

This means, however, that the coordinate transformation needs to be written in OpenCL C.
GDAL uses PROJ.4 library [2] for the transformations, but in our implementation selected
projections were ported manually.

Our implementation also uses GDAL drivers for reading and writing files to ensure the per-
formance of input/output operations is comparable and does not distort the performance
evaluation of the parallelization itself.

Evaluation

The performance of the experimental implementation was evaluated on common desktop
computer (Intel Core i5-6600@3.30GHz× 4 cores, 16GB RAM) running Ubuntu 15.10 64-
bit. Internal SSD was used for reading input files and storing outputs. The computer was
equipped with AMD RadeonR9 380 graphics card with 4GB memory and 1792 cores clocked
at 1000MHz.

The Blue Marble Next Generation dataset [10] was used for the evaluation process (various in-
put sizes, see Table 1 for details). The reprojection was performed from WGS84 (EPSG:4326)
to Mollweide projection with bilinear resampling method being used.

Figure 1: The Blue Marble Next Generation dataset [10] displayed in EPSG:4326 (left) and
the Mollweide projection (right)

The gdalwarp utility (part of GDAL version 1.11.2) was used for verification and perfor-
mance comparison with two different levels of parallelization. The following parameters were
used for the first test: gdalwarp -s_srs EPSG:4326 -t_srs +proj=moll -multi -wm 500
(the -multi argument enables parallelization of computation and IO operations; -wm 500 in-
creases allowed memory usage to 500MB to increase performance). For the second test, -wo
NUM_THREADS=ALL_CPUS was added to enable parallelization of the raster chunk processing up
to the maximal number of threads the CPU can operate at once (equals to 4 on the testing
PC).

Results from the gdalwarp and our implementation were compared using idiff utility. The
outputs were per-pixel identical inside the bounds of the projection.

See Table 1 for a detailed comparison of execution times for different input and output sizes.

Results

Although the evaluation of the initial implementation shows certain performance gain when
compared to gdalwarp, certain limitations can be observed.

Geoinformatics FCE CTU 15(1), 2016 65



P. Sloup: GPU-accelerated raster map reprojection

Table 1: Performance testing of OpenCL warping in comparison to GDAL. Values in GDAL†
are for parallelizing IO operations with computation, while values in GDAL‡ are for paral-
lelizing also the individual chunk processing. Times for the small dataset are averaged from
100 consecutive independent executions, for the other datasets from 5 executions.

Input [px] Output [px] GDAL† [s] GDAL‡ [s] OpenCL [s] speedup

Small 1024×512 1024×512 0.2051 0.0992 0.2562 0.39×
2048×1024 0.7054 0.2667 0.3756 0.71×

Large 21600×10800
1024×512 2.34 2.30 1.83 1.26×
8192×4096 11.87 5.21 1.97 2.64×
21600×10800 73.41 27.65 3.80 7.28×

Huge 86400×43200
8192×4096 173.15 172.29 168.28 1.02×
21600×10800 198.64 191.16 172.17 1.11×
86400×43200 980.82 865.37 528.68 1.64×

The computation time for the small dataset turned out to be actually worse than gdalwarp.
This is caused by the fact, that the performance gain from OpenCL parallelization is smaller
than the runtime kernel compilation overhead. The effect, however, would be less significant
when more computations are required (complex transformations, postprocessing, etc. – see
below) or for batch processing use cases (which would require only one kernel compilation for
warping multiple datasets and/or extracting more extents).

Processing of the huge dataset also yielded no significant performance gain (for the smaller
output sizes) since the time required for the loading of the input data and memory man-
agement is far longer than the processing time. Although the relative speedup of 1.64× (in
the case of the largest output size) does not seem to be very significant, the absolute time
difference is more than 5 minutes (14:24 vs 8:48), which can be very important in certain
situations.

Overall, the memory transfers (CPU RAM ↔ GPU VRAM) are the most time-consuming
part of the process. Therefore, the performance gain of this parallelization approach is more
significant for reprojections with more complex per-pixel calculations: mathematically com-
plex transformation, resampling method, and possibly postprocessing in the future (noise
reduction, color corrections, edge detection, . . . ).

