Jan Havelka, Jan Sýkora, Anna Kučerová


In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.


Calderón problem, Finite Element Method, Boundary inverse method, Neumann-to-


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2336-5382 (Online)
Published by the Czech Technical University in Prague