Conclusions and future work

In this paper, we have briefly described a possible approach to GPU-based per-pixel paral-
lelization of raster map reprojection process. The experimental implementation has shown
that there is a set of problems that can significantly benefit from GPU-based acceleration.

To fully utilize the potential of this parallelization method, the amount of raw computation
needs to be as high as possible relative to the amount of data transfers. It is therefore most
suitable for high output resolutions (same as the input resolutions) or even upscaling.

On the other hand, this approach is not very effective for small datasets, where the overhead of
initializing the OpenCL environment is too high to have any actual benefit, or for significant
downsampling, where the whole input needs to be copied to the GPU, which takes too long

Geoinformatics FCE CTU 15(1), 2016 66



P. Sloup: GPU-accelerated raster map reprojection

in comparison to the amount of the subsequent transformation calculations.

In the future implementations, the benefit of this parallelization approach can further in-
crease with more complex transformations (e.g. warping based on ground control points) and
resampling methods. Furthermore, various raster operations (e.g., noise reduction, color cor-
rections, color mapping) can also be performed really fast both before and after the warping
since the data are already present in the GPU memory.

Development of a tool for batch processing would also help better utilize the GPU potential
– the OpenCL initialization could only be done once for multiple input and output datasets.
Similarly, this parallelization approach could be beneficial for creating tile pyramids – input
file would be loaded and transferred to GPU memory only once and used to create many
smaller files.

Acknowledgements

This work has been done as part of Ph.D. research at Czech Technical University in Prague
in cooperation with the Klokan Technologies GmbH for the future version of the MapTiler
product (http://www.maptiler.com/).

References

[1] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture. A Hardware/-
software Approach. Morgan Kaufmann Publishers, Sept. 1998. isbn: 9781558603431.

[2] G. Evenden, F. Warmerdam, et al. PROJ.4 – Cartographic Projections Library. [online].
http://proj.osgeo.org/. May 2015.

[3] M. Flynn. “Some Computer Organizations and Their Effectiveness”. In: Computers,
IEEE Transactions on C-21.9 (Sept. 1972), pp. 948–960. issn: 0018-9340. doi: 10.
1109/TC.1972.5009071.

[4] C. F. Gauss, J. C. Morehead, and A. M. Hiltebeitel. General investigations of curved
surfaces of 1827 and 1825. The Princeton University Library, 1902, p. 148.

[5] GDAL Development Team. GDAL – Geospatial Data Abstraction Library, Version
1.11.2. Open Source Geospatial Foundation. 2015. url: http://www.gdal.org.

[6] W. D. Hillis and G. L. Steele Jr. “Data Parallel Algorithms”. In: Communications of
the ACM 29.12 (Dec. 1986), pp. 1170–1183. issn: 0001-0782. doi: 10.1145/7902.7903.

[7] Khronos OpenCL Working Group. OpenCL C Specification. Ed. by Lee Howes Aaftab
Munshi and Bartosz Sochacki. 2015. url: https://www.khronos.org/registry/cl/
specs/opencl-2.0-openclc.pdf.

[8] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1. Ed. by
Aaftab Munshi. 2011. url: https://www.khronos.org/registry/cl/specs/opencl-
1.1.pdf.

[9] J. D. Owens et al. “A Survey of General-Purpose Computation on Graphics Hardware”.
In: Computer Graphics Forum 26.1 (Mar. 2007), pp. 80–113. issn: 1467-8659. doi:
10.1111/j.1467-8659.2007.01012.x.

Geoinformatics FCE CTU 15(1), 2016 67

http://www.maptiler.com/
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://www.gdal.org
http://dx.doi.org/10.1145/7902.7903
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x


P. Sloup: GPU-accelerated raster map reprojection

[10] R. Stöckli et al. The Blue Marble Next Generation - A true color earth dataset including
seasonal dynamics from MODIS. Published by the NASA Earth Observatory. 2005. url:
http://visibleearth.nasa.gov/view.php?id=73751.

Geoinformatics FCE CTU 15(1), 2016 68

http://visibleearth.nasa.gov/view.php?id=73751

